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Abstract  

 
Aims/hypothesis Lipid metabolism might be compromised in type 1 diabetes and the understanding of 

their physiology is critically important. This study aimed to compare the change in plasma lipid 

concentrations during carbohydrate dietary changes in individuals with type 1 diabetes and identify 

predictive biomarkers and early-stage pathophysiology for dyslipidaemia. We hypothesized that: (1) the 

lipidomics profiles before and after ingesting low or high carbohydrate diet for 12 weeks would be 

different; and (2) specific annotated lipid species would have significant associations with metabolic 

outcomes.   

Methods Ten adults with type 1 diabetes (mean±SD: age 43.6±13.8 years, diabetes duration 24.5±13.4 

years, BMI 24.9±2.1 kg/m2, HbA1c 57.6±2.6 mmol/mol) using insulin pumps participated in a randomized 2-

period crossover study with a 12-week intervention period of low carbohydrate diet (< 100 g 

carbohydrates/day) or high carbohydrate diet (> 250 g carbohydrates/day) respectively, separated by a 12-

week washout period. A large-scale non-targeted lipidomics was performed with mass spectrometry for 

fasting plasma samples obtained before and after each diet intervention. Logitudinal lipid levels were  

analysed using linear mixed-effects models.  

Results In total, 289 lipid species were identified from 14 major lipid classes (triacylglycerides, 

phosphatidylcholines, phosphatidylethanolamines, hexosyl-ceramide, sphingomyelins, lyso-

phosphatidylcholines, ceramides, lactosyl-ceramide, lyso-phoshatidylethanolamine, free fatty acids, 

phosphatidylinositols, phosphatidylglycerols, phosphatidylserines and sulfatides). Comparing the two diets, 
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11 lipid species belonging to sphingomyelins, phosphatidylcholines and LPC(O-16:0) were changed. All the 

11 lipid species were significantly elevated during low carbohydrate diet. Two lipid species were most 

differentiated between diets, namely SM(d36:1) (β±SE: 1.44±0.28, FDR = 0.010) and PC(P-36:4)/PC(O-36:5) 

(β±SE: 1.34±0.25, FDR = 0.009) species. Poly-unsaturated PC(35:4) was inversely associated with BMI and 

positively associated with HDL-cholesterol (p < 0.001).  

Conclusion/interpretation Lipidome-wide outcome analysis of a randomized cross-over trial of 

individuals with type 1 diabetes following a low carbohydrate diet showed an increase in sphingomyelins 

and phosphatidylcholines which are thought to reduce dyslipidaemia. The poly-unsaturated 

phosphatidylcholine  35:4 was inversely associated with BMI and positively associated with HDL-cholesterol 

(p < 0.001). Results from this study warrant for more investigation on the long-term effect of PC(35:4) lipid-

species in lipid homeostasis in type 1 diabetes.  

Trial registration Clinicaltrials.gov  NCT02888691 

Keywords Biomarker ∙ Cardiovascular disease ∙ Dyslipidaemia ∙ Lipidomics ∙ Low carbohydrate diet ∙ 

Randomized trial ∙ Type 1 diabetes.  

Abbreviations  

Cers  Ceramide species 

FFAs  Free fatty acid species  

HexCer  Hexosyl-ceramide species 

LacCer  Lactosyl-ceramide 

LCD  Low carbohydrate diet 

LPCs  Lyso-phosphatidylcholine species  

LPC-Os  Lyso-alkyl-phosphatidylcholine species  

LPEs  Lyso-phosphatidylethanolamines  

HCD  High carbohydrate diet 

NOD  Non-obese diabetic  

NIST  National Institute of Standards and Technology  

PCs  Phosphatidylcholine species  

PC-Os  Alkyl-acyl-phosphatidylcholine species 

PGs  Phosphatidylglycerol species 

PEs  Phosphatidylethanolamine species 

PIs  Phosphatidylinositol species 

PSs  Phosphatidylserine species 

SHexCer  Sulfatide species  

SMs  Sphingomyelin species  

TGs  Triacylglycerol species  

 

 

 

 

 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 18, 2020. ; https://doi.org/10.1101/2020.09.17.20196394doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.17.20196394


3 

 

Research in context 
What is already known about this subject?  

• Individuals with type 1 diabetes have an increased rate of cardiovascular disease for which 

dyslipidaemia is a major risk factor. 

• Dysregulated lipid metabolism is recognized as an established risk factor in cardiovascular 

diseases. 

