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Abstract 65 
 66 

We systematically interrogate the joint genetic architecture of 11 major psychiatric disorders at 67 
biobehavioral, functional genomic, and molecular genetic levels of analysis. We identify four 68 
broad factors (Neurodevelopmental, Compulsive, Psychotic, and Internalizing) that underlie 69 
genetic correlations among the disorders, and test whether these factors adequately explain their 70 
genetic correlations with biobehavioral traits. We introduce Stratified Genomic Structural 71 
Equation Modelling, which we use to identify gene sets and genomic regions that 72 
disproportionately contribute to pleiotropy, including protein-truncating variant intolerant genes 73 
expressed in excitatory and GABAergic brain cells that are enriched for pleiotropy between 74 
disorders with psychotic features. Multivariate association analyses detect a total of 152 (20 75 
novel) independent loci which act on the four factors, and identify nine loci that act 76 
heterogeneously across disorders within a factor. Despite moderate to high genetic correlations 77 
across all 11 disorders, we find very little utility of, or evidence for, a single dimension of 78 
genetic risk across psychiatric disorders. 79 
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Genetic Architecture of 11 Major Psychiatric Disorders at Biobehavioral, Functional 111 
Genomic, and Molecular Genetic Levels of Analysis  112 

 113 
 Psychiatric disorders aggregate both within individuals and families. Offspring of parents 114 
with psychiatric illness are at higher risk for developing a broad range of psychiatric disorders, 115 
not just the specific parental disorder.1-3 Moreover, approximately half of individuals with a 116 
psychiatric illness will concurrently meet criteria for a second disorder,4 and around 40% of 117 
individuals will meet diagnostic criteria for four or more psychiatric disorders in their lifetime.5 118 
Comorbidity is the norm, rather than the exception. Factor analyses that have modeled these 119 
comorbidity patterns consistently identify a transdiagnostic p-factor representing general risk 120 
across psychiatric disorders, along with several intermediate factors representing more specific 121 
clusters of psychiatric risk (e.g., psychotic disorders, mood disorders).6-8 Modern genomics has 122 
built on these findings to begin to elucidate the genetic basis for shared risk across disorders,9,10 123 
with new statistical tools paired with genome-wide association study (GWAS) data being used to 124 
identify pleiotropic variants across disorders.11,12 Most recently, Lee et al. (2019)13 identified 125 
three major dimensions of genetic risk sharing (Neurodevelopmental, Compulsive and 126 
Psychotic) across eight psychiatric disorders, raising the possibility that key mechanisms of 127 
individual disorder risk may operate through these more general factors. Importantly, however, 128 
neither phenotypic comorbidity nor genetic correlations among disorders are by themselves 129 
sufficient for establishing the etiological, diagnostic, or therapeutic utility of the identified 130 
factors.  131 
 Here, we apply Genomic Structural Equation Modelling (Genomic SEM) to GWAS data 132 
(average total sample size per disorder = 156,771 participants; range = 9,725 - 802,939), to 133 
examine the genetic architecture of eleven major psychiatric disorders, across biobehavioral, 134 
functional genomic, and molecular genetic levels of analysis. Genomic SEM is able to 135 
investigate the multivariate genetic architecture across disorders that could not be measured in 136 
the same sample, thereby offering novel insights across the diagnostic spectrum. We begin by 137 
estimating several potential genomic factor models, and identify four broad factors that index 138 
shared genetic liability within and across disorders. We then evaluate the utility of these factors 139 
using a multi-step approach. First, we test the extent to which the factors adequately explain the 140 
patterns of genetic correlation between psychiatric disorders and a wide range of external 141 
biobehavioral traits specifically selected to represent processes disrupted in psychiatric illness, 142 
such as socioeconomic outcomes and cognition. Second, we introduce Stratified Genomic SEM, 143 
which we apply to identify gene sets and categories (e.g., protein-truncating variant-intolerant 144 
genes, low MAF SNPs) for which genetic sharing among the disorders, as indexed by each of the 145 
factors, is enriched. Finally, we capitalize on Genomic SEM for multivariate GWAS to identify 146 
loci that confer risk to multiple disorders via the factors, along with loci that operate 147 
heterogeneously across disorders within a given factor. As we observe particularly 148 
heterogeneous effects of loci related to problematic alcohol use, we estimate Mendelian 149 
randomization models in which pleiotropy is explained by both four latent factors and direct 150 
causal influences of problematic alcohol use liability on liability for other psychiatric disorders. 151 
Collectively, these results offer critical insights into the shared and disorder-specific mechanisms 152 
of genetic risk for psychiatric disease. 153 
 154 
 155 
 156 
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Results 157 
  158 
Factor Analysis of Genetic Covariance across 11 Psychiatric Traits 159 
 160 

We curated the most recent European ancestry GWAS summary data for eleven major 161 
psychiatric disorders: attention-deficit/hyperactivity disorder (ADHD),14 problematic alcohol use 162 
(ALCH),15 anorexia nervosa (AN),16 autism spectrum disorder (AUT),17 anxiety disorders 163 
(ANX),18,19 bipolar disorder (BIP),20 major depressive disorder (MDD),21,22 obsessive 164 
compulsive disorder (OCD),23 post-traumatic stress disorder (PTSD),24,25 schizophrenia (SCZ), 26 165 
and Tourette syndrome (TS).27 Data were derived from a range of sources, including the 166 
Psychiatric Genomics Consortium (PGC), UK Biobank (UKB), 23andMe, Inc., and iPSYCH 167 
(Table S1).  168 

A heatmap of genetic correlations estimated using LD Score regression (LDSC)9 across 169 
the 11 traits indicates pervasive overlap across disorders, with more pronounced clustering 170 
observed among certain constellations of disorders (Figure 1a; Table S2 for LDSC results). We 171 
formally modeled this LDSC correlation structure using Genomic SEM by first estimating a 172 
series of exploratory factor analyses (EFAs), where the disorders freely load on 2,3,4, or 5 173 
factors, in odd numbered autosomes only. We subsequently fit a series of confirmatory factor 174 
analyses (CFAs) specified on the basis of these EFAs, for which model fits were compared using 175 
even autosomes only (Method). Using odd and even autosome covariance matrices for the EFAs 176 
and CFAs, respectively, provided a form of cross-validation to guard against model overfitting. 177 

The best fitting CFA model (for even autosomes: c2[33] = 126.85, AIC = 192.85, CFI = 178 
.955, SRMR = .078; Table S47 for fit statistics of all models) consisted of four correlated factors 179 
(Figure 1b) and, importantly, also fit the data well when fit using all autosomes (c2[33] = 161.66, 180 
AIC = 227.66, CFI = .975, SRMR = .072).  Factor 1 consists of disorders characterized largely 181 
by compulsive behaviors (AN, OCD, TS). Factor 2 is characterized by disorders that may have 182 
psychotic features (SCZ, BIP). Factor 3 is characterized primarily by childhood-onset 183 
neurodevelopmental disorders (ADHD, AUT), but might also be conceptualized as a sensory 184 
processing/hyperarousal factor to the extent that PTSD also loads strongly on this factor. Factor 185 
4 is characterized by internalizing disorders (ANX, MDD). These results, with additional 186 
disorders and larger GWAS sample sizes, largely replicate findings from PGC Cross-Disorder 187 
Group 2 (PGC-CDG2).13 More specifically, PGC-CDG2 reported factors representing 188 
compulsive, psychotic, and neurodevelopmental disorders, which correspond closely to our first 189 
three factors. Our identification of an Internalizing factor can largely be attributed to the 190 
inclusion of ANX, and to a lesser extent PTSD, in addition to MDD in the current analysis. It is 191 
of note that both TS and ALCH evinced the lowest factor loadings, indicating the most distinct 192 
genetic etiology among the 11 disorders in this model.  193 

Cai et al. (2020)28 have reported that psychiatric phenotypes derived using minimal 194 
phenotyping (defined as “individuals’ self-reported symptoms, help seeking, diagnoses or 195 
medication”)  may produce GWAS signals of low specificity. We therefore conducted a 196 
sensitivity analysis in which we excluded GWAS summary statistics for MDD, ANX, ADHD 197 
and ALCH that included cohorts with self-report diagnoses or symptoms and refit the correlated 198 
factor model. This produced highly similar parameter estimates to those obtained when using all 199 
cohorts (Supplementary Results; Figure S1). 200 

 201 
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 225 
Figure 1. Multivariate Genetic Architecture of 11 Psychiatric Disorders. Panel A: Genetic correlations estimated using LDSC. Panel B: Standardized results 226 
for the correlated factors. Panel C: Standardized results from the hierarchical factor model. Panel D: Standardized results from the bifactor model. The genetic 227 
components of disorders and common genetic factors of disorders are inferred variables that are represented as circles. Regression relationships between 228 
variables are depicted as one-headed arrows pointing from the independent variables to the dependent variables. Covariance relationships between variables are 229 
represented as two-headed arrows linking the variables. (Residual) variances of a variable are represented as a two-heaed arrow connecting the variable to itself; 230 
for simplicity residuals of the indicators are not depicted for the bifactor model. ADHD = attention-deficit/hyperactivity disorder; OCD = obsessive-compulsive 231 
disorder; TS = Tourette syndrome; PTSD = post-traumatic stress disorder; AN = anorexia nervosa; AUT = autism spectrum disorder; ALCH = problematic 232 
alcohol use; ANX = anxiety; MDD = major depressive disorder; BIP = bipolar disorder; SCZ = schizophrenia.233 
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The moderate, positive factor intercorrelations observed in Figure 1, in combination with 234 
a prior literature indicating a high-order transdiagnostic “p-factor”, suggest that a hierarchical 235 
factor structure with a single, high-order factor is plausible. Indeed, such a model fit the data 236 
well (Figure 1c; even autosomes: c2[35] = 173.45, AIC = 235.45, CFI = .933, SRMR = .091; all 237 
autosomes: c2[35] = 171.37, AIC = 233.37, CFI = .974, SRMR = .079). In this model the p-238 
factor explained the greatest proportion of variance in the Internalizing disorders factor (55%) 239 
and relatively similar proportions of variance in the remaining three factors (30%-34%). We 240 
retain these two key models—the four correlated factors model and the hierarchical factor 241 
model—to examine the remaining research questions using data from all autosomes. 242 
 243 
Genetic Correlates of Psychiatric Genetic Factors with External Biobehavioral Traits 244 
 245 

A factor model implies a specific causal model, where the factors identified are thought 246 
to causally influence their indicators, in this case the 11 psychiatric disorders. Therefore, 247 
identified factor structures also imply a certain genetic relationship between external traits and 248 
the individual disorders. The degree to which the observed genetic correlation between traits and 249 
the psychiatric disorders respect the relationships implied by the factors can be viewed as a 250 
validation, or rejection, of the factor structure at one level of analysis. To this end, we examined 251 
patterns of correlations across the psychiatric factors and 49 biobehavioral traits relevant to 252 
socioeconomic status, anthropomorphic indices, personality, cognitive outcomes, health and 253 
disease, risky behavior, and neuropsychiatric outcomes,29 101 metrics of brain morphology,30 254 
and circadian activity across 24 hours,31 for a total of 174 external traits. Results for brain 255 
morphology are presented in the Online Supplement (Figures S3-S4; Table S3), as none of these 256 
associations were significant at a Bonferroni corrected threshold for 174 tests (p < 2.87E-4). 257 

To evaluate the extent to which each of the 49 biobehavioral traits operated through the 258 
factor, we calculated c2 difference tests comparing a model in which the trait predicted the factor 259 
only, to one in which it predicted the individual disorders of a given factor (or, the first-order 260 
factors, in the case of analyses using the p-factor model; Figure 2; Figure S5). We term the c2 261 
difference across these two models the Qtrait heterogeneity index, where a significant index 262 
indicates that the pattern of associations between the individual disorders and the external trait is 263 
not well-accounted for by the factor. Using a Bonferroni correction, 7/49 correlations were 264 
significant for Qtrait for the Compulsive factor, 18/49 for the Psychotic factor, 39/49 for the 265 
Neurodevelopmental factor, 17/49 for the Internalizing factor, and 38/49 for the p-factor (Table 266 
S4). Excluding significant Qtrait correlations (i.e., correlations not operating through the factor), 267 
and using the same Bonferroni correction, 17 correlations were significant for the Compulsive 268 
factor, 12 for the Psychotic factor, 5 for the Neurodevelopmental factor, 20 for the Internalizing 269 
factor, and 3 for the p-factor.  270 
 As expected, all factors were positively genetically associated with psychiatric 271 
phenotypes from outside studies, including the cross-disorder iPSYCH results, and negatively 272 
genetically correlated with indices of positive mental health (e.g., subjective well-being, family 273 
relationship satisfaction; Figure S6). In the remainder of this section, we generally describe 274 
patterns of genetic correlations with external biobehavioral traits outside of the psychiatric 275 
domain. 276 
 277 
 278 
 279 
 280 
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 289 
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 293 

