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Abstract  

Background: The UK Biobank (UKB) contains data with varying degrees of reliability and 

completeness for assessing depression. A third of participants completed a Mental Health 

Questionnaire (MHQ) containing the gold-standard Composite International Diagnostic Interview 

(CIDI) criteria for assessing mental health disorders.  

Aims: To investigate whether multiple observations of depression from sources other than the 

MHQ can enhance the validity of Major Depressive Disorder.   

Methods: In participants who did not complete the MHQ (n = 325k), we calculated the number 

of other depression measures endorsed, e.g. from hospital episode statistics and interview data. 

We compared the strength of the genetic contribution in cases defined this way, to CIDI-defined 

cases. We compared the variance explained by polygenic risk scores (PRS), area under the curve 

attributable to PRS, SNP-based heritability, and genetic correlations with summary statistics from 

the Psychiatric Genomics Consortium Major Depressive Disorder (PGC MDD) GWAS.   

Results: The strength of the genetic contribution increased with the number of measures 

endorsed. For example, SNP-based heritability increased from 7% with one measure of 

depression to 21% with four or five. The strength of the genetic contribution to cases defined by 

at least two measures approximated that for CIDI-defined cases. Most genetic correlations 

between UKB and PGC MDD exceeded 0.7, but there was variability between pairwise 

comparisons.  

Conclusions: Multiple measures of depression can serve as a reliable approximation for case-

status where the CIDI measure is not available, with the implication that sample size can be 

optimised using the full suite of UKB data.    
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Introduction 

The emergence of large-scale biobank resources has enabled genetic association studies of 

complex human traits to be performed with unprecedented sample sizes, and led to novel 

implication of common genetic variants with psychiatric disorders, including Major Depressive 

Disorder (MDD)1. One of the analytical challenges in using national biobank resources is deciding 

on an approach to define disorder case and control status using the multiple sources of 

information available, each having varying degrees of reliability and completeness. The UK 

Biobank (UKB) contains extensive data items that are relevant to psychiatric phenotyping, 

ranging from electronic health records to self-reported health data, and questionnaires that rely 

on retrospective recall of symptoms2. The extent to which each source of information accurately 

classifies cases and controls for a given trait influences any study that is performed, by affecting 

power and interpretation of effect sizes3. In genetic studies of polygenic traits, large sample sizes 

are a prerequisite for performing a genome-wide association study (GWAS), but investigators 

must balance phenotypic rigour against sample size, and missing data, where individuals do not 

meet criteria for either cases or controls. These issues are particularly salient in disorders such as 

MDD, which encompass a spectrum of symptom severity and within-disorder phenotypic 

heterogeneity4.  

The impact of sampling decisions, as they relate to the balance between sample size and 

misclassification bias, has been demonstrated in the MDD GWAS literature. The CONVERGE 

study5 adopted a strategy to reduce phenotypic heterogeneity by recruiting only patients with 

recurrent MDD, diagnosed by a health professional, from a population of Han Chinese females. 

This was the first GWAS to identify and replicate genome-wide significant loci, despite having 

fewer participants (5,303 cases and 5,337 controls) than the largest MDD GWAS at the time 

(9,240 cases and 9,519 controls6), indicating the advantage of a comparatively homogeneous 

sample.  

Other authors have leveraged minimal phenotyping to increase sample size in MDD GWAS. Using 

data collected by 23andMe, Inc., Hyde, et al.7 identified 75,607 individuals who reported 
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receiving a clinical diagnosis of depression and 231,747 without a history of depression, and 

performed a GWAS in which 15 genome-wide significant loci were identified. Leveraging data 

from the UKB, Howard, et al.8 defined ‘broad depression’ as participants who endorsed ever 

having seen a General Practitioner or Psychiatrist for ‘nerves, anxiety, tension or depression’. This 

help-seeking phenotype generated a sample of 113,769 cases and 208,811 controls in which 14 

genome-wide significant loci were identified. The Psychiatric Genomics Consortium (PGC) 

leveraged minimal phenotyping by combining samples from 23andMe and a sub-set of the UKB, 

with clinically ascertained cases to generate a sample of 116,404 cases and 314,990 controls, 

yielding 44 genome-wide significant loci1. A meta-analysis of the latter three GWAS7,8,1  

produced a sample size of 246,363 cases and 561,190 controls, revealing 102 genome-wide 

significant loci9.  