 

What is the key question?  

• Which specific circulating lipid species are changed after 12 weeks of low- and –high 

carbohydrate diet and do they reflect dyslipidemia risk? 

 

What are the new findings?  

• Plasma from individuals with type 1 diabetes showed a significant increase in 

phosphatidylcholine and sphingomyelin lipid species during low carbohydrate diet (n=11 

lipid species).  

• Poly-unsaturated phosphatidylcholine 35:4 was inversely associated with BMI and positively 

associated with HDL-cholesterol (p < 0.001). 

 

How might this impact on clinical practice in the foreseeable future?  

• This study demonstrates that very-long-chain phosphatidylcholines and sphingomyelins 

elevates substantially with diet in individuals with type 1 diabetes following low 

carbohydrate diet. This points to a need for more specific dietary guidelines regarding fat 

intake to support individuals with type 1 diabetes. Lipidomics could be used to monitoring 

the lipid intake, thereby guiding the person to consume ‘good’ lipids that could  prevent 

dyslipidemia.  
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Introduction 

It is now recognized that type 1 diabetes is a major risk factor for developing cardiovascular events [1-3]. 

Dyslipidaemia is a modifiable risk factor for cardiovascular disease and highly prevalent in type 1 diabetes 

[4-6]. The present approach to diagnosing dyslipidaemia is based on the clinical measurement of the three 

main types of serum lipids, namely HDL-cholesterol, LDL-cholesterol and triglycerides [7]. However, since 

HDL-cholesterol metabolism might be compromised in type 1 diabetes, the identification of alternative 

biomarkers is critically important [3-6].  

Lipidomics studies suggest lipids as indicators or predictors for dyslipidaemia and cardiovascular disease [8-

14]. However, to date the plasma lipidome from individuals with type 1 diabetes has not been interrogated 

to understand diet-dependent changes in a clinical setting. 

Lipidomics expands the lipid information of the three main traditional mentioned lipids, since there are 

many more lipid species that can be measured with modern lipidomics methods [15-17]. Lipidomics 

provides a profile of hundreds of individual lipid species and on low-abundance lipid species from a 

biological sample. Therefore, there is the potential to uncover novel insights into the pathophysiology in 

individuals with type 1 diabetes. The composition of the lipidome can reveal a fingerprint in relation to 

dyslipidaemia and cardiovascular disease in type 1 diabetes, thus it can be an important tool for early 

screening. 

In this lipidomics analysis of a randomized cross-over trial, we compared the plasma lipids concentration 

from individuals with type 1 diabetes before and after ingesting isocaloric low carbohydrate diet (LCD) and 

high carbohydrate diet (HCD) for 12 weeks (<100g vs. >250g) separated by a 12-week washout period 

obtained from a previous published study [18] [NCT02888691]. We hypothesized that: (1) the lipidomics 

profiles before and after ingesting low or high carbohydrate diet for 12 weeks will be different; and (2) 

specific annotated lipid species have significant associations to metabolic characteristics.  

 

Methods 

 

Clinical trial  

Fasting plasma samples for lipidomics analysis were collected from a previously published study [17]. ). 

Participants were adults with insulin pump-treated type 1 diabetes (mean±SD: age 43.6±13.8 years, 

diabetes duration 24.5±13.4 years, BMI 24.9±2.1 kg/m2, HbA1c 57.6±2.6 mmol/mol). They underwent two 

12-week diet interventions separated by a 12-week washout. Fasting plasma samples were collected before 

and after each intervention.  

Main study outcomes from the previous article for the 14 study participants are given in Table 1. In brief, 

the study showed that glycemic variability and time spent in hypoglycemia were lower during LCD than 

during HCD. Mean glucose, however, was the same. Total daily bolus insulin doses were lower during LCD 

reflecting the lower carbohydrate intake. Finally, weight decreased during LCD, whereas it increased during 

HCD with a significant difference in change between groups. Systolic and diastolic BP increased during HCD 

(not significant), however the between-group differences were insignificant. The between-group difference 

in HDL-cholesterol levels were significant (p=0.005) with the LCD showing an increase (LCD: 0.06 mmol/L; 
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HCD:-0.03 mmol/L). No changes in fasting LDL-cholesterol and triglyceride were detected [18]. In the 

present study, we therefore investigated whether the diet-induced changes in relevant clinical variables 

(BMI, BP and HDL-cholesterol) were associated with specific lipid species. 