 294 
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 296 
 297 
 298 
 299 
 300 
 301 
 302 
 303 
 304 
 305 
Figure 2. Model Comparisons for Producing Q metrics. Unstandardized path diagrams for common pathway (left) and 306 
independent pathways (right) models used to compute the Genomic SEM heterogeneity statistics for associations with external 307 
traits (QTrait, top) and individual SNPs (QSNP, bottom). In this example, F is a common genetic factor of the genetic 308 
components of 3 GWAS phenotypes (Y1-Y3). Observed variables are represented as squares and latent variables are 309 
represented as circles. The genetic component of each phenotype is represented with a circle as the genetic component is a 310 
latent variable that is not directly measured, but is inferred using LDSC. SNPs are directly measured, and are therefore 311 
represented as squares. Single-headed arrows are regression relations, and double-headed arrows are variances. Paths labeled 1 312 
are fixed to 1 for model identification purposes. All unlabeled paths represent freely estimated model parameters. Q represents 313 
the decrement in model fit of the common pathway model relative to the more restrictive independent pathways model. Q is a 314 
χ2 distributed test statistic with k-1 degrees of freedom, representing the difference between the k SNP-phenotype or Trait-315 
phenotype b coefficients in the independent pathways model and the 1 SNP-factor or Trait-factor b coefficient in the common 316 
pathway model. QTrait indexes whether the pattern of genetic associations between the genetic component of an external trait 317 
(depicted as Xg) and the individual disorders is well accounted for by a given factor. QSNP, indexes whether the associations 318 
between an individaul SNP (depicted as SNPm) and the individual dissorders is well accounted for by the factor. For 319 
simplicity, we depict a stylized representation containing only one factor and three disorders. The full models used to derive 320 
QTrait and QSNP for the empirical analyses reported in this paper are presented in Figures S5 and S38. 321 
 322 
 323 
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 328 
 329 
 330 
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 355 
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 359 
 360 
 361 
 362 
 363 
 364 
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 366 

Figure 3. Genetic Correlations with Complex Traits across Psychiatric Factors. Panels depict genetic correlations with 367 
complex traits of interest for the four psychiatric factors from the correlated factors model and the second-order, p-factor from 368 
the hierarchical model. Genetic correlations are shown for socioeconomic (Panel A), anthropromorphic (Panel B), personality 369 
(Panel C), health and disease (Panel D), cognitive (Panel E), and risky behavior outcomes (Panel F). Bars depicted with a 370 
dashed outline were significant at a Bonferroni corrected threshold for model comparisons indicating heterogeneity across the 371 
factor indicators in their genetic correlations with the outside trait. Error bars reflect 95% confidence intervals. Bars depicted 372 
with an * above produced a genetic correlation that was significant at a Bonferroni corrected threshold and were not 373 
significantly heterogeneous.  374 

 375 
 376 
 377 
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The Compulsive disorders factor was negatively genetically correlated with 379 
anthropomorphic traits (BMI, waist-to-hip ratio) and risk-taking behaviors (e.g., automobile 380 
speeding, pub attendance; Figure 3). Educational attainment (EA) evinced a particular pattern of 381 
genetic associations with the individual compulsive disorders that were inconsistent with their 382 
operation via the Compulsive disorders factor, where AN was more positively associated relative 383 
to OCD and TS (Figure S7).  384 

The Psychotic disorders factor was negatively associated with obesity related outcomes 385 
(BMI, Type 2 diabetes) and positively associated with neuroticism. Phenotypes whose patterns 386 
of genetic associations with the individual disorders were inconsistent with their operation via 387 
the Psychotic disorders factor were substance use phenotypes (e.g., drinks per week, cannabis 388 
use), for which genetic associations with SCZ were more pronounced than with BIP, and 389 
cognitive (e.g., EA) and risk-taking phenotypes (e.g., automobile speeding), for which BIP 390 
exhibited more pronounced positive associations.  391 
 The Neurodevelopmental disorders factor was genetically associated with earlier age at 392 
menopause. All other external correlates outside of the psychiatric domain that survived 393 
Bonferroni-correction exhibited patterns of associations with the individual neurodevelopmental 394 
disorders that were inconsistent with their operation via the factor. Cognitive (e.g., educational 395 
attainment, intelligence), anthropometric (e.g., BMI), and economic outcomes (e.g., Townsend 396 
deprivation) had the strongest disorder-specific associations, with positive associations observed 397 
for AUT, and negative associations for PTSD and ADHD. The Neurodevelopmental disorders 398 
factor therefore performed poorly at this level of validation due largely to divergent patterns for 399 
AUT. 400 

The Internalizing disorders factor exhibited negative genetic associations with 401 
extraversion, age at menopause, EA, and positive associations with various adverse health 402 
outcomes (e.g., asthma, back pain, coronary artery disease). Phenotypes with the strongest 403 
disorder-specific associations included socioeconomic phenotypes (e.g., owning a house 404 
outright), which tended to exhibit more pronounced negative genetic associations with MDD 405 
than with ANX.  406 

The p-factor exhibited a homogenous genetic correlation with automobile speeding 407 
propensity. All other external non-psychiatric correlates that survived Bonferroni-correction 408 
exhibited patterns of associations with the first order psychiatric genetic factors that were 409 
inconsistent with their operation via the p-factor. The genetic associations with EA deviated most 410 
strongly from the hierarchical factor structure. These patterns of widespread heterogeneity in 411 
genetic correlations with external phenotypes undermine the utility of the p-factor. 412 
 413 
Accelerometer Data. Atypical patterns of physical movement throughout the 24-hour cycle may 414 
reflect disturbances in basic homeostatic processes that confer transdiagnostic psychiatric risk.32 415 
Using accelerometer data from UKB,31 we next examined genetic correlations between the 416 
individual psychiatric traits and factors and physical movement across a 24-hour period (Figure 417 
4; Table S5). The same Qtrait indices described for complex traits were used to determine whether 418 
patterns of associations with hours of movement were well-accounted for by the factors. Using a 419 
Bonferroni correction for 174 tests, 1 correlation was significant for Qtrait for the Compulsive 420 
factor, 2 for the Psychotic factor, 12 for the Neurodevelopmental factor, 7 for the Internalizing 421 
factor, and 18 for the p-factor. Excluding any significant Qtrait correlations, and using the same 422 
Bonferroni correction, 8 correlations were significant for the Compulsive factor, 4 for the 423 
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Psychotic factor, 1 for the Neurodevelopmental factor, 6 for the Internalizing factor, and 2 for the 424 
p-factor.  425 

Compulsive disorders were positively genetically correlated with physical movement 426 
throughout the daylight hours and into the evening. Psychotic disorders were positively 427 
genetically correlated with excess movement in the early morning hours. The pattern of 428 
associations deviated from the factor structure largely in the daylight and evening hours, with 429 
larger positive genetic correlations observed for BIP. Genetic correlations with movement 430 
throughout the day where heterogenous across disorders that load on the Neurodevelopmental 431 
disorders factor. This was primarily due to unique associations for AUT, for which positive 432 
genetic correlations were observed during the evening hours relative to negative correlations for 433 
other disorders. Internalizing disorders were negatively genetically correlated with movement 434 
throughout the daylight and earlier evening hours.  435 
 436 
 437 
 438 
 439 
 440 
 441 
 442 
 443 
 444 
 445 
 446 
 447 
 448 
 449 
 450 
 451 
 452 
 453 
 454 
 455 
 456 
 457 
 458 
 459 
 460 
 461 
 462 
 463 
Figure 4. Genetic Correlations with Accelerometer Data across Psychiatric Disorders and Factors. Panels depicts 464 
genetic correlations between accelerometer-based average total hourly movement within the 24-hr day beginning at midnight 465 
(N~95,000) and each psychiatric disorder, along with the respective psychiatric factor, for the compulsive disorders (Panel A), 466 
psychotic disorders (Panel B), neurodevelopmental disorders (Panel C), internalizing disorders (Panel D), and psychiatric 467 
factors (Panel E). Across all panels, the psychiatric factors are depicted with larger points and lines. For the psychiatric 468 
factors, points depicted as diamonds were significant at a Bonferroni corrected threshold for model comparisons indicating 469 
heterogeneity across the factor indicators in their genetic correlations with that particular time point. As it loaded on three 470 
different factors (cf. Figure 1), ALCH was not as assigned to a panel above. Lines represent loess regression lines estimated in 471 
ggplot2.  472 
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Genetic Enrichment of Psychiatric Genetic Factors (Stratified Genomic SEM) 473 
 474 

We developed Stratified Genomic SEM to allow the basic principles of Genomic SEM to 475 
be applied to genetic covariance matrices estimated in different gene sets and categories 476 
(Method). These gene sets and categories, collectively referred to as annotations, can be 477 
constructed based on a variety of sources, such as collateral gene expression data obtained from 478 
single-cell RNA sequencing. Such an analysis goes beyond methods such as Stratified LDSC33 479 
that estimate enrichment of heritability for particular traits within functional annotations. Rather, 480 
Stratified Genomic SEM allows us to ask whether pleiotropic loci are enriched within particular 481 
annotations. 482 
 We fit Stratified Genomic SEM models that allowed variances of the common genetic 483 
factors, and disorder-specific effects, to vary across annotations to examine whether the degree 484 
of risk sharing and differentiation is enriched across disorders. Enrichment is defined as the ratio 485 
of the proportion of genome-wide risk sharing indexed by the annotation to that annotation’s size 486 
as a proportion of the genome (Method). The null, corresponding to no enrichment, is a ratio of 487 
1.0, with values above 1.0 indicating enrichment of pleiotropic signal within a functional 488 
annotation. We included functional annotations from the most recent 1000 Genomes Phase 3 489 
BaselineLD Version 2.2,34 for tissue specific histone marks based on data from the Roadmap 490 
Epigenetics Project,35 for specific gene expression constructed based on RNA sequencing data 491 
from human tissues from GTEx,36 and for annotations constructed from human, mouse, and rat 492 
microarray experiments (i.e., DEPICT).37 In addition, we created 29 annotations to examine the 493 
interaction between expression patterns for protein-truncating variant (PTV)-intolerant (PI) 494 
genes (obtained from the Genome Aggregation Database; gnomAD38), and human brain cells in 495 
the hippocampus and prefrontal cortex (obtained from GTEx39). In total, enrichment analyses 496 
were based on 168 binary annotations. Using a Bonferroni correction for 168 tests, we identify 497 
40 annotations that were significantly enriched for the Psychotic disorders factor, 1 annotation 498 
(conserved primate) for the Neurodevelopmental disorders factor, 4 annotations for the 499 
Internalizing disorders factor, and 38 annotations for the p-factor (Table S6).  500 

PI results revealed that these annotations were particularly enriched for the Psychotic 501 
disorders factor, with 5 out of the 10 most significantly enriched gene sets falling in this category 502 
(Figure 5). Moreover, we observe that specific intersections of PI and brain cells were more 503 
enriched than others, with the interaction of PI genes and genes expressed for excitatory (e.g., 504 
hippocampal CA1 neurons) and GABAergic neurons displaying the most significant enrichment 505 
for the Psychotic disorders factor. PI genes reflect a broad functional class that has been found to 506 
confer risk across a wide array of disorders (e.g., AUT, ADHD, BIP and SCZ40). These findings 507 
thus offer insight into neuronal subcategories within the overarching PI gene set that are 508 
specifically associated with shared risk across BIP and SCZ. 509 

We find that shared genetic variance across disorders, as estimated by a higher order p-510 
factor, is enriched in conserved annotations (e.g., conserved primate; Genomic Evolutionary 511 
Rate Profiling [GERP]) and that enrichment increases from low to high MAF alleles (Figure S8-512 
S14). This indicates that previous reports of similar findings for individual disorders33,41 may 513 
reflect enrichment of pleiotropic variants that are broadly relevant for many disorders. The most 514 
enriched annotations for the Neurodevelopmental and Internalizing disorders factors were fetal 515 
female brain DNase and fetal male brain H3K4me1, respectively, both of which have been 516 
previously reported to be enriched for general liability across psychiatric disorders.42                          517 
 518 
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Figure 5. Genetic Enrichment of Factors for Brain Cell, PI, and PI ´ Brain Cell Annotations. Figure depicts enrichment 554 
of the four factors from correlated factors model and the second-order, p-factor from the hierarchical factor model for the 555 
brain cell genes, protein-truncating variant (PTV)-intolerant (PI) genes, and PI ´ brain cell gene annotations. Enrichment is 556 
indexed by the ratio of the proportion of genome-wide relative risk sharing indexed by the annotation to that annotation’s size 557 
as a proportion of the genome. The red dashed line reflects the null ratio of 1.0, corresponding to no enrichment. Ratios 558 
greater than 1.0 indicate enrichment of pleiotropic signal whereas ratios less than 1.0 indicate depletion of pleiotropic signal. 559 
Error bars depict 95% confidence intervals. Points depicted with a * were significantly enriched at a Bonferroni corrected 560 
threshold. To maintain equal scaling purposes across all panels, error bars are capped at 3 and 0 for the Compulsive disorders 561 
factor; no annotations were significant for this factor.  562 
 563 
 564 
 565 
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For specific tissues, we observe that brain regions are generally enriched, as is also observed for 566 
other complex traits,43 but were most enriched for the Psychotic disorders factor.  567 

