It is made available under a CC-BY-NC-ND 4.0 International license .

Molecular Architecture of Early Dissemination

2 and Massive Second Wave of the SARS-CoV-2 Virus in a

- 3 Major Metropolitan Area
- 4

5 **Running Title: Two waves of COVID-19 disease in Houston, Texas**

- 6
- 7 S. Wesley Long,^{a,b,1} Randall J. Olsen,^{a,b,1} Paul A. Christensen,^{a,1} David W.

8 Bernard,^{a,b} James J. Davis,^{c,d} Maulik Shukla,^{c,d} Marcus Nguyen,^{c,d} Matthew

9 Ojeda Saavedra,^a Prasanti Yerramilli,^a Layne Pruitt,^a Sishir Subedi,^a Hung-

10 Che Kuo,^e Heather Hendrickson,^a Ghazaleh Eskandari,^a Hoang A. T.

11 Nguyen,^a J. Hunter Long,^a Muthiah Kumaraswami,^a Jule Goike,^e Daniel

12 Boutz,^f Jimmy Gollihar, ^{a,f} Jason S. McLellan,^e Chia-Wei Chou,^e Kamyab

13 Javanmardi,^e Ilya J. Finkelstein,^{e,g}, and James M. Musser^{a,b#}

14

¹⁵ ^aCenter for Molecular and Translational Human Infectious Diseases Research,

16 Department of Pathology and Genomic Medicine, Houston Methodist Research

17 Institute and Houston Methodist Hospital, 6565 Fannin Street, Houston, Texas

18 77030

¹⁹ ^bDepartments of Pathology and Laboratory Medicine, and Microbiology and

20 Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, New

21 York 10065

It is made available under a CC-BY-NC-ND 4.0 International license .

- ²² ^cConsortium for Advanced Science and Engineering, University of Chicago, 5801
- 23 South Ellis Avenue, Chicago, Illinois, 60637
- ^dComputing, Environment and Life Sciences, Argonne National Laboratory, 9700
- 25 South Cass Avenue, Lemont, Illinois 60439
- ²⁶ ^eDepartment of Molecular Biosciences and Institute of Molecular Biosciences,
- 27 The University of Texas at Austin, Austin, Texas 78712
- ¹28 ^fCCDC Army Research Laboratory-South, University of Texas, Austin, Texas 78712
- ²⁹ ^gCenter for Systems and Synthetic Biology, University of Texas at Austin, Austin,
- 30 Texas 78712
- 31

¹S.W.L., R.J.O., and P.A.C. contributed equally to this article. The order of co-first

authors was determined by discussion and mutual agreement between the threeco-first authors.

35

³⁶ [#]Address correspondence to: James M. Musser, M.D., Ph.D., Department of
³⁷ Pathology and Genomic Medicine, Houston Methodist Research Institute, 6565
³⁸ Fannin Street, Suite B490, Houston, Texas 77030. Tel: 713.441.5890, E-mail:
³⁹ jmmusser@houstonmethodist.org.

40

41 This article is a direct contribution from James M. Musser, a Fellow of the

- 42 American Academy of Microbiology, who arranged for and secured reviews by
- 43 Barry N. Kreiswirth, Center for Discovery and Innovation, Hackensack Meridian

It is made available under a CC-BY-NC-ND 4.0 International license .

- 44 Health, New Jersey; and David M. Morens, National Institute of Allergy and
- 45 Infectious Diseases, National Institutes of Health, Maryland.

66 ABSTRACT We sequenced the genomes of 5.085 SARS-CoV-2 strains 67 causing two COVID-19 disease waves in metropolitan Houston, Texas, an ethnically diverse region with seven million residents. The genomes were 68 69 from viruses recovered in the earliest recognized phase of the pandemic in 70 Houston, and an ongoing massive second wave of infections. The virus 71 was originally introduced into Houston many times independently. Virtually 72 all strains in the second wave have a Gly614 amino acid replacement in the spike protein, a polymorphism that has been linked to increased 73 74 transmission and infectivity. Patients infected with the Gly614 variant 75 strains had significantly higher virus loads in the nasopharynx on initial 76 diagnosis. We found little evidence of a significant relationship between 77 virus genotypes and altered virulence, stressing the linkage between 78 disease severity, underlying medical conditions, and host genetics. Some 79 regions of the spike protein - the primary target of global vaccine efforts -80 are replete with amino acid replacements, perhaps indicating the action of 81 selection. We exploited the genomic data to generate defined single amino 82 acid replacements in the receptor binding domain of spike protein that, 83 importantly, produced decreased recognition by the neutralizing 84 monoclonal antibody CR30022. Our study is the first analysis of the molecular architecture of SARS-CoV-2 in two infection waves in a major 85 metropolitan region. The findings will help us to understand the origin, 86 87 composition, and trajectory of future infection waves, and the potential

It is made available under a CC-BY-NC-ND 4.0 International license .

- 88 effect of the host immune response and therapeutic maneuvers on SARS-
- 89 CoV-2 evolution.
- 90
- 91 **IMPORTANCE** There is concern about second and subsequent waves of
- 92 COVID-19 caused by the SARS-CoV-2 coronavirus occurring in
- 93 communities globally that had an initial disease wave. Metropolitan
- Houston, Texas, with a population of 7 million, is experiencing a massive
- 95 second disease wave that began in late May 2020. To understand SARS-
- 96 CoV-2 molecular population genomic architecture, evolution, and
- 97 relationship between virus genotypes and patient features, we sequenced
- the genomes of 5,085 SARS-CoV-2 strains from these two waves. Our study
- 99 provides the first molecular characterization of SARS-CoV-2 strains
- 100 causing two distinct COVID-19 disease waves.
- 101
- 102 KEYWORDS: SARS-CoV-2, COVID-19 disease, genome sequencing, molecular
- 103 population genomics, evolution
- 104

It is made available under a CC-BY-NC-ND 4.0 International license .

105 [Introduction]

106 **P**andemic disease caused by the severe acute respiratory syndrome

- 107 coronavirus 2 (SARS-CoV-2) virus is now responsible for massive human
- 108 morbidity and mortality worldwide (1-5). The virus was first documented to cause
- severe respiratory infections in Wuhan, China, beginning in late December 2019
- 110 (6-9). Global dissemination occurred extremely rapidly and has affected major
- 111 population centers on most continents (10, 11). In the United States, the Seattle
- and the New York City (NYC) regions have been especially important centers of
- 113 COVID-19 disease caused by SARS-CoV-2. For example, as of August 19,

114 2020, there were 227,419 confirmed SARS-CoV-2 cases in NYC, causing 56,831

hospitalizations and 19,005 confirmed fatalities and 4,638 probable fatalities (12).

Similarly, in Seattle and King County, 17,989 positive patients and 696 deaths

117 have been reported as of August 18, 2020 (13).

118 The Houston metropolitan area is the fourth largest and most ethnically 119 diverse city in the United States, with a population of approximately 7 million 120 (14, 15). The 2,400-bed Houston Methodist health system has seven hospitals 121 and serves a large, multiethnic, and socioeconomically diverse patient population 122 throughout greater Houston (13, 14). The first COVID-19 case in metropolitan 123 Houston was reported on March 5, 2020 with community spread occurring one 124 week later (16). Many of the first cases in our region were associated with 125 national or international travel in areas known to have SARS-CoV-2 virus 126 outbreaks (16). A central molecular diagnostic laboratory serving all Houston 127 Methodist hospitals and our very early adoption of a molecular test for the SARS-

It is made available under a CC-BY-NC-ND 4.0 International license .

CoV-2 virus permitted us to rapidly identify positive patients and interrogate genomic variation among strains causing early infections in the greater Houston area. Our analysis of SARS-CoV-2 genomes causing disease in Houston has continued unabated since early March and is ongoing. Genome sequencing and related efforts were expanded extensively in late May as we recognized that a prominent second wave was underway (**Figure 1**).