All participants were given personalized advice by a dietitian focused on eating strategies for meeting the 

carbohydrate criteria. LCDs contained less than 100 g carbohydrates per day, and HCDs contained a 

minimum of 250 g carbohydrates per day. Suggestions for a healthy composition of carbohydrates, fat and 

protein sources were provided, however only the amount of carbohydrates was fixed. Carbohydrates 

intake was recorded in grams in the participants’ insulin pumps on a meal-by-meal basis, but there was no 

registration of actual food intake [18]. 

In this study, only samples from the 10 participants who completed both intervention periods are included. 

 

Lipidomics analysis  

A modified Folch lipid extraction method was used to analyze the total lipids from plasma samples [19]. 

Briefly, plasma samples were randomized and lipids were extracted from 10 µL plasma using 

chloroform:methanol (2:1 v/v) method following addition of nine different internal standards (stable 

isotope labelled  and non-physiological lipid species). A detailed name list of the used internal standards is 

available in the Supplementary Methods 1. Samples were analyzed in random order in positive and 

negative electrospray ionization modes using ultra-high-performance liquid chromatography-quadrupole 

time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). The UHPLC system was from Agilent Technologies 

(Santa Clara, CA, USA) and was used as previously described [20,21]. 

 

Data pre-processing  

The lipidomics mass spectrometry data were pre-procced in MZmine 2.18.2 [22]. The workflow includes 

raw data import, filtering, peaks detection, chromatogram building, chromatogram deconvolution, peak list 

de-isotoping, peak list alignment, gap filling and finally, peak annotation was carried out by combining MS 

and retention time information with in-house lipid library with an m/z tolerance of 0.006 m/z and RT 

tolerance of 0.2 min. Lipidomics data post-processing and analysis were performed in R programming 

language for statistical computing (https://www.r-project.org/)[23]. The pre-processed data were 

normalized to internal standards. The missing values in the lipidomics dataset were imputed with the k-

nearest neighbor algorithm [24]. To achieve normal-distribution, data were log-transformed. Coefficient of 

variation (Relative Standard Deviation; %RSD) for peak areas and retention times of lipid-class specific 

internal standards were calculated. The measurement of 14 lipid classes were calculated by summing the 

individual lipid species within each class. 

 

Statistical analysis  

Data were analyzed and visualized in R. Lipid species-wise mixed-effect models were used to consider the 

four repeated measures from each participant in the cross-over trial. All statistical tests were corrected for 

multiple testing using the Benjamini-Hochberg method [25]. Tests were corrected for multiple comparisons 

with false discovery rate (FDR).  
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First, differences between the two diets were modelled with lipid species-wise mixed-effect models, with 

time, diet and time-diet interaction as fixed effects and the participant ID as random effects. We further 

conducted the lipid concentration changes found from the mentioned analysis within groups.  

Second, associations between key lipid levels and the clinical covariates of interest were assessed: BMI, 

HDL-cholesterol, systolic BP and diastolic BP. In this analysis, only lipid species with significant difference 

between-groups from the first analyses were included. Association was tested by adding one clinical 

covariate at a time as an independent variable to the lipid-wise mixed effect model detailed in the first 

step.  A detailed description about the data analysis plan is available in the Supplementary Methods 2 

Finally, lipids of interest with significant association to clinical variables was semi-quantified (relative 

quantified) and visualized in boxplots grouped by diets and scatterplots. 

 

Results 

 

Annotation of lipid species in plasma from type 1 diabetes 

From the large-scale untargeted lipidomics analysis, lipidome-wide outcomes of the randomized trial 

resulted in annotation of 298 individual lipid species from 14 major lipid classes, including triacylglycerides 

(TGs), phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), hexosyl-ceramides (HexCer), 

sphingomyelins (SMs), lyso-phosphatidylcholines (LPCs), ceramides (Cers), lactosyl-ceramides (LactCers), 

free fatty acids (FAs), phosphatidylinositols (PIs), phosphatidylglycerols (PGs), lyso-

phosphatidylethanolamines (LPEs), phoshtatidylserines (PSs) and sulfatides (SHexCer). PCs and TGs 

dominated the data with 83 and 72 lipid species each followed by SMs and PEs with 30 identified lipid 

species each. PGs, LacCer, SHexCer, PSs and HexCers, on the other hand, showed only few identified lipid 

species each (1, 2, 3, 4 and 4). Additionally, Cers, LPCs, PIs, LPEs, and FFAs were detected with 17, 16, 11, 8 

and 8 identified lipid species, respectively. The dominance of identified lipid species within their respective 

lipid classes are shown in Supplementary Fig. 1. The coefficient of variation (%RSD) of peak areas was on 

average 17.41% for internal standards (Supplementary Table 1). 