Results for genetic enrichment of the residuals of the psychiatric factors after accounting 568 
for variance explained by the p-factor are presented in the Online Supplement (Figures S15-569 
S20; Table S5). These results indicated slightly attenuated signal across enrichment categories 570 
relative to enrichment from the correlated factors model, with one important exception: the 571 
enrichment signal was even stronger in the PI ´ neuronal annotations when examining the 572 
variance in the Psychotic disorders factor that was unique of the three remaining factors. This 573 
provides compelling evidence that variants within PI genes expressed in specific hippocampal 574 
and prefrontal cortex neuronal cells are distinctly important for genetic overlap between BIP and 575 
SCZ.  576 
 577 
Unstructured Multivariate GWAS 578 
 579 

We went on to conduct an unstructured multivariate GWAS that computes an omnibus 580 
index of association across all 11 disorders. This GWAS was conducted within Genomic SEM 581 
by comparing a maximally complex model in which the SNP is allowed to have direct regression 582 
relations with each of the 11 disorders against a null model in which the SNP is associated with 583 
none of the disorders. This omnibus test is c2 distributed with 11 df, and quantifies evidence for 584 
an overall effect of the SNP on any subset of the disorders, irrespective of the patterning or 585 
directionality of the effects. We refer to this as an unstructured multivariate GWAS because the 586 
tested model freely estimates as many SNP regressions as there are disorders, and can identify 587 
variants associated with a subset of the psychiatric disorders regardless of their loading on the 588 
higher order factors we observed.   589 

The unstructured multivariate GWAS identified 184 associated loci, 39 of which were 590 
not in LD with any of the univariate associations (Figure 6 for Miami plots; Figure S21 for QQ-591 
plots; Table S7 for individual hits). Of these 39 novel hits, nine have not been described for 592 
independent studies of psychiatric traits/symptoms and were largely characterized by hits 593 
previously found for cognitive (e.g., intelligence) or anthropometric traits (e.g., BMI; Table S7). 594 
Moreover, 7 hits were entirely novel in that they were not in LD with any previously discovered 595 
hits in the GWAS catalogue. For comparative purposes, we consider overlap with the 109 596 
pleiotropic and 146 total hits from PGC-CDG213 given both overlapping datasets and research 597 
questions. The unstructured multivariate GWAS recaptures 69 of the 109 (63.3%; Table S8) 598 
pleotropic loci and 97 of the 146 (66.4%) total loci from PGC-CDG2 .  599 
 600 
Structured Multivariate GWAS 601 
 602 

We used Genomic SEM to perform two structured multivariate GWASs, one using the 603 
correlated factors model (with Factors 1-4 as the GWAS target), and one using the hierarchical 604 
factor model (with the higher order p-factor as the GWAS target; Figure 6). We refer to these 605 
multivariate GWASs as structured, because the different models used for each define a specific 606 
pattern, or structure, of the relationship between the SNP and the 11 disorders. For each of the 607 
two multivariate GWASs, and for each factor used as a GWAS target, we estimate SNP-specific 608 
indices of heterogeneity with the QSNP44 statistic that indexes violation of the null hypothesis that 609 
the SNP acts on the individual disorders entirely via the factor on which they load (Figure 3; see 610 
Method). A QSNP statistic is typically significant when the SNP effect is highly specific to an 611 
individual disorder or when SNP effects are highly heterogeneous across disorders, such as when 612 
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there is divergent directionality across the disorders. Thus, we use these GWASs to identify 613 
whether variants specifically relate to broad-dimensions of genetic risk, or to a specific disorder 614 
or disorders. Corresponding results from using the genome-wide S-LDSC matrix can be found in 615 
Tables S27-S39 and Figures S22-S23. LDSC and S-LDSC produced highly similar multivariate 616 
GWAS results (Supplementary Results; Figures S24-25). Polar plots of individual variants 617 
estimated as genome-wide significant are presented in Figure S26. 618 

We identified 1 hit for the Compulsive disorders factor, a locus also associated with AN16 619 
(Table S9-S10). We identify two loci for the Compulsive disorders factor-specific QSNP statistic 620 
(Table S11), including a locus (rs1906252) with strong opposing effects on AN and TS .  621 

We identified 108 hits for the Psychotic disorders factor, 96 of which were in LD with 622 
previously reported associations with BIP45 and SCZ (Table S12), and 12 of which were novel 623 
relative to the contributing univariate GWASs. Of these 12 unique hits, 8 have been reported as 624 
hits in independent (or semi-independent) external GWAS of psychiatric traits, 2 were novel for 625 
psychiatric traits, and 2 were entirely novel (Table S13). Psychotic disorders, factor-specific 626 
QSNP statistic revealed 6 hits, 3 of which were in LD with hits for ALCH (Table S14), including a 627 
locus in the well-described Alcohol Dehydrogenase 1B (ADH1B) gene that was significant for 628 
factor-specific QSNP for all four factors.  629 

We identified nine hits for the Neurodevelopmental disorders factor (Table S15), 3 of 630 
which were in LD with hits for ADHD14 or MDD, and 2 of which were novel relative to the 631 
contributing univariate GWASs. These two novel hits were in LD with hits previously described 632 
for GWAS of psychiatric traits (Table S16). There were 7 hits for the Neurodevelopmental QSNP 633 
statistic, many of which appeared to be specific to AUT17 (Table S17).  634 

We identified 44 independent hits for the Internalizing disorders factor, 6 of which were 635 
unique of hits from the contributing univariate GWASs (Table S18). Among these 6 novel loci, 3 636 
were identified in outside studies of psychiatric traits, one has been identified for smoking 637 
initiation, and two have yet to be described for any trait (Table S19). Three loci were identified 638 
for the Internalizing factor-specific QSNP statistic, all three of which were in LD with hits for 639 
ALCH (Table S20). We note that the discrepancy in the number of univariate MDD hits (109) 640 
relative to the number of Internalizing factor hits (44) can be attributed to a combination of 641 
signal specific to MDD and splitting the MDD signal across two factors (Figure S27).  642 

Of the 109 pleiotropic hits from PGC-CDG2, none were in LD with hits for the 643 
Compulsive disorders factors, 52 hits were in LD with hits for the Psychotic disorders factor, 4 644 
hits were in LD with hits for the Neurodevelopmental disorders factor, and 14 hits were in LD 645 
with hits for the Internalizing disorders factor. As 5 of these overlapping hits were redundant 646 
across the factors, the correlated factors model indicates that 65 of the 109 (59.6%) PGC-CDG2 647 
hits may be interpreted as acting pleiotropically via the factors identified here. Nine hits from the 648 
correlated factors model were in LD across the factors, and 1 hit was in LD with a QSNP hit. In 649 
total, we therefore discover 152 independent loci that are likely to operate through pleiotropic 650 
mechanisms, 20 of which that were novel relative to the univariate traits. Accounting for LD 651 
across factor-specific QSNP hits, we identify nine independent QSNP hits that do not conform to 652 
the identified factor structure (Table 1), a third of which appeared to operate through pathways 653 
unique to ALCH.  654 

We identified only 2 genome-wide hits for the higher-order p-factor, both of which were 655 
in LD with univariate hits for MDD and SCZ (Table S21), and have been described in multiple 656 
external GWAS of psychiatric traits (Table S22). The p-factor was characterized by the highest 657 
level of heterogeneity by far, with 69 loci identified for QSNP (Table S23), 49 of which were in 658 
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LD with hits on the four psychiatric factors from the correlated factors model.  Despite few hits 659 
for p, its considerable mean c2 (1.795) may be attributable to the aggregation of heterogenous 660 
signal across factors 1-4 in the hierarchical factor GWAS.  661 

In summary, very few SNPs act on these 11 disorders in a manner consistent with the 662 
presence of a p-factor, whereas many SNPs act on the 11 disorders according to patterns that are 663 
significantly inconsistent with the presence of a p-factor. Moreover, the high average mean c2  664 
for the p-factor suggest that the paucity of factor hits is not attributable to low power. The 665 
observed pattern of SNP effects, in combination with the extensive heterogeneity in the pattern 666 
of correlations with biobehavioral traits reported earlier, suggests that a single, higher-order 667 
common factor of genetic risk for psychiatric disease has low plausibility and little pragmatic 668 
utility for understanding the shared genetic architecture of the disorders.  669 

 670 
Post-hoc Multivariate GWAS: Bifactor Specification of p 671 
 672 

An alternative approach to modelling the p-factor is to specify a bifactor model.6,7 In the 673 
bifactor model, the p-factor and four domain-specific factors are specified to be orthogonal to 674 
one another and to directly predict the 11 disorders (Figure 1d). In contrast to the hierarchical 675 
model in which the relationship between p and the 11 disorders is mediated by the four lower-676 
order factors, the bifactor model allows for direct associations between p and the 11 disorders. 677 
As the hierarchical model reflects a constrained version of the bifactor model, the bifactor model 678 
is always able to approximate the empirical genetic covariance as well as, or better than, the 679 
hierarchical model.46 Indeed, the bifactor model fit the data very well (c2[28] = 120.35, AIC = 680 
196.35, CFI = .982, SRMR = .062). Multivariate GWAS results using the bifactor model are 681 
presented here in order to more fully consider the utility of a p-factor, but are treated as 682 
exploratory and post-hoc.46 683 

 A multivariate GWAS with the bifactor p-factor as the GWAS target identified 66 684 
independent hits, including the two hits for the hierarchical p-factor (Table S24). Among these 685 
66 hits, 38 were in LD with hits from the correlated factors model, 8 hits were novel relative to 686 
univariate hits, and 7 hits were novel relative to both univariate or correlated factors hits. Three 687 
hits were novel for psychiatric traits more generally (Table S25). We identified 76 QSNP hits, 50 688 
of which were in LD with hierarchical p QSNP hits (Table S26). Although the bifactor 689 
specification of p produced more factor hits than did the hierarchical specification, the pattern of 690 
results with respect to the large number of QSNP hits and high overall mean c2 of QSNP was 691 
similar, and the LDSC genetic correlation across these two specifications of p was > .99. 692 
Collectively, these results indicate low utility of the p-factor for either the bifactor or hierarchical 693 
specification. 694 
 695 
 696 
 697 
 698 
 699 
 700 
 701 
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Table 1. Genome-wide Multivariate GWAS Results 702 

Multivariate GWAS Target Effective N 
Mean 
c2(1) 

LDSC 
Univariate 
Intercept 

Independent 
Hits                

(LD with Q hits) 

LD with 
Univariate Trait 

Hits                
(LD with Q hits) 

Unique from Univariate 
Trait Hits  

(LD with Q hits) 

Multivariate GWAS 
Factor 1 (Compulsive) 19,108 1.209 0.973 1 (0) 1 (0) 0 (0) 
Factor 2 (Psychotic) 87,138 1.869 0.975 108 (1) 96 (1) 12 (0) 
Factor 3 (Neurodevelopmental) 55,932 1.301 1.022 9 (0) 7 (0) 2 (0) 
Factor 4 (Internalizing) 455,340 1.635 0.997 44 (0) 38 (0) 6 (0) 
Total hits across Factors 1-4 - - - 153 (1) 133 (1) 20 (0) 
Hierarchical p factor 667,343 1.795 0.955 2 (1)  1 (0)  1 (1) 
Bifactor p factor  666,557 1.985 0.982 66 (8) 58 (8) 8 (0) 
Unstructured Meta-Analysis - 2.216 0.883 184 145 (-) 39 (-) 

Heterogeneity Index (QSNP) 
Factor 1 (Compulsive) QSNP   - 1.113 1.001 2 1 1 
Factor 2 (Psychotic) QSNP   - 1.251 0.994 6 4 2 
Factor 3 (Neurodevelopmental) QSNP   - 1.246 0.980 7 4 3 
Factor 4 (Internalizing) QSNP   - 1.142 0.977 3 3 0 
Total QSNP hits across Factors 1-4 - - - 9 5 4 
Hierarchical p factor QSNP   - 1.667  0.928  69   58   11 
Bifactor p factor QSNP   -      1.645 0.936 76 59 17 

