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Abstract 

Objectives 
To develop a prognostic model to identify and quantify risk factors for mortality among patients 
admitted to the hospital with COVID-19. 

Design 
Retrospective cohort study. Patients were randomly assigned to either training (80%) or test 
(20%) sets. The training set was used to fit a multivariable logistic regression. Predictors were 
ranked using variable importance metrics. Models were assessed by C-indices, Brier scores, 
and calibration plots in the test set.  

Setting 
Optum® de-identified COVID-19 Electronic Health Record dataset. 

Participants 
17,086 patients hospitalized with COVID-19 between February 20, 2020 and June 5, 2020. 

Main outcome measure 
All-cause mortality during hospital stay. 
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Results 
The full model that included information on demographics, comorbidities, laboratory results and 
vital signs had good discrimination (C-index = 0.87) and was well calibrated, with some 
overpredictions for the most at-risk patients. Results were generally similar on the training and 
test sets, suggesting that there was little overfitting. 
 
Age was the most important risk factor. The performance of models that included all 
demographics and comorbidities (C-index = 0.79) was only slightly better than a model that only 
included age (C-index = 0.76). Across the study period, predicted mortality was 1.2% for 18-
year olds, 8.4% for 55-year olds, and 28.6% for 85-year olds. Predicted mortality across all ages 
declined over the study period from 21.7% by March to 13.3% by May.  

Conclusion 
Age was the most important predictor of all-cause mortality although vital signs and laboratory 
results added considerable prognostic information with oxygen saturation, temperature, 
respiratory rate, lactate dehydrogenase, and white blood cell count being among the most 
important predictors. Demographic and comorbidity factors did not improve model performance 
appreciably. The model had good discrimination and was reasonably well calibrated, suggesting 
that it may be useful for assessment of prognosis. 

Introduction 
In December 2019 an outbreak of novel coronavirus disease 2019 (COVID-19) occurred in 
Wuhan, China, and was officially declared a pandemic in March 2020 by the World Health 
Organization (WHO). Severe COVID-19 illness can result in hospitalization, intensive care 
stays, or even death. To date (September 2020), more than 27 million people have been 
infected worldwide and over 900,000 people have died [1]. Mortality rates among hospitalized 
patients are especially high and have ranged from 15 to 20 percent in the United States (U.S.) 
[2-4]. 
 
High mortality rates are due to a number of factors including severity of the disease, a lack of 
available treatments, and in some cases shortages in medical supplies and personnel caused 
by surges in hospitalizations. Yet, despite high mortality rates, there is still considerable 
uncertainty about who is at most risk for the worst outcomes. Efforts to reduce this uncertainty 
through better quantification of the relative importance of risk factors for severe illness can help 
on a number of fronts. For one, it has been suggested that known risk factors for severe 
outcomes can be used by medical staff to triage patients or for health systems to identify priority 
groups for vaccination [5-7]. Furthermore, it can help individuals understand their own risks of 
illness and clinicians assess prognosis for their patients. Finally, it can be used to stratify 
patients in clinical trials or to identify covariates to adjust for in comparative-effectiveness 
analyses using observational data [8-10].  
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For many of these reasons there has been a strong interest in the development of prognostic 
models for COVID-19. While a number of models have already been developed, there is still a 
need for more rigorous and validated models. Wynants et al. [5] conducted a systematic review 
of existing models and found that most studies had a high likelihood of bias due to non-
representative patient cohorts, overfitting due to small sample sizes, and exclusion of patients 
who have not yet had an event. Similarly, studies have inadequately adjusted for confounding 
variables when assessing the impact of particular risk factors. It is therefore difficult to make 
claims on the relative importance of different risk factors [11].  
 
In this study, we developed a prognostic model of in-hospital mortality and aimed to overcome 
many of the limitations of prior studies. Our model was trained using a large sample of 13,658 
hospitalized patients with COVID-19 from an Electronic Health Record (EHR) Database 
encompassing all regions of the U.S. Multivariable regression techniques were used to isolate 
the independent impact of risk factors and quantify their relative importance. Validation was 
performed by assessing the model’s out-of-sample predictive performance, including on a large 
test dataset of 3,428 patients not used in model fitting. To facilitate transparency in research, all 
code for the analysis is available at https://github.com/phcanalytics/covid19-prognostic-model 
and included in the Supplement. 