Although increasing sample sizes have ostensibly increased genetic discovery, some authors have 

argued that the genetic architecture differs between minimally- and strictly-defined depression 

phenotypes, and that the former definition may yield associations with variants that are not 

specific to MDD. Cai, et al.10 compared the genetic architecture of depression phenotypes 

derived from different sources of information in the UKB. The highest SNP-based heritability 

(h2
SNP = ~26%) was observed in participants who met criteria for Lifetime Depression according 

to the Composite International Diagnostic Criteria Short Form11 (CIDI-SF) that comprised part of 

an online Mental Health Questionnaire (MHQ). The observed h2
SNP was comparatively lower in 

depression phenotypes derived from other sources of information; touchscreen questionnaires 

used to define Symptom-based depression12 (h2
SNP = 19%) and ‘broad depression’ (h2

SNP = 14%), 

Hospital Episode Statistics coded as ICD-1013 diagnoses (h2
SNP = 12%), and nurse interviews used 

to define self-reported depression (h2
SNP = 11%). Although a high degree of shared genetic liability 

was observed between these depression phenotypes, pair-wise genetic correlations (rG) differed 

significantly from one, suggesting phenotype-specific genetic effects10.  

One interpretation of these findings is that the MHQ derivation of Lifetime Depression is the gold-

standard for depression phenotyping in the UKB, compared to the other sources of phenotypic 
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data available. However, the MHQ was only completed by a sub-set of 157,366 UKB participants. 

It is unclear whether repeated endorsement of depression, from sources other than the MHQ, 

can be used to reduce misclassification in participants who did not complete the MHQ, and 

thereby increase the sample size of credible depression cases.   

Here, we establish five depression measures available in all UKB participants and create case 

groups determined by the number of depression measures endorsed by individuals who did not 

complete the MHQ. We observe the strength of the genetic contribution to each case group by 

estimating the variance in depression liability explained by polygenic risk scores (PRS), area under 

the curve (AUC) attributable to PRS, and SNP-based heritability. We compare the strength of the 

genetic contribution in cases determined by number of endorsements with MHQ-derived 

Lifetime Depression cases to assess whether sample size can be optimised using all available 

phenotyping sources, without substantially increasing misclassification bias. The choice of a 

control group also influences effect size estimates in genetic studies14, and we additionally 

explore the use of partially-screened or screened controls. We anticipate that our approach will 

encourage researchers to consider the benefit of using multiple phenotype sources to aid 

classifying cases and controls, not just for depression, but for the extensive range of complex 

human disorders available in the UKB.   
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Methods 

Participants and phenotyping 

The UKB is a prospective health study of over 500,000 individuals located across the United 

Kingdom. Participants were aged between 40 and 69 at recruitment (2006-2010) and attended a 

baseline assessment where information on health was collected with a touchscreen 

questionnaire and verbal interview2. Subsets of participants completed repeat assessments: 

instance 1) n = 20,335 between 2012-2013; instance 2) n = 42,961 (interview) and n = 48,340 

(touchscreen) in 2014; and instance 3) n = 2,843 (interview) and n = 3,081 (touchscreen) in 2019. 

Participants with valid email addresses (n = 339,092) were invited to complete the online MHQ 

in 201715. The UKB received ethical approval from the North West - Haydock Research Ethics 

Committee (reference 16/NW/0274). This study was conducted under application number 

18177. Participants provided electronic signed consent at recruitment2.  

We identified six measures for depression phenotyping (summarised below) and tabulated the 

number of individuals who met the criteria for each. Full definitions and UKB field codes are given 

in Supplementary Materials.  

Help-seeking 

‘Help-seeking’ cases endorsed either of the following questions at baseline or instance 1 or 2: 

"Have you ever seen a general practitioner (GP) for nerves, anxiety, tension or depression?", and 

"Have you ever seen a psychiatrist for nerves, anxiety, tension or depression?".  

Self-reported Depression 

‘Self-reported Depression’ cases endorsed having experienced depression (past or present) 

during the verbal interview at baseline or instance 1 or 2. 
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Antidepressant Usage 

‘Antidepressant Usage’ cases endorsed currently taking antidepressant medications during the 

verbal interview at baseline or instance 1 or 2. 

Depression (Smith) 

At baseline, 172,751 participants completed an extended touchscreen questionnaire, enriched 

with psychosocial questions. Smith, et al. (2013)12 defined three phenotypes from participant’s 

responses: 1) Single episode of probable Major Depression, 2) Probable recurrent Major 

Depression (moderate), and 3) Probable recurrent Major Depression (severe). We refer to 

individuals meeting the criteria for any of these phenotypes as ‘Depression (Smith)’.  