Contributing Univariate GWAS Effective N      
(Total N) 

Mean 
c2(1) 

LDSC 
Univariate 
Intercept 

Independent 
Hits 

(LD with Q hits) 

LD with Factor 
Hits               

(LD with Q hits) 

Unique from Factor Hits   
(LD with Q hits) 

AN 34,467 (72,517) 1.297 1.020 8 (0) 1 (0) 7 (0) 
OCD 5,712 (9,725) 1.062 0.993 0 (0) 0 (0) 0 (0) 
TS 9,614 (14,307) 1.123 1.014 1 (0) 0 (0) 1 (0) 
SCZ 87,462 (130,644) 2.118 1.077 179 (2) 89 (2) 90 (0) 
BIP 35,967 (51,710) 1.396 1.020 16 (0) 9 (0) 7 (0) 
ALCH 155,698 (176,024) 1.199 0.994 6 (3) 2 (1) 4 (2) 
ADHD 46,586 (115,673) 1.221 0.969 6 (0) 3 (0) 3 (0) 
AUT 33,719 (46,351) 1.198 1.008 3 (1) 0 (0) 3 (1) 
PTSD 22,001 (38,593) 1.119 0.991 0 (0)  0 (0) 0 (0) 
MDD 498,520 (802,939) 1.957 1.024 109 (0) 43 (0) 66 (0) 
ANX 30,273 (100,876) 1.194 0.998 2 (0) 2 (0) 0 (0) 
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Note. Independent hits were defined using a pruning window of 250Kb and r2 < 0.1. Hits are considered in LD if their LD was R2>.10 or within a 703 
250Kb window of one another. Values in parentheses indicate whether any of the hits were in LD with hits for factor-specific QSNP hits from the 704 
respective model. Factor-specific QSNP indexes whether a particular SNP is unlikely to operate through the identified factor structure, as will often be 705 
the case when a SNP effect is highly specific to an individual disorder. To facilitate comparison across mean χ2 values reported in each row, all χ2 706 
statistics with df>1 (i.e. those for QSNP and those for the unstructured multivariate GWAS) were converted to χ2(1) statistics before taking their means. 707 
Effective sample size (N) was estimated using the procedure outlined in the online supplement of Mallard et al. (2019).47  708 
 709 
 710 
 711 
 712 
 713 
 714 
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 747 
Figure 6. Miami Plots for Psychiatric Factors. Panel A depicts results from an unstructured meta-analysis of the 11 748 
psychiatric traits (Panel A). Results from the correlated factors model are depicted for the Compulsive disorders factor (Factor 1; 749 
Panel B), Psychotic disorders factor (Factor 2; Panel C), Neurodevelopmental disorders factor (Factor 3; panel D), and 750 
Internalizing disorders factor (Factor 4; Panel E). Panel F depicts the results of the SNP effect on the second-order p-factor 751 
from the hierarchical model. Panel G depicts results from a model in which the SNP predicted the p-factor from a bifactor 752 
model. The top half of the plots depict the -log10(p) values for SNP effects on the factor; the bottom half depicts the log10(p) 753 
values for the factor specific QSNP effects. As the omnibus meta-analysis does not impose a structure on the patterning of SNP-754 
disorder associations, it does not have a QSNP statistic. The gray dashed line marks the threshold for genome-wide significance (p 755 
< 5 × 10-8). Black triangles denote independent factor hits that were in LD with hits for one of the univariate indicators and were 756 
not in LD with factor-specific QSNP hits. Large red triangles denote novel loci that were not in LD with any of the univariate 757 
GWAS or factor-specific QSNP hits. Purple diamonds denote QSNP hits. 758 
 759 
 760 
 761 
 762 
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Estimating Causal Effects of Problematic Alcohol Use on Psychiatric Disease Risk 764 
 765 

One third of the QSNP discoveries from the correlated factors model appeared to operate 766 
through pathways unique to ALCH. This observation motivated an examination of the causal 767 
effects of ALCH on the disorders and factors using a form of multi-trait Mendelian 768 
randomization (MR) within the Genomic SEM framework. We ran two types of MR models: one 769 
using the QSNP variant in the ADH1B gene as a single instrumental variable for ALCH, and a 770 
second multi-variant MR approach using 8 loci identified from an independent ALCH discovery 771 
GWAS as instrumental variables.48 The multi-variant approach allowed for pleiotropic effects of 772 
the loci on additional disorders or factors where appropriate (Supplementary Results). Results 773 
from the ADH1B and multi-variant Genomic SEM-MR approaches tentatively supported a 774 
causal effect of ALCH on MDD and BIP (Supplementary Results; Figures S28-29). In these 775 
models, ALCH loadings on factors 2-4 were no longer significant, but the remaining disorders 776 
continued to load significantly on their respective factors. This indicates that although ALCH 777 
may have causal effects on risk for at least two different disorders, multiple causation by ALCH 778 
alone is not sufficient to fully account for the widespread patterning of statistical pleiotropy 779 
observed among the remaining disorders examined here. 780 
 781 

Discussion 782 
 783 

We used genetic factor models to identify four broad factors (Neurodevelopmental, 784 
Compulsive, Psychotic, and Internalizing) that provide a reasonable model of the genetic 785 
correlations among 11 major psychiatric disorders, as estimated using the most recent GWAS 786 
summary data for individuals of European ancestry. We find that the Compulsive, Psychotic, and 787 
Internalizing factors are generally effective at describing the genetic relationship between 788 
psychiatric disorders at biobehavioral, functional genomic, and molecular levels of analysis. 789 
Results were less consistent with the utility of a Neurodevelopmental disorders factor. For 790 
example, numerous biobehavioral traits differed in their genetic correlations with AUT to the 791 
point where its disorder-specific etiology must diverge substantially from those of the other 792 
disorders loading on this factor. The Neurodevelopmental disorders factor also exhibited much 793 
higher degrees of heterogeneity with respect to associations with individual SNPs, suggesting 794 
few variants conferring risk for these disorders are likely to operate through a more general 795 
factor.  796 

Although the genetic correlations among the 11 disorders were somewhat consistent with 797 
the concept of a general p-factor, a hierarchical factor model that specified such a p-factor was 798 
found to offer limited biological insight, obscuring patterns of genetic correlations with external 799 
biobehavioral traits, the enrichment of pleiotropy within specific biological annotations, and the 800 
associations with individual variants. A bifactor model identified a larger number of GWAS hits 801 
for p, but similar to the hierarchical model exhibited a great deal of SNP-level heterogeneity. 802 
Given that a p-factor was found to be insufficient for accounting for patterns of multivariate 803 
associations the question arises: What processes gives rise to the moderate genetic correlations 804 
observed among the four, first-order factors? One possibility is that genetic correlations among 805 
the four factors arise from shared biology underlying pairwise combinations of factors, and not 806 
from any biology that is shared across all factors. Similarly, genetic correlations among the 807 
factors themselves may reflect pairwise combinations of shared biology among disorders that are 808 
not shared across all disorders within a factor. 809 
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In some circumstances, genetic correlations across disorders may arise from direct, 810 
potentially mutual, causation between the factor or disorder-specific liabilities and one another49 811 
or reflect causation directly between the symptoms of different disorders.50 Based on significant 812 
locus-specific violations of the four factor model at loci relevant to ALCH, including a locus in 813 
the ADH1B gene, we incorporated Mendelian randomization into Genomic SEM models in 814 
order to estimate the direct causal effect of ALCH on risk for the other disorders. Both single- 815 
and multi-variant MR indicated causal effects of ALCH on MDD and BIP. The capability to 816 
combine MR and Genomic SEM in order to simultaneously model latent variables and direct 817 
effects between disorders vastly increases the scope of possible models that can be evaluated in 818 
future work.  819 

In order to identify gene sets and categories in which pleiotropic risk variants for multiple 820 
disorders are disproportionally localized, we developed Stratified Genomic SEM, and applied it 821 
to 168 annotations, including 29 annotations representing protein-truncating variant (PTV)-822 
intolerant (PI) genes, genes expressed in the human brain cells in the hippocampus and prefrontal 823 
cortex, and their intersection. We find that the intersection between PI genes and genes expressed 824 
in both excitatory and GABAergic neurons explained an outsized proportion of the genetic 825 
variance in the Psychotic disorders factor, which primarily indexes genetic covariance between 826 
SCZ and BIP. This offers critical insight into increasingly specific classes of genes relevant to 827 
shared risk across two disorders with high genetic overlap. Across the four correlated factors, we 828 
find that conserved regions are generally enriched. As enrichment in conserved annotations has 829 
been previously reported for both psychiatric traits and a host of other complex traits (e.g., 830 
cognitive function, anthropometric traits41,43), the current findings suggest that these annotations 831 
confer risk for individual disorders via highly pleiotropic variants relevant for many different 832 
domains of functioning.  833 

It is important to note a number of limitations of the current analytic framework. 834 
Stratified Genomic SEM inherits the assumptions and limitations of traditional S-LDSC.33 This 835 
includes using an additive model of gene action that does not consider the role of epistatic 836 
effects, and only modelling the covariance among relatively common variant SNPs for which LD 837 
information is available. In future work, larger univariate GWAS coupled with Stratified 838 
Genomic SEM would allow for fitting qualitatively distinct structural models for individual 839 
annotations. It is conceivable that a simpler two-factor model may best describe genetic 840 
covariance in evolutionarily conserved regions, whereas a five-factor model may reflect the 841 
underlying architecture in genes that are intolerant to protein truncation. The statistical tools 842 
developed here allow us to test such hypotheses by relaxing the assumption that a single 843 
structural model characterizes the genetic relationships across psychiatric disorders.  844 

We also note that the pattern of results reported here is likely to have been influenced by 845 
the composition of the GWAS cohorts included. Summary statistics from well powered GWASs 846 
spanning the wide range of psychiatric disorders investigated here were only consistently 847 
available for individuals of European ancestry. A major priority for continued work in this area 848 
will be increase the diversity of populations for which psychiatric GWAS are available. Recently 849 
developed methods for the stratified analysis of genetic correlations across ancestral populations 850 
will be invaluable for the analysis of such data.51 851 

Moreover, our results may have been influenced by the phenotyping and case-852 
ascertainment methods used methods used. For instance, we included data from have been 853 
influenced by the inclusion of GWAS cohorts relying primarily on self-report phenotypes,28 854 
though sensitivity analyses suggested minimal differences when excluding GWAS that used self-855 
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report cohorts.  Future analyses may benefit from evaluating these findings using a set of traits 856 
that is balanced with respect to statistical power. Future research may also benefit from further 857 
accounting for heterogeneity in how samples are ascertained and disorders are assessed.52 858 
Application of detailed and standardized assessment protocols to large, representative samples 859 
would of course be ideal. More pragmatically, future work may apply multivariate genetic 860 
approaches, such as those showcased here, at the level of individual symptoms.53  861 

The current analyses revealed four, correlated psychiatric factors that account for 862 
extensive genetic overlap across disorders. We evaluate and elucidate the composition of these 863 
factors by demonstrating patterns of correlations with external traits, develop and apply a novel 864 
method, Stratified Genomic SEM, to identify classes of genes that explain disproportionate 865 
levels of genetic covariance, and identify sets of loci with ranging levels of pleiotropy. We also 866 
estimate MR models where pleiotropy is a function of both latent factors and direct effects from 867 
one disorder liability on another. Our results offer critical insight into shared and disorder 868 
specific mechanisms of genetic risk and suggest possible avenues for revising a psychiatric 869 
nosology currently defined largely by clinical observation. Evidence derived from multivariate 870 
genetic analysis, alongside evidence at other levels of explanation (e.g., cognitive neuroscience, 871 
neurochemistry, environmental stressors), could guide future diagnostic revision. 872 
  873 
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Method 874 
  875 

Overview of Genomic SEM and Stratified Genomic SEM 876 
 877 
 Genomic SEM is a two-stage Structural Equation Modelling approach. In the first stage, 878 
a genetic covariance matrix (S) and its associated sampling covariance matrix (VS) are estimated 879 
with a multivariate version of LD Score regression (LDSC). S consists of heritabilities on the 880 
diagonal and genetic covariances (co-heritabilities) on the off-diagonal. V consists of squared 881 
SEs of S on the diagonal and sampling covariances on the off-diagonal, which capture 882 
dependencies between estimating errors that will arise in situations such as participant sample 883 
overlap across GWAS phenotypes. In the second stage, a structural equation model is fit to S by 884 
optimizing a fit function that minimizes the discrepancy between the model-implied genetic 885 
covariance matrix (Σ(#)) and S, weighted by the elements within V. We use the diagonally 886 
weighted least squares (WLS) fit function described in Grotzinger et al. (2019):44  887 
 888 