134 Here, we report that SARS-CoV-2 was introduced to the Houston area 135 many times, independently, from diverse geographic regions, with virus 136 genotypes representing genetic clades causing disease in Europe, Asia, South 137 America and elsewhere in the United States. There was widespread community 138 dissemination soon after COVID-19 cases were reported in Houston. Strains with 139 a Gly614 amino acid replacement in the spike protein, a polymorphism that has 140 been linked to increased transmission and *in vitro* cell infectivity, increased 141 significantly over time and caused virtually all COVID-19 cases in the massive 142 second disease wave. Patients infected with strains with the Gly614 variant had 143 significantly higher virus loads in the nasopharynx on initial diagnosis. Some 144 naturally occurring single amino acid replacements in the receptor binding 145 domain (RBD) of spike protein resulted in decreased reactivity with a neutralizing 146 monoclonal antibody, consistent with the idea that some virus variants arise due 147 to host immune pressure.

148

149 **RESULTS**

It is made available under a CC-BY-NC-ND 4.0 International license .

Description of metropolitan Houston. Houston, Texas, is located in the southwestern United States, 50 miles inland from the Gulf of Mexico. It is the most ethnically diverse city in the United States (14). Metropolitan Houston is comprised predominantly of Harris County plus parts of eight contiguous surrounding counties. In the aggregate, the metropolitan area includes 9,444 square miles. The estimated population size of metropolitan Houston is 7 million (https://www.houston.org/houston-data).

157 Epidemic curve characteristics over two disease waves. The first 158 confirmed case of COVID-19 in the Houston metropolitan region was reported on 159 March 5, 2020 (16), and the first confirmed case diagnosed in Houston Methodist 160 hospitals was reported on March 6, 2020. The epidemic curve indicated a first 161 wave of COVID-19 cases that peaked around April 11-15, followed by a decline 162 in cases until May 11. Soon thereafter, the slope of the case curve increased with 163 a very sharp uptick in confirmed cases beginning on June 12 (Figure 1B). We 164 consider May 11 as the transition between waves, as this date is the inflection 165 point of the cumulative new cases curve and had the absolute lowest number of 166 new cases in the mid-May time period. Thus, for the data presented herein, wave 167 1 is defined as March 5 through May 11, 2020, and wave 2 is defined as May 12 168 through July 7, 2020. Epidemiologic trends within the Houston Methodist Hospital 169 population were mirrored by data from Harris County and the greater metropolitan Houston region (Figure 1A). Through the 7th of July, 25,366 170 171 COVID-19 cases were reported in Houston, 37,776 cases in Harris County, and 172 53,330 in metropolitan Houston, including 9,823 cases in Houston Methodist

It is made available under a CC-BY-NC-ND 4.0 International license .

- 173 facilities (inpatients and outpatients) (https://www.tmc.edu/coronavirus-
- 174 updates/infection-rate-in-the-greater-houston-area/ and
- 175 https://harriscounty.maps.arcgis.com/apps/opsdashboard/index.html#/c0de71f8e
- 176 <u>a484b85bb5efcb7c07c6914</u>).
- During the first wave (early March through May 11), 11,476 COVID-19
- 178 cases were reported in Houston, including 1,729 cases in the Houston Methodist
- Hospital system. Early in the first wave (from March 5 through March 30, 2020),
- 180 we tested 3,080 patient specimens. Of these, 406 (13.2%) samples were positive
- 181 for SARS-CoV-2, representing 40% (358/898) of all confirmed cases in
- 182 metropolitan Houston during that time period. As our laboratory was the first
- 183 hospital-based facility to have molecular testing capacity for SARS-CoV-2
- available on site, our strain samples are likely representative of COVID-19
- 185 infections during the first wave.

For the entire study period (March 5 through July 7, 2020), we tested 68,418 specimens from 55,800 patients. Of these, 9,121 patients (16.4%) had a positive test result, representing 17.1% (9,121/53,300) of all confirmed cases in metropolitan Houston. Thus, our strain samples are also representative of those responsible for COVID-19 infections in the massive second wave.

To test the hypothesis that, on average, the two waves affected different groups of patients, we analyzed individual patient characteristics (hospitalized and non-hospitalized) in each wave. Consistent with this hypothesis, we found significant differences in the COVID-19 patients in each wave (**Table S1**). For example, patients in the second wave were significantly younger, had fewer

It is made available under a CC-BY-NC-ND 4.0 International license .

196 comorbidities, were more likely to be Hispanic/Latino (by self-report), and lived in 197 zip codes with lower median incomes (**Table S1**). A detailed analysis of the 198 characteristics of patients hospitalized in Houston Methodist facilities in the two 199 waves has recently been published (17). 200 SARS-CoV-2 genome sequencing and phylogenetic analysis. To 201 investigate the genomic architecture of the virus across the two waves, we 202 sequenced the genomes of 5.085 SARS-CoV-2 strains dating to the earliest time 203 of confirmed COVID-19 cases in Houston. Analysis of SARS-CoV-2 strains 204 causing disease in the first wave (March 5 through May 11) identified the 205 presence of many diverse virus genomes that, in the aggregate, represent the 206 major clades identified globally to date (Figure 1B). Clades G, GH, GR, and S 207 were the four most abundantly represented phylogenetic groups (Figure 1B). 208 Strains with the Gly614 amino acid variant in spike protein represented 82% of 209 the SARS-CoV-2 strains in wave 1, and 99.9% in wave 2 (p<0.0001; Fisher's 210 exact test) (Figure 1B). This spike protein variant is characteristic of clades G, 211 GH, and GR. Importantly, strains with the Gly614 variant represented only 71% 212 of the specimens sequenced in March, the early part of wave 1 (Figure 1B). We 213 attribute the decrease in strains with this variant observed in the first two weeks 214 of March (Figure 1B) to fluctuation caused by the relatively fewer COVID-19 215 cases occurring during this period. 216

Relating spatiotemporal genome analysis with virus genotypes over
two disease waves. We examined the spatial and temporal mapping of genomic
data to investigate community spread during wave 1 (Figure 2). Rapid and

It is made available under a CC-BY-NC-ND 4.0 International license .

widespread community dissemination occurred soon after the initial COVID-19
cases were reported in Houston. The heterogenous virus genotypes present very
early in wave 1 indicate that multiple strains independently entered metropolitan
Houston, rather than introduction and spread of a single strain. An important
observation was that strains of most of the individual subclades were distributed
over broad geographic areas (Figure S1). These findings are consistent with the
known ability of SARS-CoV-2 to spread very rapidly from person to person.

226 Relationship between virus clades, clinical characteristics of infected

227 **patients, and additional metadata**. It is possible that SARS-CoV-2 genome

subtypes have different clinical characteristics, analogous to what is believed to

have occurred with Ebola virus (18-20) and known to occur for other pathogenic

230 microbes (21). As an initial examination of this issue in SARS-CoV-2, we tested

the hypothesis that patients with disease severe enough to warrant

hospitalization were infected with a non-random subset of virus genotypes. We

also examined the association between virus clades and disease severity based

234 on overall mortality, highest level of required care (intensive care unit,

235 intermediate care unit, inpatient or outpatient), need for mechanical ventilation,

and length of stay. There was no simple relationship between virus clades and

237 disease severity using these four indicators. Similarly, there was no simple

relationship between virus clades and other metadata, such as sex, age, or

ethnicity (**Figure S2**).

Machine learning analysis. Machine learning models can be used to
 identify complex relationships not revealed by statistical analyses. We built

It is made available under a CC-BY-NC-ND 4.0 International license .