Hospital (ICD-10)  

Hospital Episode Statistics contain diagnoses recorded with the International Classification of 

Diseases, 10th Revision (ICD-10)13. We accessed the UKB Data Portal Record Repository to identify 

ICD-10 diagnoses recorded between April 1997 to October 2016. ‘Hospital (ICD-10)’ cases were 

individuals assigned a primary or secondary diagnosis for Depressive episode (F32-F32.9) or 

Recurrent depressive disorder (F33-F33.9). 

Lifetime Depression (MHQ) 

157,366 participants completed the MHQ. We identified individuals with a lifetime history of 

depression from responses to the CIDI depression module11. We adopted scoring criteria 

previously defined15, which is equivalent to the Diagnostic and Statistical Manual of Mental 

Disorders (DSM) criteria for Major Depressive Disorder16. We classified ‘Lifetime Depression 

(MHQ)’ cases as individuals meeting those criteria.  

Screening  

We defined five potential psychosis phenotypes: ‘Self-reported Psychosis’, ‘Antipsychotic Usage’, 

‘Bipolar (Smith)’, ‘Hospital (ICD-10) Psychosis’, and ‘Psychosis (MHQ Screen)’. Individuals meeting 
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the criteria for any psychosis phenotype were excluded from analysis (n = 5,482). The derivation 

of the psychosis phenotypes is provided in Section 2, Supplementary Materials.  

Depression phenotypes determined by number of observed depression measures 

We split the UKB cohort by MHQ participation. In individuals who did not participate in the MHQ, 

we calculated endorsement for five depression phenotypes (‘Help-seeking’, ‘Self-reported 

Depression’, ‘Antidepressant Usage’, ‘Depression (Smith)’, or ‘Hospital (ICD-10)’,) to derive five 

independent depression case groups. These groups are referred to as: ‘One Measure’, ‘Two 

Measures’, ‘Three Measures’, ‘Four Measures’, and ‘Five Measures’. We performed the same 

exercise in individuals who completed the MHQ to observe the phenotypic correlation between 

depression measures (excluding the MHQ) in those that met the criteria for Lifetime Depression 

(MHQ) and those that did not.  

Controls 

Two control groups were defined. Controls comprised all UKB participants who did not meet the 

criteria for any of the depression or psychosis phenotypes. MHQ controls were restricted to those 

who participated in the MHQ and showed no psychiatric pathology in the MHQ responses. The 

criteria for controls and MHQ controls is provided in Section 3, Supplementary Materials. 

Genetic quality control (QC) 

The UKB performed preliminary QC on genotype data2. Using genetic principal components (PCs) 

provided by the UKB, we performed 4-means clustering on the first two PCs to identify and retain 

individuals of European ancestry. QC was performed using PLINK v1.917 to remove:  variants with 

missingness > 0.02 (before individual QC), individuals with missingness > 0.02, sex-discordant 

observations, variants with missingness > 0.02 (after individual QC), variants departing from 

Hardy-Weinberg Equilibrium (p < 1 x 10-8), and variants with minor allele frequency (MAF) < 0.01. 

Relatedness kinship estimates provided by the UKB were used to identify related pairs (KING r2 > 

0.044)18 and the GreedyRelated19 algorithm was used to remove one individual from each pair. 

FlashPCA220 was used to generate PCs for the European-ancestry subset. The UKB imputed 
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genotype data to the Haplotype Reference Consortium21 and the UK10K Consortium22 using the 

IMPUTE4 software2. We removed imputed variants with INFO score < 0.4 and/or MAF < 0.01.  

Statistical analyses 

We summarised sociodemographic data taken at baseline assessment: age, sex, socio-economic 

status (SES), body mass index (BMI), smoking status, and self-reported overall health rating. UKB 

field codes are provided in Section 4, Supplementary Materials. We tested for significant 

differences in sociodemographic variables between cases and controls using Welch Two Sample 

t-tests in R v3.6.223. To investigate the impact of control sampling, all statistical analyses were 

performed using controls and MHQ controls. 

Polygenic risk score analyses  

The PRSice-2 software24 was used to perform PRS analyses. PRS were calculated using summary 

statistics from the latest PGC MDD GWAS1. The PGC MDD GWAS was performed on multiple 

cohorts with varying phenotyping strategies including self-report (UKB and 23andMe), electronic 

medical records, and clinical ascertainment. We compared the predictive utility of PRS calculated 

using summary statistics from (1) the full PGC MDD sample (excluding UKB), and (2) a sub-set of 

the PGC MDD sample with self-reported cases removed (additionally excluding 23andMe). QC 

was performed on summary statistics to remove variants within the Major Histocompatibility 

Complex, and variants in linkage disequilibrium (r2 > 0.1) with the lead variant within a 250kb 

region.  