                                                    889 
 890 
where S and Σ(θ) have been half-vectorized to produce s and σ(θ), respectively, and DS is VS with 891 
its off-diagonal elements set to 0. The sampling covariance matrix of the stage 2, Genomic SEM 892 
parameter estimates (Vθ) are obtained using a sandwich correction described in Grotzinger et al. 893 
(2019):44 894 
 895 
                                                      896 

 897 
where Δ% is the matrix of model derivatives evaluated at the parameter estimates, Γ is the stage 2 898 
weight matrix, DS, and VS is the sampling covariance matrix of S. 899 

Stratified Genomic SEM extends this framework by allowing potentially different 900 
structural equation models to be fit to genetic covariance matrices estimated in different gene 901 
sets and categories. These gene sets and categories, collectively referred to as annotations, can be 902 
constructed based on a variety of sources, such as collateral gene expression data obtained from 903 
single-cell RNA sequencing. We develop a multivariate extension of Stratified LD Score 904 
Regression (S-LDSC)33 below to estimate these annotation-specific genetic covariance matrices 905 
and their associated sampling covariance matrices. We describe two types of annotation-specific 906 
genetic covariance matrices, S0 and St. S0 contains estimates of genetic covariance within a 907 
specific annotation without controlling for overlap with other annotations. In other words, it is 908 
composed of the zero-order coefficients implied by the multivariate S-LDSC model. St contains 909 
estimates of genetic covariance controlling for annotation overlap. In other words, it is composed 910 
of multiple regression coefficients estimated by the multivariate S-LDSC model. The distinction 911 
between S0 and St directly parallels the distinction made in univariate S-LDSC33 between overall 912 
heritability explained by an annotation and the incremental contribution of a partition to 913 
heritability beyond all other annotations considered. Note that the estimates required to populate 914 
elements of an overall genome-wide S matrix can be produced either from the zero-order 915 
annotation that includes all SNPs or by aggregating parameters corresponding to each annotation 916 
from the multivariate S-LDSC model.  917 

( ) ( )( ) ( )( )1
WLS SF s D sq s q s q-¢= - -

( ) ( )1 11 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ
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 Below, we validate via simulation that Stratified Genomic SEM produces unbiased model 918 
parameter estimates and SEs, and that model fit indices appropriately favor the population 919 
generating model within a given annotation. There are a wide array of research questions that can 920 
be asked using Stratified Genomic SEM. In this paper, we examine genetic enrichment of 921 
variance in psychiatric genetic factors across a broad range of annotations.  922 
 923 
Multivariate Stratified LDSC 924 
 925 

Under a multivariate extension of the S-LDSC model, the expected value of the product of 926 
z statistics for each pairwise combination of phenotypes for SNP j equals:  927 

&'()*(+*, = ./)/+012
ℓ(4, 6)

82
+

:/;
./)/+

+ <
2

 928 

where Ni is the sample size for study i, c indexes a genomic annotation, Mc is the number of 929 
SNPs in annotation c, ℓ(j,c) is the LD score of SNP j with respect to annotation c (that is, the sum 930 
of squared LD this SNP has with all SNPs in the annotation), τc is a vector of free parameters 931 
used to compute the conditional contribution to heritability or coheritability (genetic covariance) 932 
in annotation c, Ns is the number of individuals included in both GWAS samples, ρ is the 933 
phenotypic correlation within the overlapping samples, and a is a term representing unmeasured 934 
sources of confounding such as shared population stratification across GWASs.54 The inclusion 935 
the term Mc in the above equation produces LD scores (ℓ(*,2)

=>
) that are scaled relative to the size 936 

of the respective annotations, thereby allowing τc to be interpreted on the same scale as genome-937 
wide estimates of heritability and coheritability, rather than on a per SNP scale. Note that when 938 
the z statistics for the same phenotype is double entered on the left hand side of the above 939 
equation, such that &'()*(+*, becomes &'?*+,, the equation reduces to the univariate S-LDSC 940 
model.9 941 

Following Finucane et al. (2015),33 the multivariate S-LDSC model is estimated by 942 
regressing the product of z statistics against the annotation-specific LD scores using a weighted 943 
regression model (see online supplement of Finucane et al., 2015,33 for a description of how 944 
weights are calculated). Standard errors and dependencies among estimation errors (i.e., 945 
sampling covariances) are estimated using a multivariate block jackknife. As sample overlap 946 
creates a dependency between z statistics for the two traits, thus increasing their products, the S-947 
LDSC intercept (ρNs/√(N1N2) + a) is affected, but the regression slope is unaffected, and the 948 
estimates of partitioned genetic covariance and their standard errors are not biased.  949 
 950 
Derivation of St and S0 951 
 952 

St,c is a matrix containing estimates of genetic variance and covariance in annotation c, 953 
controlling for overlap with other annotations. It is composed of multiple regression coefficients, 954 
tc, estimated directly with the multivariate S-LDSC model by populating each of its cells with 955 
the corresponding t estimate from the multivariate S-LDSC model.  956 

S0,c is a matrix containing estimates of genetic covariance in annotation c, without 957 
controlling for overlap with other annotations. The elements @2 composing S0,c can be derived 958 
from the tc  estimates from the multivariate S-LDSC model in combination with knowledge of 959 
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annotation overlap. Thus, the zero-order contribution of target annotation t to heritability or co-960 
heritability is written as: 961 
  962 

@A =BC
|E2 ∩	EA|
|E2|

H t2

	

2

 963 

 964 
where |E2 ∩ EA| is the number of SNPs in annotation c that are also in target annotation t, and 965 
|E2| is the total number of SNPs in annotation c (alternatively expressed as Mc), such that 966 
I|J>∩	JK|

|J>|
Lreflects the proportion of SNPs in annotation c that are also in target annotation t. This 967 

proportion is used to weight the term t2 for each annotation in deriving the zero-order 968 
contribution of target annotation t to heritability or coheritability.   969 

When the multivariate S-LDSC model is correct, St is expected to produce unbiased 970 
estimates of the conditional contribution of an annotation to genetic covariance, after controlling 971 
for the effects of variants in all other annotation (i.e., accounting for the fact that variants can 972 
reside in multiple annotations). In comparison, S0 is expected to produce unbiased estimates of 973 
the total contribution of all genetic variants in an annotation to genetic covariance (i.e., 974 
irrespective of its overlap with the other annotations). S0 has two desirable properties. First, its 975 
estimate is not as directly contingent on which other annotations are included in the multivariate 976 
S-LDSC model. Second, because it does not decompose contributions of an annotation into those 977 
that are shared vs. unique of other annotations, it is expected to produce more stable estimates at 978 
small and moderate sample sizes. For this reason, the empirical Stratified Genomic SEM 979 
analyses reported here employ S0 matrices, and should be interpreted accordingly. 980 
 981 
Simulations of Stratified Genetic Covariance 982 
 983 
Simulation Procedure. Using raw individual-level genotype data simulation, we sought to 984 
validate the point estimates and standard errors (SEs) produced by Stratified Genomic SEM. We 985 
compare results for S0 and St. We began by generating 100 sets of 45, 100% heritable 986 
phenotypes (“orthogonal genotypes”) using the GCTA package.55 Each 100% heritable 987 
phenotype was specified to have 10,000 randomly selected causal variants from within a 988 
particular annotation. These phenotypes were paired with genotypic data for 100,000 randomly 989 
selected, unrelated individuals of European descent from UKB data for the 1,209,498 SNPs 990 
present in HapMap3.  991 

The simulated genotypes were used to construct six different factor structures for six 992 
causal annotations. All orthogonal genotypes were scaled M=0, SD=1. For three of the causal 993 
annotations (DHS Peaks, H3K27ac, and PromoterUSC) seven genotypes for each annotation 994 
were used to construct six new correlated genotypes, each as the weighted linear combination of 995 
a domain-specific genetic factor and a general genetic factor, which was constructed from the 996 
seventh genotype. For the remaining three causal annotations (FetalDHS, H3K9ac, and TFBS) 997 
eight genotypes for each annotation were used to construct two sets of three correlated genotypes 998 
for two correlated general genetic factors, constructed from the seventh and eighth genotypes. A 999 
set of six “total” genotypes was created by summing a factor indicator genotype from each of the 1000 
six causal annotations. As each genotype within each annotation was specified to have 10,000 1001 
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causal SNPs, the “total’ genotypes created as the sum of six annotation had 60,000 causal SNPs 1002 
in the population generating model.  1003 

Phenotypes were subsequently constructed as the weighted linear combination of one of 1004 
the six “total” genotypes and domain-specific environmental factors (randomly sampled from a 1005 
normal distribution with M=0, SD=1). Heritabilities for phenotypes 1-6 were all set to ℎN+=60%, 1006 
such that the weights for the genotypes were .ℎN+ and the weights for the environmental factors 1007 
were .(1 − ℎN+). Each of the 600 phenotypes (100 sets of 6 phenotypes) was then analyzed as a 1008 
univariate GWAS in PLINK56 to produce univariate GWAS summary statistics. The summary 1009 
statistics were then munged, and Stratified Genomic SEM using the 1000 Genomes Phase 3 1010 
BaselineLD Version 2.2 model was used to construct 100 sets of  6×6 stratified zero-order 1011 
genetic covariance matrices (S0), t covariance matrices (St), and their corresponding sampling 1012 
covariance matrices (VS0  and VSt ).   1013 

 1014 
Validating S0 and VS0. For the zero-order genetic covariance matrix, we would expect the 1015 
annotation including all SNPs—i.e. the genome-wide annotation—to reflect the weighted linear 1016 
combination of the generating covariance matrices specified for the six causal annotations, with 1017 
weights equal to the proportion of all SNPs contained in each of the corresponding causal 1018 
annotations. For each of the six causal annotations, we expect the zero-order covariance matrix 1019 
for the corresponding annotation to be a linear combination of that annotation’s population-1020 
generating matrix and the remaining annotations’ population-generating matrices weighted by 1021 
the proportion of SNPs overlapping across the annotations. To test these expectations, we created 1022 
average observed covariance matrices across the 100 simulations for the genome-wide 1023 
annotation and six causal annotations. The estimated S0 genome-wide covariance matrix 1024 
approximately reflected an additive mixture of the six population generating covariance matrices, 1025 
and was estimated with minimal bias (absolute value of mean discrepancy = .004; Figure S30b). 1026 
In addition, the observed covariance matrices for each of the causal annotations were minimally 1027 
biased relative to the generating population (Figure S30, Table S40).  1028 
 In order to evaluate the accuracy of the SEs, we analyzed the ratio of the mean SE 1029 
estimate across the 100 simulations over the empirical SE (calculated as the standard deviation of 1030 
the parameter estimates across the 100 simulations). A value above 1 for this ratio indicates 1031 
conservative SE estimates. This ratio was calculated within each of the annotations and for each 1032 
cell of the covariance matrix. The average ratio across annotations and cells of the covariance 1033 
matrix was 1.030 (Figure S31 for distribution across all annotations; Table S40 for ratio within 1034 
causal annotations). Thus, we have produced a SE estimate for stratified heritability and 1035 
covariance that performs as expected. In fact, our estimates are very slightly conservative as the 1036 
mean SE was slightly larger than the empirical SE. Moreover, the average z statistic for 1037 
heritability and covariance estimates within the causal annotations were all highly significant, 1038 
suggesting more than adequate power under the conditions of the current simulation (Table S40).  1039 
 1040 
Validating St and VSt. The expectation for the genetic St covariance matrices is that the observed 1041 
covariance matrices will reflect the generating model within only that annotation. Indeed, the 1042 
causal annotations closely matched their respective population generating covariance matrices 1043 
and bias was minimal (Table S40; Figure S32). We then analyzed the ratio of the mean SE 1044 
estimate across the 100 runs over the empirical SE (calculated as the standard deviation of the 1045 
parameter estimates across the 100 runs). The average ratio of SE estimates was 1.014 across all 1046 
annotations (Figure S31) and, importantly, was also close to 1 for the causal annotations (Table 1047 
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S40). Results for 4,459 of the total 5,300 covariance matrices produced negative heritability 1048 
estimates. This included some of the causal annotations (Table S30), but was largely true for the 1049 
non-causal annotations. Negative heritability estimates are unsurprising for the non-causal 1050 
annotations as their population generating effect is 0. The z statistics for the St  heritabilities and 1051 
covariances were, on average, smaller relative to the S0 covariance matrices (Table S40). This is 1052 
to be expected as the S0 covariance matrices include power gained from variance shared with 1053 
overlapping annotations.  1054 