Methods 

Data Source 
The Optum® de-identified COVID-19 EHR dataset was used to identify patients hospitalized 
with COVID-19. The dataset consists of a national sample of inpatient and outpatient medical 
records sourced from hospital networks from across the U.S. Data are de-identified in 
compliance with the HIPAA Expert Method and managed according to Optum customer data 
use agreements [4]. Inpatient mortality was captured in the dataset as month of death. Age for 
those 89 and older was aggregated in the dataset.  

Study Cohort 
To be eligible for the hospitalized cohort in this study, patients were required to be older than 18 
years old and have: (1) a U07.1 or U07.2 diagnosis, (2) a positive SARS-CoV-2 diagnostic test 
(e.g., either molecular or antigen tests) or (3) a B97.29 diagnosis with the absence of a negative 
SARS-CoV-2 molecular test within a 14-day window. Eligible hospitalizations required inpatient 
or emergency room overnight visits with a COVID-19 diagnosis or starting up to 21 days after a 
COVID-19 diagnosis. Contiguous ER and inpatient visits, with up to a 1-day gap were 
considered a single hospitalization. The date of admission was used as index date when 
COVID-19 diagnosis occurred before hospitalization, otherwise index date was set to the date of 
COVID-19 diagnosis. Only the first hospitalization was considered in this study. The study 
period was February 20, 2020 to June 5, 2020.  
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Outcome 
The outcome was a binary measure of in-hospital all-cause mortality. To ensure that there was 
sufficient follow-up time, patients were removed from the sample if their index date was less 
than 2 weeks prior to the date the Optum dataset was censored (June 5), resulting in the 
removal of approximately 5% of the overall study population. Evidence from the U.S. Centers for 
Disease Control on time to death following hospital admission (median: 5 days, interquartile-
range: 3-8 days) [12] suggests that this was sufficient to capture most deaths. 

Predictors 
Candidate predictors were chosen based on prior research and/or clinical consultation [5]. They 
included demographics, comorbidities, vital signs, laboratory results and calendar time. 
Demographic variables were age, sex, race, ethnicity, geographic division, and smoking status. 
Comorbidities were identified based on ICD-9 and ICD-10 codes within a year of index date and 
included hypertension, diabetes, and those included in the Charlson Comorbidity Index (CCI).  
 
Vital signs considered were peripheral oxygen saturation, systolic blood pressure, heart rate, 
respiratory rate, temperature, and body mass index (BMI). Laboratory results for aspartate 
aminotransferase (AST), C-reactive protein (CRP), creatinine, ferritin, lactate dehydrogenase 
(LDH), troponin I, lymphocyte count, neutrophil count, platelet count (PLT), and white blood cell 
count (WBC) were obtained. D-dimer and procalcitonin laboratory measures were also 
considered but were dropped due to very high missingness (90% and 49%, respectively). We 
restricted vital signs and laboratory results to those within a [-3,+1] day window surrounding the 
index date and used the (median of the) value(s) closest to the index date when multiple values 
were available within the window.  
 
To capture trends over time, we also derived a calendar time variable measured as the number 
of days between a patient’s index date and the date of the first case in the data. 
 
Missing data for each of the candidate predictors is summarized in Supplement Section 3.2. 
There was significant missing data for race, ethnicity, BMI, smoking status, and some of the vital 
signs and laboratory results. Multiple imputation was consequently used as described below.  

Model Development and Statistical Analysis 
A multivariable logistic regression was used to model mortality. To protect against overfitting, we 
first performed variable selection by fitting a logistic model with a group lasso penalty [13,14]. 
We repeatedly fit the lasso model 100 times and used 10-fold cross-validation during each of 
the 100 iterations to select the optimal tuning parameter, “lambda.” Variables with non-zero 
coefficients in at least 90 percent of the iterations were included. In practice, only two variables 
were excluded: peptic ulcer disease and neutrophil count (Supplement Section 5).  
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The model with all predictors chosen by group lasso was the “full” model. For comparison, we fit 
4 more parsimonious models with the following predictors: (i) age only, (ii) comorbidities only, 
(iii) all demographics (and calendar time), and (iv) demographics (and calendar time) and 
comorbidities. Non-linear relationships between mortality and continuous covariates were 
modeled using restricted cubic splines. 3 knots were deemed sufficient based on graphical 
assessment of univariate fits in nearly all cases; 4 knots were used for respiration rate to 
capture a bathtub-shaped relationship with mortality. These graphical assessments also showed 
that a few outliers were influencing the fit of some of the laboratory results. They were 
consequently truncated from above (at the “outer fence” defined as the third quartile plus three 
times the interquartile range), which led to stronger and more clinically meaningful relationships 
(Supplement Section 3.5).  
 