 

Difference in the outcome between the diets 

In total, 11 lipid species from phosphatidylcholine and sphingomyelin lipid classes and LPC(O-16:0) had 

different outcome between-groups (p < 0.05).  In total, six out of the 83 annotated PCs, four out of the 30 

annotated SMs, and LPC(O-16:0) had different outcomes. Lipid names, 95% CI, FDR p-values and the 

interaction slopes are given in Table 2.  The strongest differences in the diet-outcomes were 

monounsaturated SM(d36:1): (β±SE: 1.44±0.28, p = 0.01) and polyunsaturated PC(P-36:4)/PC(O-36:5): 

(β±SE: 1.34±0.24, p = 0.01). All the aforementioned lipid species were present in significantly higher 

amounts after LCD than after HCD (see the “Slope-LCD” and “Slope-HCD” columns in Table 2).  

 

 

Association between lipid species and clinical variables  
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Finally, we investigated how the 11 lipid species, which responded to the two diets in different ways, were 

associated with metabolic characteristics reported previously. In the linear mixed-effects model, there was 

an inverse association with the BMI and the lipid species PC(35:4): (β±SE: -0.24±0.05, p = 0.0005)  and 

PC(31:0): (β±SE: -0.21±0.06, p = 0.003). The same trend of inverse association was also observed in diastolic 

BP, although not to statistical significance after correcting for multiple testing.  PC(35:4) and PC(31:0) lipid 

species were elevated during the LCD intervention (see column “Slope-LCD” and “Slope-HCD” in  Table 2), 

inferring a link between diet, circulating lipid concentrations,  BMI and BP. There were no associations with 

the systolic BP that could be detected with statistical significance before and after correcting for multiple 

testing in this small study.  

There was a positive association with the HDL-cholesterol and three poly-unsaturated phosphatidylcholine 

species (PC(35:4), PC(P-36:4)/PC(O-36:5), PC(P-38:4)/PC(O-38:5)) and two poly-unsaturated sphingomyelin 

species (SM(d34:2), SM(d36:2)). Lipid names, 95% CI, FDR p-values and slopes are given in Supplementary 

Table 2.   

One of the 11 significantly changed lipid species was associated both with BMI, diastolic BP, and HDL, 

namely the poly-unsaturated phosphatidylcholine 35:4. Fig. 1a shows boxplot of semi-quantified pre-post 

concentration comparisons of PC(35:4) in each diet intervention. Fig. 1b, and Fig. 1c shows scatter plots of 

PC(35:4) associations with BMI, and HDL-cholesterol. 

 

Discussion 

To our knowledge, this is the first study comparing the lipidome in individuals with type 1 diabetes before 

and after low carbohydrate diet and high carbohydrate diet. Lipids are biomolecules with important 

functions and their amount in the diet can modulate the blood lipidome in individuals with type 1 diabetes. 

In this study, we performed lipidomics in a randomized cross-over trial and we compared the fasting 

plasma lipid profiles from individuals with type 1 diabetes before and after ingesting isocaloric LCD and 

HCD.   

The main result of this study was that when both LDC and HDC were compared, 11 lipid species belonging 

to sphingomyelin and phosphatidylcholine were significantly changed in outcome between the diets (Table 

2).  Additionally, and most importantly, when we studied each trial arm separately, we observed that all the 

11 significantly changed lipid species in the outcome were in greater concentration in the LCD arm, but 

none were altered significantly in the HCD arm. This was an unexpected result since total cholesterol, LDL 

and triglycerides had not changed significantly in this trial and only HDL-cholesterol was significantly 

elevated in the LCD arm, suggesting a moderate lipid improvement with LCD. Also this suggests that a 

prolonged LCD could help with adjusting lipid classes since there is existing evidence that individuals with 

type 1 diabetes have decreased levels of blood sphingolipids and phosphatidylcholines, abundant in HDL 

[26]. 