 The St covariance matrices for the causal annotations were then used as input for 1055 
Genomic SEM models. The two types of population generating models—a common factor and 1056 
correlated factors model—were run for each annotation. For all causal annotations, Genomic 1057 
SEM estimates closely matched the parameters specified in the generating population (Figure 1058 
S33). In addition, the ratio of the mean model SEs over the empirical SEs was near 1. Model fit 1059 
statistics (CFI, AIC, and model c2) also generally favored the generating model for a particular 1060 
annotation (Table S41). This was least true for the H3K27ac annotation. This is unsurprising as 1061 
the population generating model for the H3K27ac annotation—a correlated factors model with a 1062 
factor correlation of .7—most closely matched the competing common factor model. 1063 
Collectively, these results indicate that stratified Genomic SEM produces unbiased parameter 1064 
estimates and standard errors for S0 and St, that St shows specificity to the causal annotations of 1065 
interest, and that model fit indices generally favor the appropriate model.  1066 
 1067 
Psychiatric Phenotypes 1068 
 1069 

We curated the largest and most recent GWAS summary data from individuals of 1070 
European ancestry for eleven major psychiatric disorders (Table S1). We refer the reader to the 1071 
original articles for the corresponding univariate GWAS for details about sample ascertainment, 1072 
quality control, and related procedures. For PTSD, MDD, ADHD, ANX, and ALCH, phenotype-1073 
specific meta-analyses of GWAS summary data derived from two different contributing sources 1074 
per disorder were conducted in Genomic SEM so as to account for potentially unknown degrees 1075 
of participant overlap across contributing samples. Models were specified to be equivalent to a 1076 
fixed-effects meta-analysis, with both variables loading on the latent variable with an 1077 
unstandardized loading fixed to 1.0, and both residual variances fixed to 0. LDSC-estimated 1078 
genetic correlations within-phenotype-across-data-source were all ³ .6 (Table S38). These 1079 
GWAS meta-analyses in Genomic SEM were highly genetically correlated (³ .94 as estimated 1080 
with LDSC) with those estimated in METAL,57 which does not take sample overlap into account. 1081 
Consistent with the differences in whether sample overlap is considered, Genomic SEM and 1082 
METAL yielded univariate LDSC intercepts slightly below and slight above 1, respectively.  1083 

For the five meta-analyzed traits (Table S42) we provide Manhattan plots, tables of 1084 
independent loci, and tables of hits that are in LD with hits previously identified in the GWAS 1085 
catalogue (Figure S34; Table S43-S50). We find that many of the identified loci have been 1086 
previously reported for the same or overlapping traits. As expected, the results for MDD and 1087 
ADHD also overlap strongly with findings from the most recent MDD58 and ADHD14 papers that 1088 
use highly similar samples to those that contributed summary data analyzed here. The observed 1089 
differences are attributable to different analytic pipelines and partially non-overlapping 1090 
contributing cohorts; for example, results reported from the published GWAS of ADHD14 1091 
include non-European samples, and hold some cohorts out for independent follow-up analyses.  1092 
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While conducting this project the more recent PGC Freeze 2 release of PTSD became 1093 
available.59 However, the GWAS z statistics and heritability estimates for PTSD Freeze 2 were 1094 
lower than were observed for PTSD Freeze 1. As a result, our attempts to incorporate the PTSD 1095 
Freeze 2 summary data produced a variety of technical problems (e.g. out of bounds genetic 1096 
correlations and small heritability estimates). We therefore report results based on PTSD Freeze 1097 
1 summary data.  1098 
 1099 
Investigation of Genome-Wide Factor Structure 1100 
 1101 

In order to explore the full-scope of factors solutions, EFAs were conducted using the 1102 
factanal R package for two to five factor solutions using both oblique rotations, which allow for 1103 
correlations among the latent factors, and orthogonal rotations, which assumes factors are 1104 
independent (i.e., uncorrelated). Orthogonal rotations were examined as we, in part, sought to 1105 
identify maximally separable dimensions with distinct sets of psychiatric indicators. EFAs were 1106 
conducted for the genetic correlation structure derived from odd autosomes only. Confirmatory 1107 
factor analyses (CFAs) specified on the basis of these EFAs were subsequently fit to a genetic 1108 
correlation matrix estimated using only even autosomes. Using odd and even autosome 1109 
covariance matrices for the exploratory and confirmatory models, respectively, provided a form 1110 
of cross-validation to guard against model overfitting. For comparative purposes, we also 1111 
consider model fit and final factor solutions for CFAs fit to the S-LDSC matrix (Figure S35). 1112 

For the CFAs, factors were assigned to traits when their standardized loading exceeded 1113 
.35 in the corresponding EFAs, with two exceptions. First, for all EFAs with > 3 factors, a factor 1114 
was identified with TS as its only indicator with standardized loading >.35. In the context of the 1115 
CFAs, assigning TS to all factors at once, or to one factor at a time, resulted in issues with model 1116 
convergence. Consequently, this final factor was removed in the CFA and TS was specified to 1117 
always load on the factor with the largest EFA loading (excluding the factor defined only by TS) 1118 
and models were compared where TS loaded onto one of the remaining factors. Among these 1119 
combinations of TS models, a final model was selected using model fit indices (i.e., AIC, 1120 
SRMR, and CFI). Second, for certain EFA solutions, there were traits that did not meet the 1121 
standardized loading criteria of .35 for any factor. For these traits, we assigned factors to them in 1122 
the CFA when their standardized loading exceeded a more lenient threshold of 0.2. We then 1123 
inspected model fit indices for the follow-up CFA model to confirm that including those factor 1124 
loadings provided better fit to the data.  1125 

All CFAs were fit using the Weighted Least Squares (WLS) estimator in the 1126 
GenomicSEM R package. CFAs based on orthogonal EFA results allowed for freely correlated 1127 
factors, as pruning factor loadings has the potential to reintroduce factor correlations. In the 1128 
context of the CFAs, we also considered a common factor model in which all 11 traits loaded 1129 
onto a single factor. CFAs with 4 correlated factors were similar in both factor structure and fit to 1130 
the data (Table S51). In addition, the CFAs with 4 correlated factors provided far superior fit to 1131 
the data (Figure S36), relative to the other models, with a number of the other CFAs failing to 1132 
converge. Moreover, as indicated by model fit statistics, and observed directly in genetic 1133 
correlation heatmaps, the correlation structure implied by the model estimates was much closer 1134 
to the observed genetic correlations for these CFA solutions (Figure S37). The final model was 1135 
chosen as a four correlated factor CFA (Table S52) as this ultimately provided the best fit to the 1136 
data. Importantly, the model identified using a split of even and odd autosomes also fit the data 1137 
well when applied to the genome-wide matrix estimated using autosomes 1-22 for LDSC (Figure 1138 
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1b; c2[33] = 161.66, AIC = 227.66, CFI = .975, SRMR = .072) and S-LDSC (Figure S35e; 1139 
c2[33] = 89.63, AIC = 155.63, CFI = .976, SRMR = .086).  1140 

The moderate factor correlations in this final model were also suggestive of a hierarchical 1141 
structure (Figure S36d). This provided relatively comparable fit to the data for the LDSC 1142 
genome-wide matrix (Figure 1c; c2[35] = 171.37, AIC = 233.37, CFI = .974, SRMR = .079) and 1143 
S-LDSC genome-wide matrix (Figure 35G; c2[35] = 91.83, AIC = 153.83, CFI = .976, SRMR = 1144 
.087). The absence of improved fit for the hierarchical model may reflect the fact that there was 1145 
observable bias when comparing the factor correlations from the non-hierarchical model against 1146 
the model implied correlations within the hierarchical model (Figure S37d).  1147 
 1148 
Genetic Correlations with Biobehavioral traits 1149 
 1150 

For biobehavioral traits, summary statistics for 49 phenotypes broadly related to various 1151 
domains of human health and well-being were downloaded from various online sources, 1152 
primarily sourced from GWAS Atlas.29 For brain morphology, 101 summary statistics were 1153 
downloaded from the GitHub page that corresponds to the summary data produced by Zhao et al. 1154 
(2019).30 For accelerometer data, 24 summary statistics for each hour of movement across the 1155 
day in UK Biobank were downloaded from the GCTA website.31 All summary statistics were 1156 
cleaned and processed using the munge function of Genomic SEM, retaining all HapMap3 SNPs 1157 
outside of the major histocompatibility complex (MHC) regions with minor allele frequencies 1158 
(MAFs) ≥ .01. To evaluate potential associations between the psychiatric genetic factors and 1159 
external traits, we used Genomic SEM to estimate genetic correlations between each of the four 1160 
psychiatric factors, the hierarchical p-factor, and all of the relevant traits.  1161 
 1162 
Selection and Creation of Annotations 1163 
  1164 
 In order to construct the genome-wide S-LDSC matrix, and estimate stratified genetic 1165 
covariance, we utilized pre-computed annotation files provided by the original S-LDSC 1166 
authors.33 In line with recommendations, we utilized all annotations from the most recent 1000 1167 
Genomes Phase 3 BaselineLD Version 2.234 that includes a total of 97 annotations ranging from 1168 
coding, UTR, promoter, and flanking window annotations. For tissue specific histone marks, we 1169 
included annotations constructed based on data from the Roadmap Epigenetics Project35 for 1170 
narrowly defined peaks for DNase hypersensitivity, H3K27ac, H3K4me1, H3K4me3, H3K9ac, 1171 
and H3K36me3 chromatin. For tissue specific gene expression, we include annotations 1172 
constructed based on RNA sequencing data from human tissues from Genotype-Tissue 1173 
Expression (GTEx)36 and for annotations constructed from human, mouse, and rat microarray 1174 
experiments from the Franke Lab (i.e., DEPICT).37 For both tissue specific histone/chromatin 1175 
marks and gene expression we utilized only brain and endocrine relevant regions in addition to 5 1176 
randomly selected control regions from each (i.e., 10 controls total). 1177 

We also created 29 annotations to examine the interaction between protein-truncating 1178 
variant (PTV)-intolerant (PI) genes and human brain cells. PI genes were obtained from the 1179 
Genome Aggregation Database (gnomAD), and ascertained using the probability of loss-of-1180 
function intolerance (pLI) metric. We selected genes with pLI > 0.9, producing a list of 3063 1181 
genes.38 Human brain cell gene sets were based on single-nucleus RNA-seq (sNuc-seq) data 1182 
generated GTEx project brain tissues in the hippocampus and prefrontal cortex.39 Excluding 1183 
sporadic genes and genes with low expression, for the 14 cell types we selected the top 1600 1184 
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(~15%) differentially expressed genes in each cell type, which likely cover all genes that are 1185 
important for a specific cell type. PI × human brain cell gene sets contained the intersection of 1186 
genes that are PTV-intolerant and each human brain cell gene set. Annotations were created 1187 
using a 100kb window and LD information from the European subsample of 1000 Genomes 1188 
Phase 3.  1189 

We do not estimate enrichment of psychiatric factors for continuous or flanking window 1190 
annotations, yielding a total of 168 binary annotations across the baseline model, gene 1191 
expression, histone marks, PI, and brain cell annotations. For a Bonferroni correction < .05 this 1192 
corresponds to p < 2.98E-4. We note that continuous and flanking window annotations were 1193 
retained for construction of the genome-wide, S-LDSC matrix.   1194 
 1195 
Estimating Genetic Enrichment of Model Parameters 1196 
  1197 

We can examine whether the proportional contribution of an annotation to a given 1198 
genome-wide parameter in Stratified Genomic SEM is different than would be expected on the 1199 
basis of the relative size of that annotation, so long as the parameter is scaled comparably across 1200 
all annotations considered.60 This is formalized by testing the null hypothesis,  1201 
 1202 

IR>
R	
L = I=>

=
L, 1203 

where #2is the parameter estimate in annotation c, as estimated from a Genomic SEM model 1204 
applied to S0,c; #is the genome-wide parameter estimate, as estimated from a Genomic SEM 1205 
model applied to the genome-wide S matrix derived via aggregating the conditional contributions 1206 
of all annotations included in the multivariate S-LDSC model; Mc is the number of SNPs in 1207 
annotation c; and M is the total number of SNPs. This formula can be rearranged to produce a 1208 
ratio of ratios (the so-called enrichment ratio) that indexes the magnitude of enrichment: 1209 

I
#2
#	L

I
82
8 L

, 1210 

with a value of 1.0 corresponding to the null of no enrichment, values greater than 1.0 1211 
corresponding to enrichment (overrepresentation of signal in the annotation relative to its size), 1212 
and values below 1.0 corresponding to depletion (underrepresentation of signal in the annotation 1213 
relative to its size).  1214 