Predictor effects were summarized in four ways. First, coefficient estimates were translated into 
clinically meaningful odds ratios. Odds ratios for each value of a categorical variable were 
computed based on comparisons to a reference group. Odds ratios for continuous covariates 
were based on changes in value from the 25th percentile to the 75th percentile. Second, we 
predicted log odds across different values of each predictor and visually assessed the effects. 
Third, predicted probabilities were computed by age, sex, and calendar time for a random 
sample of 1,000 patients and then averaged across patients. Fourth, variable importance was 
assessed using �2 minus degrees of freedom from a Wald test that tests the hypothesis that 
the coefficient of each term associated with a variable (e.g., all categories of a categorical 
variable or all spline terms of a continuous variable) is zero [15,16].   
 
To validate the model, we randomly split the data into a training and test set using an 80/20 split 
and evaluated the model in both the training and the test sets. Model performance was 
assessed using the C-index (AUROC) and Brier score. To assess overfitting, 50 bootstrap 
replications were used to quantify “optimism” in the training set, defined as the average of 
differences in model performance between the training and bootstrapped samples. Calibration 
was assessed using a calibration curve that compared predicted probabilities with actual 
probabilities. 
 
Missing data was imputed using multivariate imputation by chained equations (MICE) [18]. A 
total of 5 datasets were imputed. Assessment of the imputation was performed by comparing 
the distribution of the missing imputed data to the observed data for each predictor. 
Supplement Section 4.3 shows that these distributions were very similar for each variable, 
which suggests that the imputation was adequate. Coefficient estimates and confidence 
intervals were combined across the imputations using Rubin’s rule [17]. 
 
Analyses were performed using R 4.0.0. We used three main R packages in the analysis: mice 
for multiple imputation, oem to fit the group lasso, and rms to fit the multivariable logistic 
regressions, summarize the coefficients, and validate the model [14,15,18]. Additional details of 
the methodology are available in the Supplement. 
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Results 

Characteristics of the Study Population 
We identified 17,086 patients that met the inclusion criteria for the COVID-19 hospitalized 
cohort. The characteristics of the 13,658 patients included in the training set are described in 
Table 1 and in additional detail in Supplement Section 3.  
 
The median age was 62 years old (Interquartile range [IQR]: 49, 75). The cohort was composed 
mostly of male (51.9%) non-Hispanic whites (56.0%). Most patients resided in the Middle 
Atlantic (34.9%) and East North Central (34.9%) geographic divisions, which mirrors the initial 
surge of cases in the U.S. Patients had high rates of comorbidities: 58.6% had hypertension, 
33.8% had diabetes, 26.6% had chronic pulmonary disease (CPD), 20.7% had renal disease, 
and the median CCI score was 1 (IQR: 0, 3). The majority of patients were overweight (30%) or 
obese (48%). Median oxygen saturation was 96.0%, and 25% of patients had oxygen saturation 
lower than 94.0%. The median temperature was 37.0 C (IQR: 36.7, 37.4). Patients had a 
median ferritin of 510.0 ng/ml (IQR: 224.0, 1080.0) and median CRP of 79.1 mg/l (IQR: 34.0, 
140.0). Among the 9.6% of patients with results available for fibrin d-dimer, the median result 
was 750 ng/ml (IQR: 390.0, 1540.8).   
        