242 machine learning models to test the hypothesis that virus genome sequence can predict patient outcomes including mortality, length of stay, level of care, ICU 243 244 admission, supplemental oxygen use, and mechanical ventilation. Models to 245 predict outcomes based on virus genome sequence alone resulted in low F1 246 scores less than 50% (0.41 – 0.49) and regression models showed similarly low R^2 values (-0.01 – -0.20) (**Table S2**). F1 scores near 50% are indicative of 247 248 classifiers that are performing similarly to random chance. The use of patient 249 metadata alone to predict patient outcome improved the model's F1 scores by 5-250 10% (0.51 – 0.56) overall. The inclusion of patient metadata with virus genome 251 sequence data improved most predictions of outcomes, compared to genome 252 sequence alone, to 50% to 55% F1 overall (0.42 - 0.55) in the models (Table 253 **S2**). The findings are indicative of two possibilities that are not mutually 254 exclusive. First, patient metadata, such as age and sex, may provide more signal 255 for the model to use and thus result in better accuracies. Second, the model's 256 use of single nucleotide polymorphisms (SNPs) may have resulted in overfitting. 257 Most importantly, no SNP predicted a significant difference in outcome. A table of 258 classifier accuracy scores and performance information is provided in **Table S2**. 259 Patient outcome and metadata correlations. Overall, very few metadata 260 categories correlated with patient outcomes (**Table S3**). Mortality was 261 independently correlated with increasing age, with a Pearson correlation 262 coefficient (PCC) equal to 0.27. This means that 27% of the variation in mortality

can be predicted from patient age. Length of stay correlated independently with

It is made available under a CC-BY-NC-ND 4.0 International license .

increasing age (PCC=0.20). All other patient metadata correlations to outcomes
had PCC less than 0.20 (Table S3).

We further analyzed outcomes correlated to isolates from wave 1 and 2, and the presence of the Gly614 variant in spike protein. Being in wave 1 was independently correlated with mechanical ventilation days, overall length of stay, and ICU length of stay, with PCC equal to 0.20, 0.18, and 0.14, respectively. Importantly, the presence of the Gly614 variant did not correlate with patient outcomes (**Table S3**).

272 Analysis of the nsp12 polymerase gene. The SARS-CoV-2 genome 273 encodes an RNA-dependent RNA polymerase (RdRp, also referred to as Nsp12) 274 used in virus replication (22-25). Two amino acid substitutions (Phe479Leu and 275 Val556Leu) in RdRp each confer significant resistance *in vitro* to remdesivir, an 276 adenosine analog (26). Remdesivir is inserted into RNA chains by RdRp during 277 replication, resulting in premature termination of RNA synthesis and inhibition of 278 virus replication. This compound has shown prophylactic and therapeutic benefit 279 against MERS-CoV and SARS-CoV-2 experimental infection in rhesus 280 macaques (27, 28). Recent reports indicate that remdesivir has therapeutic 281 benefit in some COVID-19 hospitalized patients (29-33), leading it to be now 282 widely used in patients worldwide. Thus, it may be important to understand 283 variation in RdRp in large strain samples. 284 To acquire data about allelic variation in the *nsp12* gene, we analyzed our

285 5,085 virus genomes. The analysis identified 265 SNPs, including 140

nonsynonymous (amino acid-altering) SNPs, resulting in amino acid

286

It is made available under a CC-BY-NC-ND 4.0 International license .

287	replacements throughout the	orotein (Table 1, F	iqure 3.	Figure 4.	Figure S3,
-01				·	· · · · · · · · · · · · · · · · · · ·	

and Figure S4). The most common amino acid change was Pro322Leu,

identified in 4,893 of the 5,085 (96%) patient isolates. This amino acid

replacement is common in genomes from clades G, GH, and GR, which are

distinguished from other SARS-CoV-2 clades by the presence of the Gly614

amino acid change in the spike protein. Most of the other amino acid changes in

293 RdRp were present in relatively small numbers of strains, and some have been

identified in other isolates in a publicly available database (34). Five prominent

295 exceptions included amino acid replacements: Ala15Val in 138 strains, Met462lle

in 59 strains, Met600lle in 75 strains, Thr907lle in 45 strains, and Pro917Ser in

297 80 strains. All 75 Met600lle strains were phylogenetically closely related

298 members of clade G, and also had the Pro322Leu amino acid replacement

characteristic of this clade (**Figure S3**). These data indicate that the Met600lle

300 change is likely the evolved state, derived from a precursor strain with the

301 Pro322Leu replacement. Similarly, we investigated phylogenetic relationships

among strains with the other four amino acid changes noted above. In all cases,

303 the vast majority of strains with each amino acid replacement were found among

304 individual subclades of strains (Figure S3).

305 Importantly, none of the observed amino acid polymorphisms in RdRp

306 were located precisely at two sites known to cause *in vitro* resistance to

307 remdesivir (26). Most of the amino acid changes are located distantly from the

308 RNA-binding and catalytic sites (Figure S4 and Table 1). However,

309 replacements at six amino acid residues (Ala442Val, Ala448Val, Ala553Pro/Val,

It is made available under a CC-BY-NC-ND 4.0 International license .

310	Gly682Arg, Ser758Pro, and Cys812Phe) may potentially interfere with either
311	remdesivir binding or RNA synthesis. Four (Ala442Val, Ala448Val,
312	Ala553Pro/Val, and Gly682Arg) of the six substitution sites are located
313	immediately above the nucleotide-binding site, that is comprised of Lys544,
314	Arg552, and Arg554 residues as shown by structural studies (Figure 4). The
315	positions of these four variant amino acid sites are comparable to Val556 (Figure
316	4), for which a Val556Leu mutation in SARS-CoV was identified to confer
317	resistance to remdesivir in vitro (26). The other two substitutions (Ser758Pro and
318	Cys812Phe) are inferred to be located either at, or in the immediate proximity of,
319	the catalytic active site, that is comprised of three contiguous residues (Ser758,
320	Asp759, and Asp760). A proline substitution we identified at Ser758 (Ser758Pro)
321	is likely to negatively impact RNA synthesis. Although Cys812 is not directly
322	involved in the catalysis of RNA synthesis, it is only 3.5 Å away from Asp760.
323	The introduction of the bulkier phenylalanine substitution at Cys812 (Cys812Phe)
324	may impair RNA synthesis. Consequently, these two substitutions are expected
325	to detrimentally affect virus replication or fitness.
326	Analysis of the gene encoding the spike protein. The densely glycosylated
327	spike protein of SARS-CoV-2 and its close coronavirus relatives binds directly to
328	host-cell angiotensin-converting enzyme 2 (ACE2) receptors to enter host cells
329	(35-37). Thus, the spike protein is a major translational research target, including
330	intensive vaccine and therapeutic antibody (35-64). Analysis of the gene
221	an an dia métric anni tain i dan tific d' 470 ONDs, in shudin m 005 that ann duas

ancoding the spike protein identified 470 SNPs, including 285 that produce

amino acid changes (Table 2, Figure 5). Forty-nine of these replacements

It is made available under a CC-BY-NC-ND 4.0 International license .

333	(V11A, T51A, W64C, I119T, E156Q, S205A, D228G, L229W, P230T, N234D,
334	I235T, T274A, A288V, E324Q, E324V, S325P, S349F, S371P, S373P, T385I,
335	A419V, C480F, Y495S, L517F, K528R, Q628E, T632I, S708P, T719I, P728L,
336	S746P, E748K, G757V, V772A, K814R, D843N, S884A, M902I, I909V, E918Q,
337	S982L, M1029I, Q1142K, K1157M, Q1180R, D1199A, C1241F, C1247G, and
338	V1268A) are not represented in a publicly available database (34) as of August
339	19, 2020. Interestingly, 25 amino acid sites have three distinct variants (that is,
340	the reference amino acid plus two additional variant amino acids), and five amino
341	acid sites (amino acid positions 21, 27, 228, 936, and 1050) have four distinct
342	variants represented in our sample of 5,085 genomes (Table 2, Figure 5).
343	We mapped the location of amino acid replacements onto a model of the
344	full-length spike protein (35, 65) and observed that the substitutions are found in
345	each subunit and domain of the spike (Figure 6). However, the distribution of
346	amino acid changes is not uniform throughout the protein regions. For example,
347	compared to some other regions of the spike protein, the RBD has relatively few
348	amino acid changes, and the frequency of strains with these substitutions is low,
349	each occurring in fewer than 10 isolates. This finding is consistent with the
350	functional constraints on RBD to mediate interaction with ACE2. In contrast, the
351	periphery of the S1 subunit NTD contains a dense cluster of substituted residues,
352	with some single amino acid replacements found in 10–20 isolates (Table 2,
353	Figure 5, Figure 6). Clustering of amino acid changes in a distinct region of the
354	spike protein may be a signal of positive selection. Inasmuch as infected patients
355	make antibodies against the NTD, we favor the idea that host immune selection

It is made available under a CC-BY-NC-ND 4.0 International license .