In the current application, we are interested in enrichment of pleiotropic and disorder-1215 
specific signal, as indexed by a factor model that allows the estimates of factor variances and 1216 
disorder-specific uniquenesses, respectively, to vary across annotations, while holding all factor 1217 
loadings invariant across annotations. We use a two-step model-fitting procedure to estimate the 1218 
enrichment ratio in order to directly obtain an estimate of its SE. In Step 1, we estimate the factor 1219 
loadings needed to scale the total genome-wide variances of the factors to 1.0. This is achieved 1220 
by fitting a model to the genome-wide S-LDSC matrix in which unit variance identification is 1221 
used. In Step 2, the loading estimates from the prior Step 1 model are fixed and the factor 1222 
variance is freely estimated separately in each annotation using the S0,c matrices. Thus, the 1223 
estimated factor variances in Step 2 are scaled proportionally relative to the genome-wide factor 1224 
variance (i.e., the numerator of the enrichment ratio). This estimate and its SE are subsequently 1225 
divided by the proportion of SNPs in the corresponding annotation (i.e., the denominator of the 1226 
enrichment ratio). For clarification, we note that genome-wide enrichment across all SNPs is 1227 
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exactly equal to 1. That is, for Step 2, if the genome-wide S-LDSC matrix is used as input,  this 1228 
produces a parameter estimate of 1, which is then divided by a proportion of 1.0, which reflects 1229 
the ratio of M/M (i.e., all SNPs over all SNPs).  1230 
 1231 
QSNP Estimation 1232 
 1233 

QSNP indexes violation of the null hypothesis that the SNP acts through a given factor. Put 1234 
another way, it quantifies whether the individual SNP is more likely to operate through the 1235 
common pathways of the psychiatric factors, or the independent pathways of individual 1236 
disorders. The index thereby identifies loci that do not plausibly operate on the individual 1237 
phenotypes exclusively by way of associations with common factor(s), and may be highly 1238 
specific to the individual disorder. In the context of the multivariate GWAS for the correlated 1239 
factors model, four separate follow-up  models were estimated in which the SNP predicted three 1240 
of the overarching factors and the indicators of the remaining fourth factor (see Figure S38 for 1241 
path diagram). Comparing the model c2 between the model in which the SNP predicted all four 1242 
factors to one of these four, follow-up models produces a factor-specific QSNP. For the 1243 
hierarchical factor structure, we compared the model c2 for a model in which the SNP predicted 1244 
only the second-order p-factor, to the model c2  for a model in which the SNP predicted only the 1245 
four, first-order psychiatric factors. For the bifactor model, we compared a model in which the 1246 
SNP predicted only the p-factor to a model in which in the SNP predicted both the p-factor and 1247 
the remaining four orthogonal factors. For both the hierarchical and bifactor model, QSNP indexes 1248 
heterogeneity at the level of the psychiatric factors (i.e., deviation from the null that the SNP 1249 
operates through the p-factor). Therefore, a significant QSNP statistic for the hierarchical or 1250 
bifactor model is likely to identify loci that are specific to a subset of the psychiatric factor(s). 1251 
This is distinct from the interpretation of QSNP in the context of the correlated factors model as a 1252 
significant hierarchical or bifactor QSNP may still conform to the local structure of one of the 1253 
correlated factors.  1254 
 1255 
Quality Control Procedures  1256 
 1257 
LD-Score Regression. Quality control (QC) procedures for producing the genetic covariance (S) 1258 
and sampling covariance (VS) matrix followed the defaults in LDSC. This included removing 1259 
SNPs with an MAF < 1%, information scores (INFO) < .9, SNPs from the MHC region, and 1260 
filtering SNPs to HapMap3. The LD scores used for the analyses presented were estimated from 1261 
the European sample of 1000 Genomes, but restricted to HapMap3 SNPs as these tend to be 1262 
well-imputed and produce accurate estimates of heritability.  1263 
 1264 
Multivariate GWAS. To obtain summary statistics for multivariate GWAS, we used the default 1265 
QC procedures in Genomic SEM of removing SNPs with an MAF < .005 in the 1000 Genomes 1266 
Phase 3 reference panel and SNPs with an INFO score < 0.6 in the univariate GWAS summary 1267 
statistics. These are currently the default QC procedures for the GenomicSEM R package. Using 1268 
these QC steps, there were 4,775,763 SNPs present across all eleven sets of European ancestry 1269 
summary statistics. Prior to running any multivariate GWAS, all summary statistics were 1270 
standardized with respect to the total variance in the outcome using the sumstats function in 1271 
GenomicSEM and corrected for genomic inflation using the conservative approach of by 1272 
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multiplying of the standard errors by the univariate LDSC intercept when the intercept was 1273 
above 1.  1274 
 1275 
Identification of Top Hits (Clumping) and Overlapping Hits 1276 

 Lead SNPs for meta-analyzed univariate indicators and the latent genetic factors were 1277 
identified using the clumping and pruning algorithm in FUMA.61 Independent significant SNPs 1278 
were defined as crossing the genome-wide significance threshold of p < 5e-8 that were 1279 
independent from other SNPs at r2 < 0.1. We used pre-calculated LD from European 1000 1280 
Genomes Phase 3 reference panel to identify independent SNPs. Top loci were subsequently 1281 
identified by merging any SNPs in close proximity (< 250 kb) into a single genomic locus such 1282 
that an individual locus could include multiple independent SNPs at r2 < 0.1. We depict only the 1283 
significant loci (referred to as hits throughout the paper) in the Miami plots, but report 1284 
independent significant SNPs in supplementary tables. This same pipeline was used for the full 1285 
set of univariate summary statistics (i.e., not listwise deleted across all 11 traits) in order to 1286 
produce a comparable set of loci for the univariate disorder GWAS. To determine overlap with 1287 
hits across the factors and disorders, we identified all independent SNPs for the psychiatric 1288 
factors that were in LD (r2 < 0.1) with independent SNPs for the individual disorders. As LD 1289 
structure can vary across different cohorts, we also considered hits to be overlapping (in LD) if 1290 
loci from the univariate disorder GWAS were within a 250 kb window (125 kb on either side of 1291 
the index variant) of loci identified for the psychiatric factors or omnibus test.  1292 
 1293 
 1294 
 1295 
 1296 
 1297 
 1298 
 1299 
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Code Availability 1319 

GenomicSEM software (which now includes the Stratified GenomicSEM extension), is an R 1320 

package that is available from GitHub at the following URL: 1321 

https://github.com/MichelNivard/GenomicSEM  1322 

Directions for installing the GenomicSEM R package can be found at: 1323 

https://github.com/MichelNivard/GenomicSEM/wiki  1324 

 1325 

Data Availability 1326 

The data that support the findings of this study are all publicly available or can be requested for 1327 

access. Specific download links for various datasets are directly below.  1328 

Summary statistics for data from the PGC can be downloaded or requested here:  1329 

https://www.med.unc.edu/pgc/download-results/ 1330 

Summary statistics for the Anxiety phenotype in UKB (TotANX_OR) can be downloaded here:  1331 

https://drive.google.com/drive/folders/1fguHvz7l2G45sbMI9h_veQun4aXNTy1v 1332 

23andMe summary statistics are made available through 23andMe to qualified researchers under 1333 

an agreement with 23andMe that protects the privacy of 23andMe participants. Please visit 1334 

research.23andme.com/collaborate/#publication for more information           1335 

Summary statistics for the volume-based neuroimaging phenotypes were downloaded from: 1336 

https://github.com/BIG-S2/GWAS  1337 

Summary statistics for the health and well-being complex trait correlations can be downloaded 1338 

from: https://atlas.ctglab.nl/ 1339 

Summary statistics for the circadian rhythm correlations across 24-hours can be downloaded 1340 

from: https://cnsgenomics.com/software/gcta/#DataResource 1341 

Data from gnomAD used to identify PI genes for creation of annotations can be downloaded 1342 

here: https://storage.googleapis.com/gnomad-1343 

public/release/2.1.1/constraint/gnomad.v2.1.1.lof_metrics.by_gene.txt.bgz 1344 

Gene count data per cell for creation of annotations were obtained from: 1345 

https://storage.googleapis.com/gtex_additional_datasets/single_cell_data/GTEx_droncseq_hip_p1346 

cf.tar  1347 

Data which maps individual cells to cell types (e.g. neuron, astrocyte etc.) were obtained from: 1348 

https://static-1349 
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content.springer.com/esm/art%3A10.1038%2Fnmeth.4407/MediaObjects/41592_2017_BFnmeth1350 

4407_MOESM10_ESM.xlsx 1351 

Links to the LD-scores, reference panel data, and the code used to produce the current results can 1352 

all be found at: https://github.com/MichelNivard/GenomicSEM/wiki 1353 

Links to the BaselineLD v2.2 annotations can be found here: 1354 

https://data.broadinstitute.org/alkesgroup/LDSCORE/ 1355 

 1356 

 1357 

 1358 

 1359 

 1360 

 1361 

 1362 

 1363 

 1364 

 1365 

 1366 

 1367 

 1368 

 1369 

 1370 

 1371 

 1372 

 1373 

 1374 

 1375 

 1376 

 1377 

 1378 

 1379 

 1380 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.20196089doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.22.20196089
http://creativecommons.org/licenses/by-nc-nd/4.0/


Stratified Genomic SEM 35 

Acknowledgements 1381 

This work presented here would not have been possible without the enormous efforts put forth 1382 
by the investigators and participants from Psychiatric Genetics Consortium, iPSYCH, UK 1383 
Biobank, and 23andMe. The work from these contributing groups was supported by numerous 1384 
grants from governmental and charitable bodies as well as philanthropic donation. Research 1385 
reported in this publication was supported by the National Institute Of Mental Health of the 1386 
National Institutes of Health under Award Number R01MH120219. The content is solely the 1387 
responsibility of the authors and does not necessarily represent the official views of the National 1388 
Institutes of Health. ADG was additionally supported by NIH Grant R01HD083613. EMTD was 1389 
additionally supported by NIH grants R01AG054628 and R01HD083613 and the Jacobs 1390 
Foundation. EMTD is a faculty associate of the Population Research Center at the University of 1391 
Texas, which is supported by NIH grant P2CHD042849. MGN is additionally supported by 1392 
ZonMW grants 849200011 and 531003014 from The Netherlands Organisation for Health 1393 
Research and Development, a VENI grant awarded by NWO (VI.Veni.191G.030) and is a 1394 
Jacobs Foundation Fellow. WAA is supported by the "European Union’s Horizon 2020 research 1395 
and innovation programme, Marie Sklodowska Curie Actions – MSCA-ITN-2016 – Innovative 1396 
Training Networks under grant agreement No [721567]". HFI is supported by the "Aggression in 1397 
Children: unraveling gene-environment interplay to inform Treatment and InterventiON 1398 
strategies" (ACTION) project. ACTION receives funding from the European Union Seventh 1399 
Framework Program (FP7/2007-2013) under grant agreement no 602768. CML is supported by 1400 
the National Institute for Health Research Biomedical Research Centre at South London and 1401 
Maudsley NHS Foundation Trust and King’s College London. AMM is supported by the 1402 
Wellcome Trust (104036/Z/14/Z, 216767/Z/19/Z), UKRI MRC (MC_PC_17209, 1403 
MR/S035818/1). KPL is supported by the Deutsche Forschungsgemeinschaft (DFG: CRU 125, 1404 
CRC TRR 58 A1/A5, No. 44541416), the European Union’s Seventh Framework Programme 1405 
under Grant No. 602805 (Aggressotype), the Horizon 2020 Research and Innovation Programme 1406 
under Grant No. 728018 (Eat2beNICE) and 643051 (MiND), Fritz Thyssen Foundation (No. 1407 
10.13.1185), ERA-Net NEURON/RESPOND, No. 01EW1602B, ERA-Net 1408 
NEURON/DECODE, No. FKZ01EW1902 and 5-100 Russian Academic Excellence Project. GB 1409 
is supported by the National Institute for Health Research Biomedical Research Centre at South 1410 
London and Maudsley NHS Foundation Trust and King’s College London. PL is supported by 1411 
NIH R01MH119243 and R00MH101367. 1412 
 1413 
 1414 
 1415 
 1416 

 1417 

 1418 

 1419 

 1420 

 1421 

 1422 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.20196089doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.22.20196089
http://creativecommons.org/licenses/by-nc-nd/4.0/