Compared to survivors, non-survivors were more likely to be male (57.1% vs. 51.0%) and older 
(median 77 years old vs. 59 years old). Non-survivors also had more comorbidities (median CCI 
of 3 [IQR: 1,5] vs. 1 [IQR: 0, 2]) including dementia (25.0% vs. 7.4%), renal disease (39.3% vs 
17.3%), diabetes (43.6% vs 31.9%), and hypertension (77.2% vs. 55.1%). Similar trends were 
observed for laboratory findings and vitals: non-survivors had higher heart rates (median 
beats/min of 89.0 vs. 87.0) and respiratory rates (median breaths/min of 22.0 vs. 19.5), and 
lower oxygen saturation (median 95.0% vs. 96.0%). However, no substantial difference was 
observed in temperature (median 37.1 C vs 37.0 C) or in BMI (median 28.1 vs. 30.0). Non-
survivors had higher CRP (median mg/L of 116.0 vs 72.2), ferritin (median ng/mL 747.5 vs. 
470.0), and fibrin d-dimer (median ng/mL of 1,345 vs 692.5). 
 
A comparison of the training and test sets is provided in Supplement Section 8.1. There were 
no meaningful differences in demographics, comorbidities, vitals or laboratory results. 

Predictor Effects 
Odds ratios from the multivariable logistic regression are displayed in Figure 1. Age was a very 
important predictor as the odds of death for a 75 year old (75th percentile) were around 6 times 
than for a 49 year old (25th percentile). Metastatic cancer, moderate/severe liver disease, 
hemiplegia/paraplegia, and dementia were also highly positively associated with mortality and 
precisely estimated. Mortality decreased over time as evidenced by the negative odds ratio for 
calendar time. Other important predictors were vital signs and laboratory results. Lower values 
of PLT and higher values of AST, troponin I, CRP, WBC, LDH, and creatinine were associated 
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with increased mortality. Similarly, abnormally low levels of oxygen saturation were associated 
with higher mortality as were abnormally high values of respiration rate, heart rate, temperature, 
and BMI. Since some of the predictor effects were non-linear, plots showing the non-linear 
predicted effects of the continuous variables on the log odds scale are displayed in the 
Supplement Section 6.6. The log-odds plot shows, for instance, that mortality is higher at both 
lower and higher levels of temperature and systolic blood pressure, and that the strong negative 
relationship between oxygen saturation and mortality is only present below around 95%. 
 
One limitation of the odds ratio is that it can be difficult to compare the relative importance of 
categorical and continuous variables or transformed continuous variables. Figure 2 
consequently displays the importance of each variable based on Wald tests. Age is the most 
important predictor by a considerable amount. Laboratory results and vitals tend to be more 
important predictors than either comorbidities or demographics: impactful predictors include 
respiration rate, temperature, oxygen saturation, heart rate, WBC, and LDH. Calendar time is 
also an important predictor.  
 
One potential concern with these results is that laboratory results and vitals might be mediators 
that are correlated with demographics and comorbidities (Supplement Section 3.4.4). We 
assessed this in Supplement Section 6.5 by removing labs and vitals from the model. The 
odds ratios tended to be fairly stable. Female sex was a notable exception as the odds ratio 
changed from approximately 0.7 to almost 1. 
 
To assess the clinical impact of changes in predictors, it is helpful to assess predicted 
probabilities of mortality. These are displayed across levels of age and calendar time for a 
random sample of 1,000 patients in Figure 3. The effect of age on the probability scale is 
exponential and increasingly sharply at older ages. In March of 2020, a hospitalized 80-year-old 
had a predicted probability of death of 34% whereas a 70-year-old had a predicted probability of 
death around 10 percentage points lower. The predicted probability of death for an 18-year-old 
at the same date was less than 2%. Mortality probabilities did decrease considerably over time 
with mortality rates for 80-year-olds approaching 20% by May 2020.  

Validation and Predictive Performance 
Calibration curves comparing predictive probabilities to actual probabilities among patients in 
the training and test sets are shown in Supplement Section 7.2 and Figure 4, respectively.  In 
the training set, the bias-adjusted and unadjusted curves were similar, and “optimism” was 
approximately zero, suggesting that there was little overfitting; however, there was more 
overprediction for higher risk patients in the test set. In both cases, models including 
comorbidities tended to be poorly calibrated for more at risk patients, while the full model was 
better calibrated. 
 