Phosphatidylcholines and sphingomyelins are two important classes of phospholipids essential for cell 

membrane function and major components of HDL-cholesterol specific those  containing polyunsaturated 

fatty acids [14, 27,28]. Interestingly a noteworthy result from our study is that the LCD arm showed that 

HDL-cholesterol was increased and positively associated with polyunsaturated sphingomyelins and 

phosphatidylcholines (Supplementary Table 2). In rodents, sphingomyelin supplementation has been 
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shown to help reduce the intestinal absorption of serum lipids such as cholesterol and triglycerides [12]. 

Sphingomyelin levels have also been associated with mild-to-moderate hypertension [29]. Based on these 

findings, supplementation could be an avenue to explore in the context of dyslipidemia in type 1 diabetes. 

The findings for this study were in line with previous work on LCD in which similarly HDL-cholesterol and 

diastolic BP were increased and decreased respectively with less carbohydrate intake, in a cross-sectional 

carbohydrate intake study (carbohydrate intake of <130 g/day and >253 g/day) in type 1 diabetes [2]. 

Analogous results have been reported in individuals with type 2 diabetes, in which LCD resulted in a 

significant increase in HDL-cholesterol and decrease in high BP [30,31]. 

 

Previous studies have demonstrated that abnormal sphingolipids levels are found at the onset of type 1 

diabetes in regulating beta cell biology and inflammation [26]. Fenofibrate, a lipid lowering medication is 

known to regulate sphingolipid metabolism and has been suggested as an important treatment in the 

management of dyslipidaemia [32]. It has been shown that very-long-chain sphingomyelin were increased 

in three weeks fenofibrate-treated NOD mice and this had a beneficial effect on blood glucose homeostasis 

[32]. Interestingly, the main study outcome from Schmidt et al. [18] showed that glycemic variability and 

time spent in hypoglycemia were lower during LCD than during HCD.  

 

As the total amounts of cholesterol did not change with LCD, this was a positive result since 

hypercholesterolemia is a major risk factor for developing cardiovascular disease [33-35]. The presence of 

CVD is related to disturbances in lipoprotein metabolism and dyslipidemia [36]. Dyslipidemia in individuals 

with diabetes not only fuels the reduction of HDL-cholesterol concentration, but also it modifies the 

composition of lipoprotein [3-6]. Increasing evidence suggests that in patients with chronic inflammatory 

disorders, HDL-cholesterol may lose important antiatherosclerosis properties and become dysfunctional 

[36]. So far, no therapeutic strategy to raise HDL-cholesterol has been successful in reducing CVD [36]. In 

this study we found three phosphatidylcholine lipid species (PC-(O-36:5), PC-(O-38:5) and PC(35:4)) and two 

sphingomyelin lipid species (SM(d36:2) and SM(d34:2)) associated with HDL-cholesterol (Supplementary 

Table 2). Interestingly all these lipid species were increased during the LCD-arm suggesting that LCD led to 

better functionality and composition of HDL-cholesterol particles as they are enriched in plasma 

phosphatidylcholine (see the “Slope-LCD” column in Table 2).  

Remarkably, a previous lipidomics study in 3779 type 2 diabetes-based cohort researchers found that 

PC(35:4) lipid species out of the 7 novel lipid species were associated with CVD [37]. PC(35:4) was 

suggested to improve  prediction of CVD mortality. Remarkable result to emerge from our data is that, 

PC(35:4) was the strongest positively associated lipid species with HDL-cholesterol (Supplementary Table 2) 

and increased during the LCD-arm. Importantly, PC(35:4) was also inversely associated with BMI (Fig. 1.b) 

and Diastolic BP. This and our investigation demonstrate the potential of lipid species as biomarkers for 

CVD risk in type 1 diabetes.  

Strengths and limitations 

There are certain limitations in the present study: Exact food intake for each study participant was not 

recorded. The diet plans were not conducted in a controlled environment. This means that it is difficult to 

know, what proportion of other energy sources -- proteins or fats-- the carbohydrates were replaced with 
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in the LCD. While this varies by participant, we now know that the replacement resulted in the elevation of 

the concentrations of sphingomyelins and phosphatidylcholines in LCD. Another limitation is the small 

sample size of 10 participants, which, was mitigated by the crossover study design. We view the 

randomized crossover study design and the high level of adherence to the carbohydrates criteria during 

LCD and HCD as two core strengths of this study. Further, the comprehensive lipidomic profiling is a 

strength of this study in type 1 diabetes.  