We tested for association between PRS calculated at eight p-value thresholds (PT; 0.001, 0.05, 

0.1, 0.2, 0.3, 0.4, 0.5 and 1.0) and case-control status in each UKB depression phenotype using 

logistic regressions adjusted for six PCs, genotyping batch, and assessment centre (n=128 

variables). To control for multiple testing across PT, ten thousand permutations were performed 

for each model using linear regression for computational efficiency. We report observed and 

empirical p-values at the optimal PT and the corresponding R2 estimates, transformed to the 

liability scale using lifetime risk of 15%1. To increase sample size, ‘Four Measures’ and ‘Five 
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Measures’ cases were combined in subsequent analyses. The predictive ability of PRS was 

assessed using AUC with the R pROC package25. We compared AUC for the Null model (6 PCs, 

genotyping batch, and assessment centre on depression phenotypes) with the Full model with 

PRS at the optimal PT, using  DeLong's test for two correlated ROC curves.  

SNP-based heritability and genetic correlation analyses 

To overcome computational limitations when performing GWAS with a large number of 

covariates (n=128), we regressed 6 PCs, genotyping batch, and assessment centre on depression 

case-control status using logistic regression with the glm function in R v3.6.223. GWASs were 

performed on residuals for the five depression groups (One, Two, Three, Four & Five Measures, 

and Lifetime Depression (MHQ)) using both controls sets. GWASs were performed in BGENIE 

v1.22 and summary statistics were uploaded to FUMA26 to create Manhattan and QQ plots.  

SNP-based heritabilities were calculated with LD Score Regression (LDSC) v1.0.027,28 using 

summary statistics excluding variants with INFO scores < 0.9 and pre-computed LD Scores (1000 

Genomes European data). SNP-based heritabilities were transformed to the liability scale using 

lifetime risk of 15%1 and, for comparison across a range of population prevalences (1% to 60%), 

using the transformation proposed by Lee, et al. (2012)29 (equation 8).  

Genetic correlations (rG) were estimated using LDSC v1.0.027,28. The rG between each UKB 

depression phenotype and PGC depression phenotype was calculated using summary statistics 

from both the full PGC MDD sample (excluding UKB, 116,404 cases and 314,990 controls), and 

the sub-set of the PGC MDD sample with self-reported cases removed (excluding UKB and 

23andMe, 45,591 cases and 97,674 controls)1.  

The study design is summarised in Figure 1.
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Figure 1: Study design. *Controls = all UKB participants (including MHQ participants) screened for any of the five psychosis phenotypes and any of the six 

depression phenotypes: Help-seeking, Self-reported Depression, Antidepressant Usage, Depression (Smith), Hospital (ICD-10) or Lifetime Depression (MHQ). 
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Results 

Of individuals who did not participate in the MHQ, 93,414 met the criteria for at least one other 

depression phenotype (Table 1). These cases had poorer sociodemographic characteristics than 

Lifetime Depression (MHQ) cases (N = 28,982) and controls (N = 232,552), including lower SES, 

higher current smoking prevalence, higher BMI and poorer heath ratings (maximum p-value in 

pairwise comparisons = 1x10-109). The magnitude of difference increased when compared with 

MHQ controls (N = 57,805), who on average had more favourable sociodemographic outcomes 

than controls. Comparing Lifetime Depression (MHQ) cases to both control groups, significant 

differences were observed in most sociodemographic variables (excluding current smoking status 

and BMI compared to controls), although the magnitude of case-control differences was 

attenuated (maximum significant p-value in pairwise comparisons = 6x10-25) from that observed 

with the 93,414 cases derived from sources other than the MHQ.  

Supplementary Tables 1 to 11 provide the number of participants within sub-categories (e.g. by 

ICD-10 code) for depression and psychosis in the entire UKB sample. 

Table 1: Sociodemographic information for depression cases and controls. TDI = Townsend Deprivation Index; 

negative scores indicate less deprivation. Health Rating was self-reported on a scale of 1 (excellent) to 4 (poor). 

SD = standard deviation.   