356 is one force contributing to some of the amino acid variation in this region. One 357 NTD substitution, H49Y, was found in 142 isolates. This position is not well 358 exposed on the surface of the NTD and is likely not a result of immune pressure. 359 The same is true for another highly represented substitution, F1052L. This 360 substitution was observed in 167 isolates, and F1052 is buried within the core of 361 the S2 subunit. The substitution observed most frequently in the spike protein in 362 our sample is D614G, a change observed in 4.895 of the isolates. As noted 363 above, strains with the Gly614 variant significantly increased in wave 2 compared 364 to wave 1.

365 As observed with RdRp, the majority of strains with each single amino 366 acid change in the spike protein were found on a distinct phylogenetic lineage 367 (Figure S5), indicating identity by descent. A prominent exception is the 368 Leu5Phe replacement that is present in all major clades, suggesting that this 369 amino acid change arose multiple times independently or very early in the course 370 of SARS-CoV-2 evolution. Finally, we note that examination of the phylogenetic 371 distribution of strains with multiple distinct amino acid replacements at the same 372 site (e.g., Arg21lle/Lys/Thr, Ala27Ser/Thr/Val, etc.) revealed that they were 373 commonly found in different genetic branches, consistent with independent origin 374 (Figure S5).

375 Cycle threshold (Ct) comparison of SARS-CoV-2 strains with either 376 the Asp614 or Gly614 amino acid replacements in spike protein. It has been 377 reported that patients infected with strains having spike protein Gly614 variant 378 have, on average, higher virus loads on initial diagnosis (66-70). To determine if

It is made available under a CC-BY-NC-ND 4.0 International license .

379	this is the case in Houston strains, we examined the cycle threshold (Ct) for
380	every sequenced strain that was detected from a patient specimen using the
381	SARS-CoV-2 Assay done by the Hologic Panther instrument. We identified a
382	significant difference (p <0.0001) between the mean Ct value for strains with an
383	Asp614 (<i>n</i> =102) or Gly614 (<i>n</i> =812) variant of the spike protein (Figure 7).
384	Strains with Gly614 had a Ct value significantly lower than strains with the
385	Asp614 variant, indicating that patients infected with the Gly614 strains had, on
386	average, higher virus loads on initial diagnosis than patients infected by strains
387	with the Asp614 variant (Figure 7). This observation is consistent with the
388	conjecture that, on average, strains with the Gly614 variant are better able to
389	disseminate.

390 Characterization of recombinant proteins with single amino acid 391 replacements in the receptor binding domain region of spike protein. The 392 RBD of spike protein binds the ACE2 surface receptor and is also targeted by 393 neutralizing (36, 37, 41, 43-46, 48-62, 71). Thus, single amino acid replacements 394 in this domain may have functional consequences that enhance virus fitness. To 395 begin to test this idea, we expressed spike variants with the Asp614Gly 396 replacement and 13 clinical RBD variants identified in our genome sequencing 397 studies (Figure 8, Table S4A, B). All RBD variants were cloned into an 398 engineered spike protein construct that stabilizes the perfusion state and 399 increases overall expression yield (spike-6P, here referred to as spike) (64).

It is made available under a CC-BY-NC-ND 4.0 International license .

400	We first assessed the biophysical properties of spike-Asp614Gly, an
401	amino acid polymorphism that is common globally and increased significantly in
402	our wave 2 strain isolates. Pseudotyped viruses expressing spike-Gly614 have
403	higher infectivity for host cells in vitro than spike-Asp614 (66, 67, 69, 72, 73). The
404	higher infectivity of spike-Gly614 is correlated with increased stability and
405	incorporation of the spike protein into the pseudovirion (73). We observed a
406	higher expression level (Figure 8A, B) and increased thermostability for the
407	spike protein construct containing this variant (Figure 8C, D). The size exclusion
408	chromatography (SEC) elution profile of spike-Asp614 was indistinguishable from
409	spike-Gly614, consistent with a trimeric conformation (Figure 8A). These results
410	are broadly consistent with higher-resolution structural analyses of both spike
411	variants.

412 Next, we purified and biophysically characterized 13 RBD mutants that 413 each contain Gly614 and one additional single amino acid replacement we 414 identified by genome sequencing our clinical samples (**Table S4C**). All variants 415 eluted as trimers, indicating the global structure, remained intact (Figure 8 and 416 Figure S6). However, several variants had reduced expression levels and 417 virtually all had decreased thermostability relative to the variant that had only a 418 D614G single amino acid replacement (Figure 8D). The A419V and A522V 419 mutations were especially deleterious, reducing yield and precluding further 420 downstream analysis (Figure 8B). We next assayed the affinity of the 11 highest-421 expressing spike variants for ACE2 and the neutralizing monoclonal antibody 422 CR3022 via enzyme-linked immunosorbent assays (ELISAs) (Figure 8E-G and

It is made available under a CC-BY-NC-ND 4.0 International license .

423 **Table S4C**). Most variants retained high affinity for the ACE2 surface receptor. 424 However, importantly, three RBD variants (F338L, S373P, and R408T) had 425 substantially reduced affinity for CR3022, a monoclonal antibody that disrupts the 426 spike protein homotrimerization interface (63, 74). Notably, the S373P mutation 427 is one amino acid away from the epitope recognized by CR3022. These results 428 are consistent with the interpretation that some RBD mutants arising in COVID-429 19 patients may have increased ability to escape humoral immune pressure, but 430 otherwise retain strong ACE2 binding affinity.

431

432 **DISCUSSION**

433 In this work we analyzed the molecular population genomics, sociodemographic,

434 and medical features of two waves of COVID-19 disease occurring in

435 metropolitan Houston, Texas, between early March and early July 2020. We also

436 studied the biophysical and immunologic properties of some naturally occurring

437 single amino acid changes in the spike protein RBD identified by sequencing the

438 5,085 genomes. We discovered that the first COVID-19 wave was caused by a

439 heterogenous array of virus genotypes assigned to several different clades. The

440 majority of cases in the first wave are related to strains that caused widespread

441 disease in European and Asian countries, as well as other localities. We

442 conclude that the SARS-CoV-2 virus was introduced into Houston many times

443 independently, likely by individuals who had traveled to or from different parts of

the world, including other communities in the United States. In support of this

445 conclusion, the first cases in metropolitan Houston were associated with a travel

It is made available under a CC-BY-NC-ND 4.0 International license .

history to a known COVID-19 region (16). The data are consistent with the fact
that Houston is a large international city characterized by a multi-ethnic
population and is a prominent transport hub with direct flights to major cities
globally.