 

In conclusion, our novel data now provide the foundation for future work aimed at diet lipid modulation in 

type 1 diabetes. We have demonstrated that low carbohydrate diet elevates blood sphingomyelin and 

phosphatidylcholine lipid species in type 1 diabetes, which are thought to reduce dyslipidaemia. Further, 

one single lipid species, poly-unsaturated phosphatidylcholine 35:4 was inversely associated with BMI and 

positively associated with HDL-cholesterol. Therapeutic development for diabetic complications such as 

dyslipidemia and cardiovascular disease will require a better understanding of the crosstalk between diet 

and lipid metabolism in individuals with type 1 diabetes. This study provides support for several existing 

paradigms of dyslipidaemia and suggests new avenues of prevention of dyslipidaemia in type 1 diabetes. 

Confirming our findings, dietary lipid species, such as PC(35:4) should be tested in a larger cohort to fully 

understand the therapeutic opportunities in type 1 diabetes. 
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Figures 

 

Fig. 1 Jittered box plots of pre-post lipid levels comparisons of PC(35:4) in each diet intervention and its 

association with BMI and HDL-cholesterol. PC(35:4): (β±SE: 1.04±0.28,  p= 0.043) was elevated during LCD 

(a) and inversely associated with BMI (b) and positively associated with HDL-cholesterol (c). HB: High 

carbohydrate diet at baseline, HF: High carbohydrate diet at follow-up, LB: Low carbohydrate diet at 

baseline, LF: Low carbohydrate diet at follow-up.  
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Tables  
 

 

Table 1 Metabolic characteristic measures before and after 12 weeks of LCD and HCD from the original study [17]. Data are mean 

(SD). 

 

 

Table 2 Results of the mixed-effects model. Shown in the table are (Name) of individual lipid species, interaction slope (Slope), its 

lower and upper confidence intervals (L95, U95), standard error, p-value of the slope (FDR) after correction for multiple testing, and 

slopes for LCD and HCD models (Slope-LCD, Slope-HCD) . 

Name Slope L95 U95 SE FDR Slope-LCD Slope-HCD 

PC(P-36:4)/PC(O-36:5) 1.34 0.83 1.85 0.24 0.009 0.63 -0.70 

SM(d36:1) 1.44 0.85 2.03 0.28 0.010 1.06 -0.37 

PC(P-38:5)/PC(O-38:6) 1.04 0.53 1.56 0.24 0.029 0.67 -0.37 

SM(d36:2) 0.76 0.38 1.13 0.18 0.029 0.65 -0.10 

PC(P-36:2)/PC(O-36:3) 1.59 0.77 2.42 0.39 0.036 0.89 -0.70 

SM(d34:2) 1.39 0.65 2.15 0.36 0.042 0.80 -0.59 

PC(31:0) 1.52 0.67 2.36 0.40 0.043 1.06 -0.46 

PC(P-38:4)/PC(O-38:5) 1.32 0.57 2.07 0.35 0.043 1.04 -0.28 

PC(35:4) 1.04 0.45 1.64 0.28 0.043 0.78 -0.26 

LPC(O-16:0) 1.28 0.55 2.01 0.35 0.043 0.32 -0.95 

SM(d38:2) 0.89 0.38 1.39 0.24 0.043 0.64 -0.25 

 

Variable LCD  

(Pre-LCD)           (Post-LCD)      (P-value) 

(N= 14)               (N=13) 

HCD  

(Pre-HCD)          (Post-HCD)        (P-value) 

(N=12)                (N=10) 

LCD vs. 

HCD  

(P-value) 

Cholesterol 

(mmol/L) 

4.5 (0.7)            4.9 (0.7)          0.284  4.8 (0.9)             4.6 (0.6)           0.271   0.084 

HDL-cholesterol 

(mmol/L) 

1.97 (0.40)        2.03 (0.40)      0.500  2.09 (0.43)         2.06 (0.48)      0.084   0.005 

LDL-cholesterol 

(mmol/L) 

2.3 (0.7)            2.5 (0.7)           0.238  2.5 (0.7)              2.3 (0.5)          0.301   0.095 

Triglyceride 

(mmol/L) 

0.6 (0.3)            0.6 (0.2)           0.999  0.6 (0.3)              0.7 (0.3)          0.363   0.452 

Systolic BP 

(mm Hg) 

134 (15)            130 (14)          0.485  128 (14)              140 (9)            0.007   0.091 

Diastolic BP 

(mm Hg) 

79 (13)              77 (9)               0.678  75 (13)                82 (9)              0.068        0.087 
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