 Count 
Mean age 

(SD) 
Female 

(%) 
TDI (SD) 

Current 
smoker 

(%) 

Mean BMI 
(SD) 

Mean 
Health 

Rating (SD) 

Phenotyping in individuals who did not participate in the MHQ 

Hospital (ICD-10) 10,198 56.7 (8.09) 62% -0.29 (3.46) 22% 29.0 (5.94) 2.7 (0.83) 

Self-reported Depression 15,091 55.8 (7.88) 65% -0.65 (3.35) 18% 28.5 (5.62) 2.6 (0.82) 

Depression (Smith) 15,037 56.1 (8.12) 63% -1.00 (2.98) 15% 28.0 (5.19) 2.4 (0.77) 

Antidepressant Usage 20,057 57.0 (7.83) 68% -0.70 (3.35) 18% 28.9 (5.68) 2.7 (0.82) 

Help-seeking 89,278 56.6 (7.97) 64% -1.02 (3.20) 14% 27.9 (5.16) 2.3 (0.77) 

Total 93,414 56.7 (7.98) 64% -1.01 (3.21) 14% 27.9 (5.17) 2.4 (0.78) 
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 Count 
Mean age 

(SD) 
Female 

(%) 
TDI (SD) 

Current 
smoker 

(%) 

Mean BMI 
(SD) 

Mean 
Health 

Rating (SD) 

Phenotyping in individuals who participated in the MHQ 

Lifetime Depression (MHQ) 28,982 54.3 (7.53) 69% -1.46 (2.95) 9% 27.2 (5.04) 2.1 (0.73) 

MHQ controls 57,805 56.8 (7.65) 48% -2.02 (2.65) 6% 26.5 (4.14) 1.8 (0.62) 

Phenotyping in all UKB participants (screening for any indication of depression or psychosis) 

Controls 232,552 57.1 (8.10) 47% -1.65 (2.89) 9% 27.2 (4.53) 2.0 (0.68) 

Figure 2 shows the 93,414 individuals who did not participate in the MHQ but met the criteria for 

at least one other depression phenotype, stratified into independent groups according to the 

number of depression measures endorsed. For each strata, the number of cases and prevalence 

as a proportion of controls was: One Measure = 57,321 (19.8%), Two Measures = 21,468 (8.5%), 

Three Measures = 9,738 (4.0%) cases, Four Measures = 4,245 (1.8%), and Five Measures = 642 

(0.3%).  

 

Figure 2: Number of depression measures observed in participants who did not complete the MHQ. Horizontal 

grey bars indicate the number of individuals who met the criteria for any of the corresponding depression 
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phenotypes. Vertical bars indicate the number of individuals endorsing combinations of the five depression 

phenotypes. Vertical bars are coloured by the number of depression measures endorsed: red = 1, orange = 2, 

green = 3, blue = 4 and purple = 5.  

32% of Lifetime Depression (MHQ) cases endorsed no other measure of depression, and the 

remaining 68% endorsed at least one other measure of depression (Error! Reference source not 

found.). In MHQ participants who provided sufficient data on the CIDI and did not meet the 

criteria for Lifetime Depression (N = 81,488), 71% endorsed no other measure for depression and 

the remaining 29% endorsed at least one other measure of depression and were thus removed 

from MHQ controls.  

Figure 3: Number of depression measures observed in MHQ participants. Categories on the x-axis represent 

the degree of endorsement for five depression phenotypes (Help-seeking, Self-reported Depression, 

Antidepressant Usage, Depression (Smith), or Hospital (ICD-10)), with the total number of MHQ participants in 

each category shown atop each bar. Bars are partitioned between individuals who met the criteria for Lifetime 

Depression and those that completed the CIDI-SF but did not meet the criteria for Lifetime Depression. 

The associations between MDD PRS and case-control status of UKB depression phenotypes were 

significant (all empirical p-values = 1x10-4) (Figure 4). The variance in liability (R2) explained by the 
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PRS ranged between 0.52% (One Measure) and 3.54% (Four Measures). Across depression 

phenotypes, R2 increased when cases were compared to MHQ controls, and when PRS were 

calculated using summary statistics from the full PGC MDD sample (excluding UKB), compared to 

the sub-set of the PGC MDD (excluding UKB and 23andMe). Full results of each test of association 

are shown in Supplementary Table 12 and Supplementary Figure 1.  

 

Figure 4: Variances in depression liability explained by PRS. Excl. 23andMe = PRS calculated using summary 

statistics from the sub-set of the PGC MDD sample (excluding UKB and 23andMe). Incl. 23andMe = PRS 

calculated using summary statistics from the full PGC MDD sample (excluding UKB). R2 estimates were 

transformed to the liability scale using a population prevalence of 15% across all UKB phenotypes. Observed 

p-values are shown atop each bar. 