Higher predicted probabilities of mortality were much more common in the full model than in any 
of the other models. In other words, the variance of the predictions was higher implying that the 
full model was better able to discriminate between patients. This was also reflected in Table 2, 
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which reported estimates of the C-index and Brier score. In the test set, the C-index improved 
from 0.756 in the age only model to 0.874 in the full model and the Brier score decreased from 
0.111 to 0.087. Results were similar in the training set. Notably, there was no appreciable 
difference in either the Brier score or the C-index between the age only model, the 
demographics model, or the demographics and comorbidities model.  

Discussion 
We aimed to develop a rigorous model that was both clinically interpretable and had good 
predictive performance. We quantified the relative importance of different predictors to identify 
risk factors that would be most important for assessing prognosis. One of the most striking 
findings from our study is that the most parsimonious model---one that only includes age---is 
highly predictive; in fact, age is nearly as prognostic as all other information on demographic 
and comorbidities. This does not mean that age alone is sufficient for prediction, but it does 
suggest that simply knowing a patient’s age is very informative. Vital signs and laboratory 
results do improve model predictions which use age alone, meaningfully increasing the C-index 
and decreasing the Brier score. 

Comparison with Other Studies 
A living systematic review of existing prognostic models has been conducted by Wynants et al. 
[5] and 50 prognostic models have been identified to date. A subset of those predict mortality 
among hospitalized patients.  
 
Most prognostic models are based on data from China [19-24], although others have been 
developed with data from the United Kingdom [25,26], Mexico [27], South Korea [28], Israel [29], 
the U.S. [30-32]), and a mix of countries [33]. Our study differs from the other U.S. studies in 
that it includes a broader cohort of patients encompassing all geographic regions. 
 
Models have typically been trained on smaller datasets, with most consisting of <1,000 and a 
few ranging from 1000-3000 [28,30,31]. Only one study, to our knowledge, had a sample size 
larger than 10,000 patients and was based in Mexico [27]. Smaller sample sizes not only 
increase the likelihood of overfitting, but also reduce the ability to detect important risk factors.  
 
One advantage of our approach compared to more “black box” prediction models, is that the 
effects of the covariates were interpretable [34,35]. For instance, we used splines [17,18,36] to 
show that the probability of death increases exponentially with age. The strength of this 
relationship was consistent with other studies including Gupta et al. [26], who evaluated the 
performance of models from 19 studies (14 of which were COVID-19 specific) on an 
independent dataset of 411 patients hospitalized for COVID-19 in the United Kingdom and 
found that no other variables added additional incremental value beyond age. Age may be a 
strong predictor because while it is correlated with the comorbidities specified in the model, it 
also likely captures other unspecified comorbidities that may be associated with worse 
outcomes. Additionally, age may be associated with altered immune function that could result in 
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slower viral clearance, or a hyperactive immune response that could contribute to severe clinical 
manifestations of the disease [37]. 
 
Our results also differ from Gupta et al. [26] in that laboratory results and vital signs added non-
negligible incremental value to the discriminative ability of our predictions. Oxygen saturation, 
temperature, and respiration rate were among the most important risk factors in the model, 
which is consistent with other models of mortality, both amongst patients with COVID-19 
[22,25,38] and in more general populations [39-41]. The positive relationship between higher 
levels of BMI and mortality was consistent with prior research [42,43].  
 
Troponin I, LDH, and PLT were among the most important laboratory results, which has been 
documented elsewhere [5,44,45]. Troponin and LDH elevations may reflect more severe 
microvascular dysfunction which could lead to myocardial and other end-organ injury. Lower 
PLT counts could reflect increased consumption due to macro- and micro-thromboses, which 
have been described clinically and in autopsy studies [46], and which may be associated with 
and exacerbate microvascular dysfunction. Of note, the lasso model selected WBC and 
lymphocyte count for inclusion and excluded neutrophil count. We explored this further by 
running a separate model omitting WBC and found that neutrophil count had similar variable 
importance to WBC in this specification. Neutrophil count also had a strong relationship with 
mortality in univariate fits (Supplement Section 3.5). Our results are therefore consistent with 
prior work showing that mortality is associated with lower lymphocyte and higher neutrophil 
counts [47,48]. We did not find an association between ferritin and mortality despite studies 
showing that severe illness is characterized by hyperferritinemia [49].  
 