450 The second wave of COVID-19 cases also is characterized by SARS-451 CoV-2 strains with diverse genotypes. Virtually all cases in the second and 452 ongoing disease wave were caused by strains with the Gly614 variant of spike 453 protein (Figure 1B). Our data unambiguously demonstrate that strains with the 454 Gly614 variant increased significantly in frequency in wave 2 relative to wave 1 in 455 the Houston metropolitan region. This shift occurred very rapidly in a matter of 456 just a few months. Amino acid residue Asp614 is located in subdomain 2 (SD-2) 457 of the spike protein and forms a hydrogen bond and electrostatic interaction with 458 two residues in the S2 subunit of a neighboring protomer. Replacement of 459 aspartate with glycine would eliminate both interactions, thereby substantively 460 weakening the contact between the S1 and S2 subunits. We previously 461 speculated (75) that this weakening produces a more fusogenic spike protein, as 462 S1 must first dissociate from S2 before S2 can refold and mediate fusion of virus 463 and cell membranes. Stated another way, virus strains with the Gly614 variant 464 may be better able to enter host cells, potentially resulting in enhanced spread. 465 Consistent with this idea, Korber et al. (66) showed that the Gly614 variant grows 466 to higher titer as pseudotyped virions. On initial diagnosis infected individuals had lower RT-PCR cycle thresholds suggesting higher upper respiratory tract viral 467 468 loads. Our data (Figure 7) are fully consistent with that finding Zhang et al. (73)

It is made available under a CC-BY-NC-ND 4.0 International license .

469 reported that pseudovirus with the 614Gly variant infected ACE2-expressing cells 470 more efficiently than the 614Asp. Similar results have been described by Hu et 471 al. (67) and Lorenzo-Redondo et al. (68). Plante et al. (76) recently studied 472 isogenic mutant SARS-CoV-2 strains with either the 614Asp or 614Gly variant 473 and found that the 614Gly variant virus had significantly increased replication in 474 human lung epithelial cells in vitro and increased infectious titers in nasal and 475 trachea washes obtained from experimentally infected hamsters. These results 476 are consistent with the idea that the 614Gly variant bestows increased virus 477 fitness in the upper respiratory tract (76). 478 Additional work is needed to investigate the potential biomedical relevance

480 limited to virus dissemination, overall fitness, impact on clinical course and

479

481 virulence, and development of vaccines and therapeutics. Although it is possible

and public health importance of the Asp614Gly polymorphism, including but not

482 that stochastic processes alone may account for the rapid increase in COVID-19

483 disease frequency caused by viruses containing the Gly614 variant, we do not

484 favor that interpretation in part because of the cumulative weight of the

485 epidemiologic, human RT-PCR diagnostics data, *in vitro* experimental findings,

486 and animal infection studies using isogenic mutant virus strains. In addition, if

487 stochastic processes solely are responsible, we believe it is difficult to explain

488 essentially simultaneous increase in frequency of the Gly614 variant in

489 genetically diverse viruses in three distinct clades (G, GH, and GR) in a

490 geographically large metropolitan area with 7 million ethnically diverse people.

491 Regardless, more research on this important topic is warranted.

It is made available under a CC-BY-NC-ND 4.0 International license .

492	The diversity present in our 1,026 virus genomes from the first disease
493	wave contrasts somewhat with data reported by Gonzalez-Reiche et al., who
494	studied 84 SARS-CoV-2 isolates causing disease in patients in the New York
495	City region (11). Those investigators concluded that the vast majority of disease
496	was caused by progeny of strains imported from Europe. Similarly, Bedford et al.
497	(10) reported that much of the COVID-19 disease in the Seattle, Washington
498	area was caused by strains that are progeny of a virus strain recently introduced
499	from China. Some aspects of our findings are similar to those reported recently
500	by Lemieux et al. based on analysis of strains causing disease in the Boston
501	area (81). Our findings, like theirs, highlight the importance of multiple
502	importation events of genetically diverse strains in the epidemiology of COVID-19
503	disease in this pandemic. Similarly, Icelandic and Brazilian investigators
504	documented that SARS-CoV-2 was imported by individuals traveling to or from
505	many European and other countries (82, 83).
506	The virus genome diversity and large sample size in our study permitted
507	us to test the hypothesis that distinct virus clades were nonrandomly associated
508	with hospitalized COVID-19 patients or disease severity. We did not find
509	evidence to support this hypothesis, but our continuing study of COVID-19 cases
510	accruing in the second wave will further improve statistical stratification.
511	We used machine learning classifiers to identify if any SNPs contribute to
512	increased infection severity or otherwise affect virus-host outcome. The models
513	could not be trained to accurately predict these outcomes from the available virus

514 genome sequence data. This may be due to sample size or class imbalance.

It is made available under a CC-BY-NC-ND 4.0 International license .

515 However, we do not favor this interpretation. Rather, we think that the inability to identify particular virus SNPs predictive of disease severity or infection outcome 516 517 likely reflects the substantial heterogeneity in underlying medical conditions and 518 treatment regimens among COVID-19 patients studied herein. An alternative but 519 not mutually exclusive hypothesis is that patient genotypes play an important role 520 in determining virus-human interactions and resulting pathology. Although some 521 evidence has been presented in support of this idea (84, 85), available data 522 suggest that in the aggregate, host genetics does not play an overwhelming role 523 in determining outcome in the great majority of adult patients, once virus infection 524 is established.

525 Remdesivir is a nucleoside analog reported to have activity against 526 MERS-CoV, a coronavirus related to SARS-CoV-2. Recently, several studies 527 have reported that remdesivir shows promise in treating COVID-19 patients (29-528 33), leading the FDA to issue an emergency use authorization. Because in vitro 529 resistance of SARS-CoV to remdesivir has been reported to be caused by either 530 of two amino acid replacements in RdRp (Phe479Leu or Val556Leu), we 531 interrogated our data for polymorphisms in the *nsp12* gene. Although we 532 identified 140 different inferred amino acid replacements in RdRp in the 5,085 533 genomes analyzed, none of these were located precisely at the two positions 534 associated with *in vitro* resistance to remdesivir. Inasmuch as remdesivir is now 535 being deployed widely to treat COVID-19 patients in Houston and elsewhere, our 536 findings suggest that the majority of SARS-CoV-2 strains currently circulating in 537 our region should be susceptible to this drug.

It is made available under a CC-BY-NC-ND 4.0 International license .

538	The amino acid replacements Ala442Val, Ala448Val, Ala553Pro/Val, and
539	Gly682Arg that we identified occur at sites that, intriguingly, are located directly
540	above the nucleotide substrate entry channel and nucleotide binding residues
541	Lys544, Arg552, and Arg554 (22, 23) (Figure 4). One possibility is that
542	substitution of the smaller alanine or glycine residues with the bulkier side chains
543	of Val/Pro/Arg may impose structural constraints for the modified nucleotide
544	analog to bind, and thereby disfavor remdesivir binding. This, in turn, may lead to
545	reduced incorporation of remdesivir into the nascent RNA, increased fidelity of
546	RNA synthesis, and ultimately drug resistance. A similar mechanism has been
547	proposed for a Val556Leu change (23).
548	We also identified one strain with a Lys477Asn replacement in RdRp. This
549	substitution is located close to a Phe479Leu replacement reported to produce
550	partial resistance to remdesivir in vitro in SARS-CoV patients from 2004,
551	although the amino acid positions are numbered differently in SARS-CoV and
552	SARS-CoV-2. Structural studies have suggested that this amino acid is surface-
553	exposed, and distant from known key functional elements. Our observed
554	Lys477Asn change is also located in a conserved motif described as a finger
555	domain of RdRp (Figure 3 and 4). One speculative possibility is that Lys477 is
556	involved in binding a yet unidentified cofactor such as Nsp7 or Nsp8, an
557	interaction that could modify nucleotide binding and/or fidelity at a distance.
558	These data warrant additional study in larger patient cohorts, especially in
559	individuals treated with remdesivir.

It is made available under a CC-BY-NC-ND 4.0 International license .