The differences in AUC between Null and Full Models were significant for each depression 

phenotypes (maximum p-value = 2x10-25). The increase in AUC attributable to PRS for models 

including controls ranged between 1.41% (One Measure) and 3.01% (Three Measures). For 

models including MHQ controls, the increase in AUC attributable to PRS ranged between 1.29% 

(One Measure), and 3.60% (Lifetime Depression (MHQ)). AUC attributable to PRS generally 

increased with the number of depression measures endorsed, maximising in Lifetime Depression 

(MHQ) when compared to MHQ controls (Figure 5). Supplementary Figure 2 shows ROC curves 

for Null and Full Models across depression phenotypes.  
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Figure 5: AUC increases attributable to PRS, calculated using full PGC MDD summary statistics (including 

23andMe), at the PT corresponding to each case-control combination. Null vs. Full model p-values estimated 

with DeLong's test for two correlated ROC curves are shown atop each bar.  

Assuming a population prevalence of 15% across depression phenotypes, SNP-based heritability 

(h2
SNP) estimates ranged between 7% (SE 0.005) in One Measure and 21% (SE 0.029) in Four & 

Five Measures when GWAS were performed using controls (Figure 6). h2
SNP increased when 

GWAS were performed with MHQ controls, ranging between 17% (SE 0.009) in One Measure to 

33.6% (SE 0.034) in Four & Five Measures. Supplementary Figures 3 to 7 show Manhattan and 

QQ plots, and Supplementary Tables 13 and 14 show the full results from BGENIE and LDSC.  

Figure 6: h2
SNP transformed to the liability scale using a population prevalence of 15% across the UKB depression 

phenotypes on the x-axis. Error bars show 95% confidence intervals.  
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Across a range of population prevalences between 1% and 60%, higher h2
SNP was observed for 

models including MHQ controls compared controls (Figure 7). In GWAS using controls, the lowest 

h2
SNP across the range of population prevalences was in One Measure, followed by Two 

Measures, Lifetime Depression (MHQ), Three Measures, and Four & Five Measures. We observed 

near complete overlap in h2
SNP estimates between Two Measures and Lifetime Depression 

(MHQ), and between the Three Measures and Four & Five Measures. In GWAS using MHQ 

controls, the lowest h2
SNP across the range of population prevalences was in Lifetime Depression 

(MHQ), followed by One Measure, Two Measures, Four & Five Measures, and Three Measures. 

Near complete overlap in h2
SNP estimates was also observed between Three Measures and Four 

& Five Measures.  

 

Figure 7: h2
SNP transformed to the liability scale across population prevalence estimates between 1% to 60%. 

A: GWAS performed using controls; B: GWAS performed using MHQ controls.   

The genetic correlations (rG) between UKB depression phenotypes and PGC depression 

phenotypes were between 0.62 and 0.90 (p-value < 6x10-25 across all tests for the null hypothesis 

that rG = 0) (Figure 8). The lowest estimate of rG was observed between Three Measures 

(compared to MHQ controls) and the PGC sample including 23andMe (rG = 0.62, 95% CI = 0.57-

0.67). For the measures of depression, genetic correlations were highest for GWAS using 

controls, and with summary statistics excluding 23andMe. For Lifetime Depression (MHQ), the 

..
…

.

Lifetime Depression prevalence

Observed prevalence in UKB

Error ribbons: 95% CIs

A B
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highest genetic correlations were for GWAS using MHQ controls, and with the PGC sample 

excluding 23andMe (rG = 0.90, 95% CI = 0.80-1.00). Supplementary Table 15 and Supplementary 

Figure 8 show estimates of rG between all UKB depression phenotypes.   

 

Figure 8: Genetic correlations between the UKB depression phenotypes and PGC depression phenotypes. Excl. 

23andMe = red points, summary statistics from the sub-set of the PGC MDD sample (excluding UKB and 

23andMe). Incl. 23andMe = blue points, summary statistics from the full PGC MDD sample (excluding UKB). 

Summary statistics used to estimate rG were generated from GWAS of UKB depression phenotypes using 

controls and MHQ controls. Error bars: 95% Confidence Intervals.   
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Discussion 

We examined whether multiple endorsements of depression can reduce misclassification and 

increase the sample of depression cases in the UKB. Our investigation took an approach to 

classifying depression that aims to fully utilise the UKB by incorporating all sources of 

information. We found that including at least two measures of depression can serve as a reliable 

approximation where the MHQ measure is not available and improve case-control classification. 