Finally, while comorbidities added little prognostic information beyond age, it is important to 
distinguish these findings from those based on a general population diagnosed with COVID-19 
since risk factors that are predictive of hospitalization (or death in the general population) may 
not be predictive of mortality conditional on hospitalization. Petrilli et al. [44] provides some 
evidence consistent with this in that comorbidities were more important predictors of hospital 
admission than of severe illness and mortality among hospitalized patients. On the other hand, 
a number of studies have also found evidence that even in hospitalized populations, 
comorbidities such as hypertension, cardiovascular disease, CPD, and diabetes were predictive 
of severe illness or mortality [42,50-53].  However, even these findings are not necessarily 
inconsistent with our results since comorbidities and BMI tended to be “statistically significant” 
despite not meaningfully improving predictive performance. Furthermore, the wide range of 
mortality reported in case series of patients with severe COVID-19 may indicate that factors that 
predict severe disease do not necessarily predict mortality [54,55].  

Study Limitations 
This study is not without limitations. First, there was considerable missing data, especially for 
laboratory results. We attempted to overcome this limitation using multiple imputation, although 
the coefficient estimates are only guaranteed to be unbiased if the data are missing at random 
and the missing mechanism is known. While this is an untestable assumption, our diagnostics 
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were not suggestive of problems in the imputation as the distribution of the observed and 
imputed data were very similar.  
 
Second, many of the laboratory results contained outliers. Although we truncated these 
variables to improve fit, predictions for new patients with extreme laboratory values lying outside 
of the chosen bounds are inherently uncertain. The presence of outliers could also imply that 
some laboratory values have been miscoded. This miscoding is a form of measurement error 
that would attenuate the relationship between mortality and the laboratory values [56,57].  
 
Third, we did not have data on the day of death or out-of-hospital mortality. The latter could 
mean that mortality is underestimated if patients are discharged from the hospital and later die 
at home from COVID-19. Evidence suggests that COVID-19 deaths in the hospital comprise 
38% of all deaths, but since the proportion of those 38% who were previously hospitalized is 
unknown, it is difficult to calibrate the extent of this potential bias [12]. Without day of death 
data, we were unable to perform time to event analyses that allowed for right censoring, raising 
the possibility of further underestimation of mortality. While we did aim to mitigate this limitation 
by dropping all observations with index dates less than 2 weeks from the data release date and 
controlling for calendar time in our models, future work should consider time to event analyses if 
the data permits.  

Conclusion 
We developed a prognostic model of mortality with a cohort of over 17,000 patients hospitalized 
with COVID-19 in the U.S. using information on demographic, comorbidities, laboratory results 
and vital signs. We addressed many of the limitations of prior studies by using a large 
geographically diverse U.S. database, assessing calibration, performing validation using 
bootstrap resampling and a random training/test split, and providing detailed descriptions of the 
study population and statistical methods in the Supplement. Age was the strongest predictor of 
mortality and the predictive performance of a model that only included age was nearly identical 
to a model containing additional demographic information (age, sex, race/ethnicity, geographic 
location, smoking status, and calendar time) and a model containing information on both 
demographics and comorbidities. Vital signs and laboratory results did, however, add prognostic 
information beyond age. Overall, these results suggest that age, vital signs, and laboratory 
results may be useful to assess the prognosis of hospitalized patients, although external 
validation on new data is needed.  
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Tables and Figures 
Table 1. Characteristics of hospitalized patients with COVID-19 in training set by 
mortality status.  
 

 Missing 
(%) 

Overall 
 

Median (IQR) 
N (%) 

Survivor 
 

Median (IQR) 
N (%) 

Non-survivor 
 

Median (IQR) 
N (%) 

N  13658 11495 2163 

Demographics      

Age, median (IQR) 0 62.0 [49.0, 75.0] 59.0 [46.0, 71.0] 77.0 [67.0, 85.0] 

Calendar time (days), median 
(IQR) 0 47.0 [38.0, 64.0] 47.0 [38.0, 64.0] 46.0 [37.0, 60.0] 

Geographic division (%) 2.7    

  East North Central  4627 (34.8) 3954 (35.3) 673 (31.9) 

  Middle Atlantic  4636 (34.9) 3844 (34.4) 792 (37.6) 

  New England  1583 (11.9) 1272 (11.4) 311 (14.8) 

  Other  191 ( 1.4) 175 ( 1.6) 16 ( 0.8) 