Stratified Genomic SEM 36 

Author Contributions 1423 

Study Design: Grotzinger, Nivard, Tucker-Drob 1424 

Methods Development: Grotzinger, Nivard, Tucker-Drob 1425 

Software Development: Grotzinger, Ip, Nivard, Tucker-Drob 1426 

Simulation Studies: Grotzinger, Nivard, Tucker-Drob 1427 

Gene Set and Annotation Creation: Akingbuwa, Grotzinger, Nivard 1428 

Genetic Factor Modelling, Multivariate GWAS, Complex Trait Correlations, and Multivariate 1429 

Enrichment Analyses: Grotzinger, Mallard, Nivard, Tucker-Drob 1430 

Writing: Grotzinger, Nivard, Tucker-Drob 1431 

Feedback and Editing: All authors contributed to editing the manuscript. 1432 

 1433 

Declaration of Interests 1434 

J.W.S. is an unpaid member of the Bipolar/Depression Research Community Advisory Panel of 1435 
23andMe. H.R.K. (Henry R. Kranzler) is a member of the American Society of Clinical 1436 
Psychopharmacology’s Alcohol Clinical Trials Initiative, which was supported in the last three 1437 
years by AbbVie, Alkermes, Ethypharm, Indivior, Lilly, Lundbeck, Otsuka, Pfizer, Arbor, and 1438 
Amygdala Neurosciences. CML is on the SAB for Myriad Neuroscience. GB is a scientific 1439 
advisor for COMPASS Pathways. The other authors declare no competing interests.1440 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.20196089doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.22.20196089
http://creativecommons.org/licenses/by-nc-nd/4.0/


Stratified Genomic SEM 37 

References 1441 
 1442 
1. Martel, M. M. et al. A general psychopathology factor (P factor) in children: structural 1443 

model analysis and external validation through familial risk and child global executive 1444 
function. Journal of Abnormal Psychology 126, 137 (2017). 1445 

2. Dean, K. et al. The impact of parental mental illness across the full diagnostic spectrum on 1446 
externalising and internalising vulnerabilities in young offspring. Psychological Medicine 1447 
48, 2257–2263 (2018). 1448 

3. McLaughlin, K. A. et al. Parent psychopathology and offspring mental disorders: results 1449 
from the WHO World Mental Health Surveys. The British Journal of Psychiatry 200, 1450 
290–299 (2012). 1451 

4. Kessler, R. C., Chiu, W. T., Demler, O. & Walters, E. E. Prevalence, severity, and 1452 
comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey 1453 
Replication. Arch Gen Psychiatry 62, 617–627 (2005). 1454 

5. Caspi, A. & Moffitt, T. E. All for One and One for All: Mental Disorders in One 1455 
Dimension. American Journal of Psychiatry appi.ajp.2018.1 (2018). 1456 
doi:10.1176/appi.ajp.2018.17121383 1457 

6. Caspi, A. et al. The p factor: one general psychopathology factor in the structure of 1458 
psychiatric disorders? Clinical Psychological Science 2, 119–137 (2014). 1459 

7. Lahey, B. B. et al. Is there a general factor of prevalent psychopathology during 1460 
adulthood? Journal of Abnormal Psychology 121, 971 (2012). 1461 

8. Pettersson, E., Larsson, H. & Lichtenstein, P. Common psychiatric disorders share the 1462 
same genetic origin: a multivariate sibling study of the Swedish population. Molecular 1463 
Psychiatry 21, 717 (2016). 1464 

9. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from 1465 
polygenicity in genome-wide association studies. Nature Genetics 47, 291 (2015). 1466 

10. Selzam, S., Coleman, J. R., Caspi, A., Moffitt, T. E. & Plomin, R. A polygenic p factor for 1467 
major psychiatric disorders. Translational Psychiatry 8, 205 (2018). 1468 

11. Lee, S. H. et al. Genetic relationship between five psychiatric disorders estimated from 1469 
genome-wide SNPs. Nature Genetics 45, 984 (2013). 1470 

12. Anttila, V. et al. Analysis of shared heritability in common disorders of the brain. science 1471 
360, eaap8757 (2018). 1472 

13. Lee, P. H. et al. Genomic relationships, novel loci, and pleiotropic mechanisms across 1473 
eight psychiatric disorders. Cell 179, 1469–1482. e11 (2019). 1474 

14. Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention 1475 
deficit/hyperactivity disorder. Nature Genetics 51, 63 (2019). 1476 

15. Walters, R. K. et al. Transancestral GWAS of alcohol dependence reveals common 1477 
genetic underpinnings with psychiatric disorders. Nature Neuroscience 21, 1656 (2018). 1478 

16. Watson, H. J. et al. Genome-wide association study identifies eight risk loci and 1479 
implicates metabo-psychiatric origins for anorexia nervosa. Nature Genetics 51, 1207–1480 
1214 (2019). 1481 

17. Grove, J. et al. Identification of common genetic risk variants for autism spectrum 1482 
disorder. Nature Genetics 51, 431–444 (2019). 1483 

18. Otowa, T. et al. Meta-analysis of genome-wide association studies of anxiety disorders. 1484 
Molecular Psychiatry 21, 1391 (2016). 1485 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.20196089doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.22.20196089
http://creativecommons.org/licenses/by-nc-nd/4.0/


Stratified Genomic SEM 38 

19. Purves, K. L. et al. A major role for common genetic variation in anxiety disorders. 1486 
Molecular Psychiatry 1–12 (2019). 1487 

20. Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated with 1488 
bipolar disorder. Nature Genetics 51, 793–803 (2019). 1489 

21. Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine 1490 
the genetic architecture of major depression. Nature Genetics 50, 668 (2018). 1491 

22. Howard, D. M. et al. Genome-wide association study of depression phenotypes in UK 1492 
Biobank identifies variants in excitatory synaptic pathways. Nat Comms 9, 1470 (2018). 1493 

23. Genetics, International Obsessive Compulsive Disorder Foundation et al. Revealing the 1494 
complex genetic architecture of obsessive–compulsive disorder using meta-analysis. 1495 
Molecular Psychiatry 23, 1181 (2018). 1496 

24. Meier, S. M. et al. Genetic variants associated with anxiety and stress-related disorders: a 1497 
genome-wide association study and mouse-model study. JAMA psychiatry 76, 924–932 1498 
(2019). 1499 

25. Duncan, L. E. et al. Largest GWAS of PTSD (N= 20 070) yields genetic overlap with 1500 
schizophrenia and sex differences in heritability. Molecular Psychiatry (2017). 1501 

26. Ripke, S., Walters, J. T. & O'Donovan, M. C. Mapping genomic loci prioritises genes and 1502 
implicates synaptic biology in schizophrenia. medRxiv 2020.09.12.20192922 (2020). 1503 
doi:10.1101/2020.09.12.20192922 1504 

27. Yu, D. et al. Interrogating the genetic determinants of Tourette’s syndrome and other tic 1505 
disorders through genome-wide association studies. American Journal of Psychiatry 176, 1506 
217–227 (2019). 1507 

28. Cai, N. et al. Minimal phenotyping yields genome-wide association signals of low 1508 
specificity for major depression. Nature Genetics 1–11 (2020). 1509 

29. Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in complex 1510 
traits. Nature Genetics 51, 1339–1348 (2019). 1511 

30. Zhao, B. et al. GWAS of 19,629 individuals identifies novel genetic variants for regional 1512 
brain volumes and refines their genetic co-architecture with cognitive and mental health 1513 
traits. bioRxiv 586339 (2019). 1514 

31. Jiang, L. et al. A resource-efficient tool for mixed model association analysis of large-1515 
scale data. (2019). 1516 

32. Karatsoreos, I. N. Links between circadian rhythms and psychiatric disease. Frontiers in 1517 
behavioral neuroscience 8, 162 (2014). 1518 

33. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-1519 
wide association summary statistics. Nature Genetics 47, 1228 (2015). 1520 

34. Hujoel, M. L., Gazal, S., Hormozdiari, F., van de Geijn, B. & Price, A. L. Disease 1521 
heritability enrichment of regulatory elements is concentrated in elements with ancient 1522 
sequence age and conserved function across species. The American Journal of Human 1523 
Genetics 104, 611–624 (2019). 1524 

35. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 1525 
317–330 (2015). 1526 

36. Consortium, G. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene 1527 
regulation in humans. science 348, 648–660 (2015). 1528 

37. Pers, T. H. et al. Biological interpretation of genome-wide association studies using 1529 
predicted gene functions. Nat Comms 6, 5890 (2015). 1530 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.20196089doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.22.20196089
http://creativecommons.org/licenses/by-nc-nd/4.0/


Stratified Genomic SEM 39 

38. Karczewski, K. J. et al. Variation across 141,456 human exomes and genomes reveals the 1531 
spectrum of loss-of-function intolerance across human protein-coding genes. bioRxiv 1532 
531210 (2019). 1533 

39. Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nature 1534 
methods 14, 955–958 (2017). 1535 

40. Ganna, A. et al. Quantifying the impact of rare and ultra-rare coding variation across the 1536 
phenotypic spectrum. The American Journal of Human Genetics 102, 1204–1211 (2018). 1537 

41. Gazal, S. et al. Linkage disequilibrium–dependent architecture of human complex traits 1538 
shows action of negative selection. Nature Genetics 49, 1421 (2017). 1539 

42. Schork, A. J. et al. A genome-wide association study of shared risk across psychiatric 1540 
disorders implicates gene regulation during fetal neurodevelopment. Nature Neuroscience 1541 
22, 353–361 (2019). 1542 

43. Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies 1543 
disease-relevant tissues and cell types. Nature Genetics 50, 621 (2018). 1544 

44. Grotzinger, A. D. et al. Genomic structural equation modelling provides insights into the 1545 
multivariate genetic architecture of complex traits. Nature human behaviour 3, 513 1546 
(2019). 1547 

45. Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated with 1548 
bipolar disorder. Nature Genetics 51, 793 (2019). 1549 

46. Markon, K. E. Bifactor and hierarchical models: Specification, inference, and 1550 
interpretation. Annual review of clinical psychology 15, 51–69 (2019). 1551 

47. Mallard, T. T. et al. Not just one p: Multivariate GWAS of psychiatric disorders and their 1552 
cardinal symptoms reveal two dimensions of cross-cutting genetic liabilities. bioRxiv 1553 
603134 (2019). 1554 

48. Kranzler, H. R. et al. Genome-wide association study of alcohol consumption and use 1555 
disorder in 274,424 individuals from multiple populations. Nat Comms 10, 1–11 (2019). 1556 

49. Epskamp, S., Rhemtulla, M. & Borsboom, D. Generalized network psychometrics: 1557 
Combining network and latent variable models. Psychometrika 82, 904–927 (2017). 1558 

50. Borsboom, D. A network theory of mental disorders. World psychiatry 16, 5–13 (2017). 1559 
51. Shi, H. et al. Population-specific causal disease effect sizes in functionally important 1560 

regions impacted by selection. bioRxiv 803452 (2019). 1561 
52. Newson, J. J., Hunter, D. & Thiagarajan, T. C. The Heterogeneity of Mental Health 1562 

Assessment. Frontiers in Psychiatry 11, 76 (2020). 1563 
53. Thorp, J. G. et al. Genetic heterogeneity in self-reported depressive symptoms identified 1564 

through genetic analyses of the PHQ-9. Psychological Medicine 1–12 (2019). 1565 
54. Yengo, L., Yang, J. & Visscher, P. M. Expectation of the intercept from bivariate LD 1566 

score regression in the presence of population stratification. bioRxiv 310565 (2018). 1567 
55. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide 1568 

complex trait analysis. The American Journal of Human Genetics 88, 76–82 (2011). 1569 
56. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based 1570 

linkage analyses. The American Journal of Human Genetics 81, 559–575 (2007). 1571 
57. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of 1572 

genomewide association scans. Bioinformatics 26, 2190–2191 (2010). 1573 
58. Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 1574 

independent variants and highlights the importance of the prefrontal brain regions. Nature 1575 
Neuroscience 22, 343 (2019). 1576 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.20196089doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.22.20196089
http://creativecommons.org/licenses/by-nc-nd/4.0/


Stratified Genomic SEM 40 

59. Nievergelt, C. M. et al. International meta-analysis of PTSD genome-wide association 1577 
studies identifies sex-and ancestry-specific genetic risk loci. Nat Comms 10, 1–16 (2019). 1578 

60. Meredith, W. Measurement invariance, factor analysis and factorial invariance. 1579 
Psychometrika 58, 525–543 (1993). 1580 

61. Watanabe, K., Taskesen, E., Van Bochoven, A. & Posthuma, D. Functional mapping and 1581 
annotation of genetic associations with FUMA. Nat Comms 8, 1826 (2017). 1582 

 1583 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.20196089doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.22.20196089
http://creativecommons.org/licenses/by-nc-nd/4.0/