Further, increasing the number of measures provides an increasingly reliable approximation.   

The results followed from defining independent groups of depression cases according to the 

number of depression measures endorsed in sources other than the MHQ. We compared the 

strength of the genetic contribution in cases defined using this approach with CIDI-defined cases. 

We further explored the implications of using partially-screened controls and fully-screened 

MHQ controls for estimating the genetic contribution to depression case status.  

Our conclusion is based on three key observations. First, we observed a stronger genetic 

component with increasing endorsement of depression measures, with higher values of the 

variance explained by PRS, AUC attributable to PRS, and SNP-based heritability. Second, when 

cases were defined by two or more measures of depression, genetic estimates approximated or 

exceeded those observed in Lifetime Depression (MHQ). Third, control sampling resulted in 

substantial differences between genetic estimates, which were higher when analyses were 

performed with MHQ controls, compared to controls.  

PRS analyses showed the variance in depression liability increased with the number of measures 

endorsed, indicating increasing genetic similarity with the PGC MDD sample. The variance 

explained by PRS was comparable between One Measure and Lifetime Depression (MHQ), 

although interpretation depends on population prevalence, which is difficult to estimate. By 

contrast, AUC allows comparisons that are independent of population prevalence. The highest 

AUC attributable to PRS was observed in Lifetime Depression (MHQ) and was more than double 

the estimate in One Measure cases. These results indicate that between-group differences in the 
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variance explained by PRS on the liability scale may be masked by equivalent prevalence 

assumptions across the groups.   

However, we found that SNP-based heritability estimates were approximately equivalent for 

Lifetime Depression (MHQ) and Two Measures across a range of population prevalences between 

1% and 60%. Assuming lifetime risk of 15%, h2
SNP for Lifetime Depression (MHQ) ranged between 

11-13%, depending on the control group. This range is notably different to the  h2
SNP estimate of 

26% reported by Cai, et al.10 for the corresponding phenotype named ‘LifetimeMDD’. Much of 

the difference is accounted for by methodology and lifetime risk assumptions. Cai, et al.10 used 

phenotype correlation–genotype correlation (PCGC) software30 and the observed prevalence of 

‘LifetimeMDD’ in the UKB (24%) to determine liability scale h2
SNP. Using LDSC and lifetime risk of 

15%, Cai, et al.10 report h2
SNP of 16% for ‘LifetimeMDD’, which is modestly higher than our 

estimate, likely due to minor differences in the derivation of Lifetime Depression (MHQ). Notably, 

LDSC provides a lower bound of h2
SNP compared to other methods, thus our h2

SNP estimates would 

increase using other software packages31. However, for computational efficiency and consistency 

with the published literature, we used LDSC and lifetime risk of 15% to calculate h2
SNP. Our 

estimate for Lifetime Depression (MHQ) broadly aligns to the aforementioned GWASs of 

depression that have adopted the same approach. Using LDSC and lifetime risk of 15%, Hyde, et 

al.7, Howard, et al.8, Wray et al.1, and Howard, et al.9 reported liability h2
SNP of 6%, 10%, 9% and 

9% for their respective definitions of depression. 

SNP-based heritability increased with the number of measures endorsed, reaching a maximum 

of ~35% in Four and Five Measures. We propose the stronger genetic influence observed with 

increasing measures indicates clearer distinction between cases and controls. The majority of 

One Measure cases only met the criteria for Help-seeking; arguably the ‘lightest’ phenotyping 

source. We hypothesise that increasing the number of endorsements translates to greater 

phenotypic homogeneity and to higher heritability estimates. Another interpretation is that more 

endorsements represent greater severity, but this is not easily demonstrable in the current study 

because we have not directly measured severity. However, Cai, et al.10 observed higher h2
SNP 
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(32%) in the subset of ‘LifetimeMDD’ who met more stringent criteria for recurrent MDD. We 

propose that further work is needed to determine whether disorder severity results in higher 

SNP-based heritability. This may be possible in the UKB using questionnaire data to quantify 

features such as length of episode and level of impairment.  

The pattern of pairwise correlations with the PGC MDD varied across UKB depression phenotypes 

and was highest with Lifetime Depression (MHQ) (rG = 0.9). However, in cases determined by one, 

two, four or five measures of depression, genetic correlations with the PGC MDD were almost as 

high, ranging between 0.84 and 0.86. Across UKB depression phenotypes, genetic correlations 

with the PGC MDD excluding 23andMe were higher than with the PGC MDD including 23andMe. 