  Pacific  511 ( 3.8) 438 ( 3.9) 73 ( 3.5) 

  South Atlantic/West South 
  Central  364 ( 2.7) 317 ( 2.8) 47 ( 2.2) 

  West North Central  1384 (10.4) 1189 (10.6) 195 ( 9.3) 

Race / Ethnicity 26.1    

  Non-Hispanic white  5647 (56.0) 4455 (53.1) 1192 (70.3) 

  Asian  362 ( 3.6) 307 ( 3.7) 55 ( 3.2) 

  Hispanic  533 ( 5.3) 478 ( 5.7) 55 ( 3.2) 

  Non-Hispanic black  3547 (35.2) 3153 (37.6) 394 (23.2) 

Sex = Female/Male (%) 
0 

6563/7091 
(48.1/51.9) 5635/5856 (49.0/51.0) 

928/1235 
(42.9/57.1) 

Smoking status (%) 25.6    

  Current  866 ( 8.5) 785 ( 9.0) 81 ( 5.5) 

  Never  6207 (61.1) 5450 (62.8) 757 (51.1) 
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  Previous  3092 (30.4) 2450 (28.2) 642 (43.4) 

     

Comorbidities      

Acute myocardial infarction 0 1535 (11.2) 1028 ( 8.9) 507 (23.4) 

AIDS/HIV 0 101 ( 0.7) 89 ( 0.8) 12 ( 0.6) 

Cancer 0 1678 (12.3) 1282 (11.2) 396 (18.3) 

Cerebrovascular disease 0 1439 (10.5) 1023 ( 8.9) 416 (19.2) 

Congestive heart failure 0 3627 (26.6) 2933 (25.5) 694 (32.1) 

Chronic pulmonary disease 0 2325 (17.0) 1604 (14.0) 721 (33.3) 

Dementia 0 1394 (10.2) 854 ( 7.4) 540 (25.0) 

Diabetes  0 4612 (33.8) 3669 (31.9) 943 (43.6) 

Hemiplegia or paraplegia 0 330 ( 2.4) 228 ( 2.0) 102 ( 4.7) 

Hypertension 0 8003 (58.6) 6333 (55.1) 1670 (77.2) 

Metastatic cancer 0 277 ( 2.0) 188 ( 1.6) 89 ( 4.1) 

Mild liver disease 0 879 ( 6.4) 711 ( 6.2) 168 ( 7.8) 

Moderate/severe liver disease 0 128 ( 0.9) 88 ( 0.8) 40 ( 1.8) 

Peptic ulcer disease 0 206 ( 1.5) 160 ( 1.4) 46 ( 2.1) 

Peripheral vascular disease 0 1671 (12.2) 1176 (10.2) 495 (22.9) 

Renal disease 0 2833 (20.7) 1984 (17.3) 849 (39.3) 

Rheumatoid disease 0 398 ( 2.9) 315 ( 2.7) 83 ( 3.8) 

CCI 0 1.0 [0.0, 3.0] 1.0 [0.0, 2.0] 3.0 [1.0, 5.0] 

     

Vitals     

BMI, median (IQR) 11.9 29.7 [25.5, 35.1] 30.0 [25.8, 35.4] 28.1 [24.0, 33.5] 

Diastolic blood pressure (mm Hg), 
median (IQR) 3.1 73.0 [65.5, 80.5] 74.0 [66.5, 81.0] 68.0 [60.0, 75.5] 

Heart rate (beats/min), median 
(IQR) 3.1 87.5 [77.5, 98.0] 87.0 [77.5, 98.0] 89.0 [77.5, 102.0] 

Oxygen saturation (%), median 
(IQR) 3.9 96.0 [94.0, 98.0] 96.0 [94.5, 98.0] 95.0 [93.0, 97.0] 
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Respiratory rate (breaths/min), 
median (IQR) 3.9 20.0 [18.0, 22.0] 19.5 [18.0, 21.0] 22.0 [19.0, 26.0] 

Systolic blood pressure (mm Hg), 
median (IQR) 3.2 

126.0 [115.0, 
139.0] 127.0 [116.0, 139.0] 

122.0 [109.0, 
136.5] 