560 Analysis of the gene encoding the spike protein identified 285 polymorphic 561 amino acid sites relative to the reference genome, including 49 inferred amino 562 acid replacements not present in available databases as of August 19, 2020. 563 Importantly, 30 amino acid sites in the spike protein had two or three distinct 564 replacements relative to the reference strain. The occurrence of multiple variants 565 at the same amino acid site is one characteristic that may suggest functional 566 consequences. These data, coupled with structural information available for 567 spike protein, raise the possibility that some of the amino acid variants have 568 functional consequences, for example including altered serologic reactivity and 569 shown here. These data permit generation of many biomedically relevant 570 hypotheses now under study.

571 A recent study reported that RBD amino acid changes could be selected 572 in vitro using a pseudovirus neutralization assay and sera obtained from 573 convalescent plasma or monoclonal antibodies (86). The amino acid sites 574 included positions V445 and E484 in the RBD. Important to note, variants G446V 575 and E484Q were present in our patient samples. However, these mutations retain high affinity to CR3022 (Figure 8F, G). The high-resolution structure of the 576 577 RBD/CR3022 complex shows that CR3022 makes contacts to residues 369-386, 578 380-392, and 427-430 of RBD (74). Although there is no overlap between 579 CR3022 and ACE2 epitopes, CR3022 is able to neutralize the virus through an 580 allosteric effect. We found that the Ser373Pro change, which is located within the 581 CR3022 epitope, has reduced affinity to CR3022 (Figure 8F, G). The F338L and 582 R408T mutations, although not found directly within the interacting epitope, also

It is made available under a CC-BY-NC-ND 4.0 International license .

display reduced binding to CR3022. Other investigators (86) using *in vitro*antibody selection identified a change at amino acid site S151 in the N-terminal
domain, and we found mutations S151N and S151I in our patient samples. We
also note that two variant amino acids (Gly446Val and Phe456Leu) we identified
are located in a linear epitope found to be critical for a neutralizing monoclonal
antibody described recently by Li et al. (87).

589 In the aggregate, these findings suggest that mutations emerging within 590 the spike protein at positions within and proximal to known neutralization 591 epitopes may result in escape from antibodies and other therapeutics currently 592 under development. Importantly, our study did not reveal that these mutant 593 strains had disproportionately increased over time. The findings may also bear 594 on the occurrence of multiple amino acid substitutions at the same amino acid 595 site that we identified in this study, commonly a signal of selection. In the 596 aggregate, the data support a multifaceted approach to serological monitoring 597 and biologics development, including the use of monoclonal antibody cocktails 598 (46, 47, 88).

599

600 CONCLUDING STATEMENT

601 Our work represents analysis of the largest sample to date of SARS-CoV-2

602 genome sequences from patients in one metropolitan region in the United States.

603 The investigation was facilitated by the fact that we had rapidly assessed a

604 SARS-CoV-2 molecular diagnostic test in January 2020, more than a month

before the first COVID-19 patient was diagnosed in Houston. In addition, our

It is made available under a CC-BY-NC-ND 4.0 International license .

606 large healthcare system has seven hospitals and many facilities (e.g., outpatient 607 care centers, emergency departments) located in geographically diverse areas of 608 the city. We also provide reference laboratory services for other healthcare 609 entities in the Houston area. Together, our facilities serve patients of diverse 610 ethnicities and socioeconomic status. Thus, the data presented here likely reflect 611 a broad overview of virus diversity causing COVID-19 infections throughout 612 metropolitan Houston. We previously exploited these features to study influenza 613 and *Klebsiella pneumoniae* dissemination in metropolitan Houston (89, 90). We 614 acknowledge that every "twig" of the SARS-CoV-2 evolutionary tree in Houston is 615 not represented in these data. The samples studied are not comprehensive for 616 the entire metropolitan region. For example, it is possible that our strain samples 617 are not fully representative of individuals who are indigent, homeless, or of very 618 low socioeconomic groups. In addition, although the strain sample size is 619 relatively large compared to other studies, the sample represents only about 10% 620 of all COVID-19 cases in metropolitan Houston documented in the study period. 621 In addition, some patient samples contain relatively small amounts of virus 622 nucleic acid and do not yield adequate sequence data for high-quality genome 623 analysis. Thus, our data likely underestimate the extent of genome diversity 624 present among SARS-CoV-2 causing COVID-19 and will not identify all amino 625 acid replacements in the virus in this geographic region. It will be important to 626 sequence and analyze the genomes of additional SARS-CoV-2 strains causing 627 COVID-19 cases in the ongoing second massive disease wave in metropolitan 628 Houston, and these studies are underway. Data of this type will be especially

It is made available under a CC-BY-NC-ND 4.0 International license .

important to have if a third and subsequent waves were to occur in metropolitan
Houston, as it could provide insight into molecular and epidemiologic events
contributing to them.

632 The genomes reported here are an important data resource that will 633 underpin our ongoing study of SARS-CoV-2 molecular evolution, dissemination, 634 and medical features of COVID-19 in Houston. As of August 19, 2020, there 635 were 135,866 reported cases of COVID-19 in metropolitan Houston, and the 636 number of cases is increasing daily. Although the full array of factors contributing 637 to the massive second wave in Houston is not known, it is possible that the 638 potential for increased transmissibility of SARS-CoV-2 with the Gly614 may have 639 played a role, as well as changes in behavior associated with the Memorial Day and July 4th holidays, and relaxation of some of the social constraints imposed 640 641 during the first wave. The availability of extensive virus genome data dating from 642 the earliest reported cases of COVID-19 in metropolitan Houston, coupled with 643 the database we have now constructed, may provide critical insights into the 644 origin of new infection spikes and waves occurring as public health constraints 645 are further relaxed, schools and colleges re-open, holidays occur, commercial air 646 travel increases, and individuals change their behavior because of COVID-19 647 "fatique." The genome data will also be useful in assessing ongoing molecular 648 evolution in spike and other proteins as baseline herd immunity is generated, 649 either by natural exposure to SARS-CoV-2 or by vaccination. The signal of 650 potential selection contributing to some spike protein diversity and identification

It is made available under a CC-BY-NC-ND 4.0 International license .

- of naturally occurring mutant RBD variants with altered serologic recognition
- 652 warrant close attention and expanded study.
- 653
- 654 MATERIALS AND METHODS

Patient specimens. All specimens were obtained from individuals who were registered patients at Houston Methodist hospitals, associated facilities (e.g., urgent care centers), or institutions in the greater Houston metropolitan region that use our laboratory services. Virtually all individuals met the criteria specified by the Centers for Disease Control and Prevention to be classified as a person under investigation.

661

662 SARS-CoV-2 molecular diagnostic testing. Specimens obtained from 663 symptomatic patients with a high degree of suspicion for COVID-19 disease were 664 tested in the Molecular Diagnostics Laboratory at Houston Methodist Hospital 665 using an assay granted Emergency Use Authorization (EUA) from the FDA (https://www.fda.gov/medical-devices/emergency-situations-medical-666 667 devices/fags-diagnostic-testing-sars-cov-2#offeringtests). Multiple testing platforms were used, including an assay that follows the protocol published by 668 669 the WHO (https://www.who.int/docs/default-source/coronaviruse/protocol-v2-670 1.pdf) using the EZ1 virus extraction kit and EZ1 Advanced XL instrument or 671 QIASymphony DSP Virus kit and QIASymphony instrument for nucleic acid extraction and ABI 7500 Fast Dx instrument with 7500 SDS software for reverse 672 673 transcription RT-PCR, the COVID-19 test using BioFire Film Array 2.0

It is made available under a CC-BY-NC-ND 4.0 International license .