This result indicates greater similarity with the clinically ascertained PGC sample which may lend 

support to the validity of UKB measures in general.   

We observed lower genetic correlations with PGC MDD when GWAS of cases defined by number 

of endorsements were performed with MHQ controls. Recent work has demonstrated that 

estimates of genetic parameters increase when sampling controls from the left tail of an 

underlying liability distribution14. We posit that MHQ controls represent the left tail of the liability 

distribution and this is supported by the observation that MHQ controls were healthier than 

controls for health indicators correlated with depression prevalence. That is, MHQ controls had 

higher SES, fewer smokers, lower BMI and better self-reported health ratings than controls. Our 

results also revealed larger effect sizes across PRS, AUC, and SNP-based heritability analyses 

when using MHQ controls, compared to controls. MHQ control characteristics may make the UKB 

dissimilar to the PGC, thus reducing the observed genetic correlation. However, we note that this 

is not universally supported in the analysis; with Lifetime Depression (MHQ) we observed higher 

genetic correlations with PGC phenotypes when models included MHQ controls.  

Also with respect to the definition of controls, of the participants who completed the MHQ and 

did not meet the criteria for Lifetime Depression according to the CIDI-SF, 29% endorsed at least 

one other measure of depression in the UKB. Thus, in addition to using non-MHQ depression 
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measures to define credible cases, those measures can be used to define ‘super-healthy’ 

controls32. Doing so may reduce the probability of contaminating controls with cases. By 

improving the definition of controls an increase in power to detect genetic effects is expected, 

and is exemplified by the increase in effect sizes in this study. Despite the benefits in terms of 

increasing power, the exclusion of a segment of the population may bias our SNP-based 

heritability estimates in the absence of a liability scale correction that allows population 

prevalences for both cases and controls to be used in the adjustment.  

Our results converge on the conclusion that repeated measures of depression may be used to 

reduce misclassification of depression cases and controls and increase the sample size of credible 

depression cases in addition to those defined using the MHQ. Cai, et al.10 compared depression 

phenotypes derived from different sources of information in the UKB and showed that the 

strength of the genetic contribution was highest in CIDI-defined cases. We propose that our 

findings build upon this work by considering that the number of endorsed measures of 

depression can be used to decrease misclassification by identifying those participants who 

perhaps had a single mild episode of depression but would not meet the CIDI diagnostic criteria.   

This study enhances the choices available for depression phenotyping in the UKB. The 

appropriate balance between maximising sample size and minimising misclassification depends 

naturally on the study to be performed. For genome-wide association studies, two measures 

showed a high genetic correlation with PGC MDD summary statistics, and individuals with two or 

more measures would contribute 36,093 cases which could be combined with 28,982 Lifetime 

Depression (MHQ) cases. Requiring three or more measures reduces the sample size to 14,625 

and this definition might be used to minimise phenotypic heterogeneity for epidemiological 

studies where case definition is more important.   

Limitations 

Representativeness is a noted limitation of UKB phenotyping. A healthy volunteer bias has been 

observed in the UKB33, although it has been proposed that this bias does not invalidate exposure-
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outcome relationships, but may result in attenuated association34. A further limitation of the 

ability to extrapolate our results is the lack of representation in individuals of diverse ancestries. 

The literature has demonstrated attenuation in prediction between training and target samples 

of different ancestry35, highlighting the need to build training data in varied ancestral 

populations.  

A further relevant limitation relates to the completeness of the data, and to the opportunity 

individuals have to endorse specific measures. For example, the extended touchscreen 

questionnaire used to define Depression (Smith) was only available to approximately a third of 

the UKB cohort. Regional, procedural or other criteria may have influenced the ability of all 

measures to be generically applied to the UKB dataset. For instance, recording of data within 

Scotland excludes linkage to psychiatric hospital episode data. As a result, the reported number 

of measures may be lower than identified.  

Using a simple phenotyping approach, we created independent groups of depression cases 

determined by the number of depression measures endorsed in the UKB. Our results indicate 

that two or more endorsements of depression can be used to reduce misclassification between 

cases and controls, often yielding genetic estimates that approximate, or exceed, the gold-

standard CIDI criteria included in the MHQ. While this study has not considered the relative 

benefit of considering one specific measure over another, the findings of the study highlight that 

any combination provides a good approximation of depression where the MHQ is not available. 

With the recent addition of primary care data for approximately half of UKB participants, there 

is an opportunity to integrate this additional source of information to identify more credible 

depression cases. We anticipate that this phenotyping approach can be used across other 

complex traits, to fully utilise the UKB resource.   
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