Temperature (Celsius), median 
(IQR) 3.1 37.0 [36.7, 37.4] 37.0 [36.7, 37.4] 37.1 [36.7, 37.6] 

     

Laboratory tests     

Alanine aminotransferase (ALT) 
(U/L), median (IQR) 20.1 28.0 [18.0, 46.0] 28.0 [18.0, 46.0] 27.0 [18.0, 44.0] 

Aspartate aminotransferase (AST) 
(U/L), median (IQR) 21 37.0 [25.0, 58.0] 35.0 [25.0, 54.0] 46.0 [30.0, 73.0] 

C-reactive protein (mg/L), median 
(IQR) 38.7 79.1 [34.0, 140.0] 72.2 [30.0, 130.0] 

116.0 [63.0, 
184.0] 

Creatinine (mg/dL), median (IQR) 10.4 1.0 [0.8, 1.4] 1.0 [0.8, 1.3] 1.3 [1.0, 2.1] 

Ferritin (ng/mL), median (IQR) 
43.6 

510.0 [224.0, 
1080.0] 470.0 [207.0, 992.0] 

747.5 [320.8, 
1501.5] 

 Fibrin D-Dimer (ng/mL), median  
(IQR) 90.4 

750.0 [390.0, 
1540.8] 692.5 [370.0, 1346.5] 

1345.0 [668.2, 
3315.0] 

Lactate dehydrogenase (LDH) 
(U/L), median (IQR) 45.2 

321.0 [238.0, 
441.0] 308.0 [232.0, 415.0] 

404.0 [284.0, 
556.5] 

Lymphocyte count (103
μL), median 

(IQR) 11.2 1.0 [0.7, 1.4] 1.0 [0.7, 1.4] 0.8 [0.5, 1.1] 

Neutrophil count (103
μL), median 

(IQR) 11.2 4.9 [3.4, 7.1] 4.7 [3.2, 6.7] 6.1 [4.1, 9.2] 

Platelet count (PLT) (103
μL), 

median (IQR) 9.8 
202.0 [157.0, 

260.0] 205.0 [160.0, 262.0] 
187.5 [143.0, 

245.0] 

 Procalcitonin (ng/ML), median  
(IQR) 49.3 0.1 [0.1, 0.4] 0.1 [0.1, 0.3] 0.3 [0.1, 1.0] 

Troponin (ng/ML), median (IQR) 41.2 0.0 [0.0, 0.0] 0.0 [0.0, 0.0] 0.0 [0.0, 0.1] 

White blood cell count (WBC) 
(103

μL), median (IQR) 9.7 6.7 [4.9, 9.1] 6.5 [4.8, 8.7] 7.7 [5.6, 11.1] 
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Figure 1: Odds ratios of mortality from the full multivariable logistic regression. Error 
bars represent 95% confidence levels. Interquartile-range odds ratios are used for 
continuous predictors (upper quartile: lower quartile). Reference groups for categorical 
predictors are as follows: race/ethnicity = “non-Hispanic white”, division = “Pacific”, sex 
= “Male”, smoking = “Never smoker”. 
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Figure 2: Ranking of importance of predictors of mortality from the full multivariable 
logistic regression. A higher value of “Chi-squared minus degrees of freedom” implies 
that a predictor has a larger contribution to the fit of the model. 
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Figure 3: Predicted probability of mortality from the full multivariable logistic regression 
by age and calendar time. Each curve represents a specific hypothetical index date. Age 
and calendar time effects are adjusted for all variables in the full model. Predictions for 
each age and calendar time combination are averaged over a random sample of 1000 
patients. 
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Figure 4: Calibration curves from predictions of the logistic regression model on the test 
set by model specification. Points on the dashed 45-degree line imply that the predicted 
probability is equal to the actual probability.  
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Table 2: Summary of predictive performance in the training and test sets by model 
specification. 
 
 

 Training set Test set 

Model C-index 
(AUROC) 

Brier score C-index 
(AUROC) 

Brier score 

Age only 0.7746 0.1159 0.7558 0.1111 

All comorbidities 0.7310 0.1216 0.7186 0.1151 

All demographics 0.7841 0.1145 0.7732 0.1083 

Demographics and comorbidities 0.8014 0.1119 0.7904 0.1062 

All variables 0.8822 0.0897 0.8741 0.0877 
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