- 674 instruments, the Xpert Xpress SARS-CoV-2 test using Cepheid GeneXpert 675 Infinity or Cepheid GeneXpert Xpress IV instruments, the SARS-CoV-2 Assay 676 using the Hologic Panther instrument, and the Aptima SARS-CoV-2 Assay using 677 the Hologic Panther Fusion system. All assays were performed according to the 678 manufacturer's instructions. Testing was performed on material obtained from 679 nasopharyngeal or oropharyngeal swabs immersed in universal transport media 680 (UTM), bronchoalveolar lavage fluid, or sputum treated with dithiothreitol (DTT). 681 To standardize specimen collection, an instructional video was created for 682 Houston Methodist healthcare workers 683 (https://vimeo.com/396996468/2228335d56). 684 685 Epidemiologic curve. The number of confirmed COVID-19 positive cases 686 was obtained from USAFacts.org (https://usafacts.org/visualizations/coronavirus-687 covid-19-spread-map/) for Austin, Brazoria, Chambers, Fort Bend, Galveston, 688 Harris, Liberty, Montgomery, and Waller counties. Positive cases for Houston Methodist Hospital patients were obtained from our Laboratory Information 689 690 System and plotted using the documented collection time. 691 692 SARS-CoV-2 genome sequencing. Libraries for whole virus genome 693 sequencing were prepared according to version 1 or version 3 of the ARTIC 694 nCoV-2019 sequencing protocol (https://artic.network/ncov-2019). Long reads
- 695 were generated with the LSK-109 sequencing kit, 24 native barcodes (NBD104

It is made available under a CC-BY-NC-ND 4.0 International license .

and NBD114 kits), and a GridION instrument (Oxford Nanopore). Short reads
were generated with the NexteraXT kit and NextSeq 550 instrument (Illumina).

699 SARS-CoV-2 genome sequence analysis. Consensus virus genome 700 sequences from the Houston area isolates were generated using the ARTIC 701 nCoV-2019 bioinformatics pipeline. Publicly available genomes and metadata 702 were acquired through GISAID on August 19, 2020. GISAID sequences 703 containing greater than 1% N characters, and Houston sequences with greater 704 than 5% N characters were removed from consideration. Identical GISAID 705 sequences originating from the same geographic location with the same 706 collection date were also removed from consideration to reduce redundancy. 707 Nucleotide sequence alignments for the combined Houston and GISAID strains 708 were generated using MAFFT version 7.130b with default parameters (91). 709 Sequences were manually curated in JalView (92) to trim the ends and to 710 remove sequences containing spurious inserts. Phylogenetic trees were 711 generated using FastTree with the generalized time-reversible model for 712 nucleotide sequences (93). CLC Genomics Workbench (QIAGEN) was used to 713 generate the phylogenetic tree figures. 714 715 **Geospatial mapping**. The home address zip code for all SARS-CoV-2

713 Geospatial mapping. The nome address 2ip code for all SARS-COV-2
 716 positive patients was used to generate the geospatial maps. To examine
 717 geographic relatedness among genetically similar isolates, geospatial maps were
 718 filtered to isolates containing specific amino acid changes.

It is made available under a CC-BY-NC-ND 4.0 International license .

719

Time series. Geospatial data were filtered into wave 1 (3/5/20205/11/2020) and wave 2 (5/12/2020-7/7/2020) time intervals to illustrate the
spread of confirmed SARS-CoV-2 positive patients identified over time.

123

724 Machine learning. Virus genome alignments and patient metadata were 725 used to build models to predict patient metadata and outcomes using both 726 classification models and regression. Metadata considered for prediction in the 727 classification models included age, ABO and Rh blood type, ethnic group, 728 ethnicity, sex, ICU admission, IMU admission, supplemental oxygen use, and 729 ventilator use. Metadata considered for prediction in regression analysis included 730 ICU length of stay, IMU length of stay, total length of stay, supplemental oxygen 731 use, and ventilator use. Because sex, blood type, Rh factor, age, age decade, 732 ethnicity, and ethnic group are features in the patient features and combined 733 feature sets, models were not trained for these labels using patient and 734 combined feature sets. Additionally, age, length of stay, IMU length of stay, ICU 735 length of stay, mechanical ventilation days, and supplemental oxygen days were 736 treated as regression problems and XGBoost regressors were built while the rest 737 were treated as classification problems and XGBoost classifiers were built. 738 Three types of features were considered for training the XGBoost 739 classifiers: alignment features, patient features, and the combination of alignment 740 and patient features. Alignment features were generated from the consensus

741 genome alignment such that columns containing ambiguous nucleotide bases

It is made available under a CC-BY-NC-ND 4.0 International license .

742	were removed to ensure the models did not learn patterns from areas of low
743	coverage. These alignments were then one-hot encoded to form the alignment
744	features. Patient metadata values were one-hot encoded with the exception of
745	age, which remained as a raw integer value, to create the patient features.
746	These metadata values consisted of age, ABO, Rh blood type, ethnic group,
747	ethnicity, and sex. All three types of feature sets were used to train models that
748	predict ICU length of stay, IMU length of stay, overall length of stay, days of
749	supplemental oxygen therapy, and days of ventilator usage while only alignment
750	features were used to train models that predict age, ABO, Rh blood type, ethnic
751	group, ethnicity, and sex.
752	A ten-fold cross validation was used to train XGBoost models (94) as
753	described previously (95, 96). Depths of 4, 8, 16, 32, and 64 were used to tune
754	the models, but accuracies plateaued after a depth of 16. SciKit-Learn's (97)
755	classification report and r2 score were then used to access overall accuracy of
756	the classification and regression models, respectively.
757	
758	Patient metadata correlations. We encoded values into multiple columns

Patient metadata correlations. We encoded values into multiple columns
for each metadata field for patients if metadata was available. For example, the
ABO column was divided into four columns for A, B, AB, and O blood type.
Those columns were encoded with a 1 for the patients' ABO type, with all other
columns encoded with 0. This was repeated for all non-outcome metadata fields.
Age, however, was not re-encoded, as the raw integer values were used. Each
column was then correlated to the various outcome values for each patient

It is made available under a CC-BY-NC-ND 4.0 International license .

765 (deceased, ICU length, IMU length, length of stay, supplemental oxygen length, 766 and ventilator length) to obtain a Pearson coefficient correlation value for each 767 metadata label and outcome. 768 769 Analysis of the nsp12 polymerase and S protein genes. The nsp12 770 virus polymerase and S protein genes were analyzed by plotting SNP density in 771 the consensus alignment using Python (Python v3.4.3, Biopython Package 772 v1.72). The frequency of SNPs in the Houston isolates was assessed, along with 773 amino acid changes for nonsynonymous SNPs. 774 775 Cycle threshold (Ct) comparison of SARS-CoV-2 strains with either 776 Asp614 or Gly614 amino acid replacements in the spike protein. The cycle 777 threshold (Ct) for every sequenced strain that was detected from a patient 778 specimen using the SARS-CoV-2 Assay on the Hologic Panther instrument was 779 retrieved from the Houston Methodist Hospital Laboratory Information System. 780 Statistical significance between the mean Ct value for strains with an aspartate 781 (n=102) or glycine (n=812) amino acid at position 614 of the spike protein was 782 determined with the Mann-Whitney test (GraphPad PRISM 8). 783 784 Creation and characterization of spike protein RBD variants. Spike 785 RBD variants were cloned into the spike-6P (HexaPro; F817P, A892P, A899P, 786 A942P, K986P, V987P) base construct that also includes the D614G substitution 787 (pIF638). Briefly, a segment of the gene encoding the RBD was excised with

It is made available under a CC-BY-NC-ND 4.0 International license .

788 EcoRI and Nhel, mutagenized by PCR, and assembled with a HiFi DNA 789 Assembly Cloning Kit (NEB).

790 FreeStyle 293-F cells (Thermo Fisher Scientific) were cultured and 791 maintained in a humidified atmosphere of 37°C and 8% CO₂ while shaking at 792 110-125 rpm. Cells were transfected with plasmids encoding spike protein 793 variants using polyethylenimine. Three hours post-transfection, 5µM kifunensine 794 was added to each culture. Cells were harvested four days after transfection and 795 the protein containing supernatant was separated from the cells by two 796 centrifugation steps: 10 min at 500rcf and 20 min at 10,000rcf. Supernatants 797 were kept at 4°C throughout. Clarified supernatant was loaded on a Poly-Prep 798 chromatography column (Bio-Rad) containing Strep-Tactin Superflow resin (IBA), 799 washed with five column volumes (CV) of wash buffer (100mM Tris-HCl pH 8.0, 800 150mM NaCI; 1mM EDTA), and eluted with four CV of elution buffer (100mM 801 Tris-HCl pH 8.0, 150mM NaCl, 1mM EDTA, 2.5mM d-Desthiobiotin). The eluate 802 was spin-concentrated (Amicon Ultra-15) to 600µL and further purified via size-803 exclusion chromatography (SEC) using a Superose 6 Increase 10/300 column 804 (G.E.) in SEC buffer (2mM Tris pH 8.0, 200mM NaCl and 0.02% NaN₃). Proteins 805 were concentrated to 300µL and stored in SEC buffer. 806 The RBD spike mutants chosen for analysis were all RBD amino acid 807 mutants identified by our genome sequencing study as of June 15, 2020. We 808 note that the exact boundaries of the RBD domain varies depending on the paper

used as reference. We used the boundaries demarcated in Figure 1A of Cai et al.

809

810 Science paper 21 July) (98) that have K528R located at the RBD-CTD1 interface.

It is made available under a CC-BY-NC-ND 4.0 International license .

811

Differential scanning fluorimetry. Recombinant spike proteins were diluted to a final concentration of 0.05mg/mL with 5X SYPRO orange (Sigma) in a 96-well qPCR plate. Continuous fluorescence measurements (λ ex=465nm, λ em=580nm) were collected with a Roche LightCycler 480 II. The temperature was increased from 22°C to 95°C at a rate of 4.4°C/min. We report the first melting transition.

818

819 Enzyme-linked immunosorbent assays. ELISAs were performed to 820 characterize binding of S6P, S6P D614G, and S6P D614G-RBD variants to 821 human ACE2 and the RBD-binding monoclonal antibody CR3022. The ACE2-822 hFc chimera was obtained from GenScript (Z03484), and the CR3022 antibody 823 was purchased from Abcam (Ab273073). Corning 96-well high-binding plates 824 (CLS9018BC) were coated with spike variants at 2µg/mL overnight at 4°C. After 825 washing four times with phosphate buffered saline + 0.1% Tween20 (PBST; 826 300µL/well), plates were blocked with PBS+2% milk (PBSM) for 2 h at room 827 temperature and again washed four times with PBST. These were serially diluted 828 in PBSM 1:3 seven times in triplicate. After 1 h incubation at room temperature, 829 plates were washed four times in PBST, labeled with 50µL mouse anti-human 830 IgG1 Fc-HRP (SouthernBlots, 9054-05) for 45 min in PBSM, and washed again 831 in PBST before addition of 50µL 1-step Ultra TMB-ELISA substrate (Thermo 832 Scientific, 34028). Reactions were developed for 15 min and stopped by addition of 50µL 4M H₂SO₄. Absorbance intensity (450nm) was normalized within a plate 833

It is made available under a CC-BY-NC-ND 4.0 International license .

- and EC₅₀ values were calculated through 4-parameter logistic curve (4PL)
- analysis using GraphPad PRISM 8.4.3.
- 836

837 ACKNOWLEDGMENTS

- 838 We thank Dr. Steven Hinrichs and colleagues at the Nebraska Public Health
- Laboratory, and Dr. David Persse and colleagues at the Houston Health
- 840 Department for providing samples used to validate our initial SARS-CoV-2
- 841 molecular assay. We thank Drs. Jessica Thomas and Zejuan Li, Erika Walker,
- 842 Concepcion C. Cantu, the very talented and dedicated molecular technologists,
- and the many labor pool volunteers in the Molecular Diagnostics Laboratory for
- their dedication to patient care. We also thank Brandi Robinson, Harrold Cano,
- 845 Cory Romero, Brooke Burns, and Hayder Mahmood for technical assistance. We
- are indebted to Drs. Marc Boom and Dirk Sostman for their support, and to many
- 847 very generous Houston philanthropists for their tremendous support of this
- ongoing project, including but not limited to anonymous, Ann and John Bookout
- 849 III, Carolyn and John Bookout, Ting Tsung and Wei Fong Chao Foundation, Ann
- and Leslie Doggett, Freeport LNG, the Hearst Foundations, Jerold B. Katz
- 851 Foundation, C. James and Carole Walter Looke, Diane and David Modesett, the
- 852 Sherman Foundation, and Paula and Joseph C. "Rusty" Walter III. We gratefully
- acknowledge the originating and submitting laboratories of the SARS-CoV-2
- genome sequences from GISAID's EpiFluTM Database used in some of the work
- 855 presented here. We also thank many colleagues for critical reading of the
- 856 manuscript and suggesting improvements, and Sasha Pejerrey, Adrienne

It is made available under a CC-BY-NC-ND 4.0 International license .

857 Winston, Heather McConnell, and Kathryn Stockbauer for editorial contributions.

858 We appreciate Dr. Stephen Schaffner for his helpful comments regarding the

859 correlation analysis. We are especially indebted to Drs. Nancy Jenkins and Neal

860 Copeland for their scholarly suggestions to improve an early version of the

861 manuscript.

862

863 Author contributions: J.M.M. conceptualized and designed the project; S.W.L,

864 R.J.O., P.A.C., D.W.B., J.J.D., M.S., M.N., M.O.S., C.C.C., P.Y., L.P., S.S., H.-C.

865 K., H.H., G.E., H.A.T.N., J.H.L., M.K., J.G., D.B., J.G., J.S.M., C.-W.C., K.J., and

866 I.F. performed research. All authors contributed to writing the manuscript.

⁸⁶⁷ Data and material availability: The spike-6P ("HexaPro") plasmid is available from

868 Addgene (ID: 154754) or from I.J.F. under a material transfer agreement with

The University of Texas at Austin. Additional plasmids are available upon requestfrom I.J.F.

871

872 This study was supported by the Fondren Foundation, Houston Methodist

Hospital and Research Institute (to J.M.M.), NIH grant Al127521 (to J.S.M.), NIH

grants GM120554 and GM124141 to I.J.F., the Welch Foundation (F-1808 to

I.J.F.), and the National Science Foundation (1453358 to I.J.F.). I.J.F. is a CPRIT

876 Scholar in Cancer Research. J.J.D., M.S., and M.N. are supported by the NIAID

877 Bacterial and Viral Bioinformatics resource center award (contract number

878 **75N93019C00076**).

879

It is made available under a CC-BY-NC-ND 4.0 International license .

880 [Figure Legends]

- **FIG 1** (A) Confirmed COVID-19 cases in the Greater Houston Metropolitan
- region. Cumulative number of COVID-19 patients over time through July 7, 2020.
- 883 Counties include Austin, Brazoria, Chambers, Fort Bend, Galveston, Harris,
- Liberty, Montgomery, and Waller. The shaded area represents the time period
- 885 during which virus genomes characterized in this study were recovered from
- 886 COVID-19 patients. The red line represents the number of COVID-19 patients
- diagnosed in the Houston Methodist Hospital Molecular Diagnostic Laboratory.
- (B) Distribution of strains with either the Asp614 or Gly614 amino acid variant in
- spike protein among the two waves of COVID-19 patients diagnosed in the
- 890 Houston Methodist Hospital Molecular Diagnostic Laboratory. The large inset

shows major clade frequency for the time frame studied.

892

FIG 2 Sequential time-series heatmaps for all COVID-19 Houston Methodist patients during the study period. Geospatial distribution of COVID-19 patients is based on zip code. Panel A (left) shows geospatial distribution of sequenced SARS-CoV-2 strains in wave 1 and panel B (right) shows wave 2 distribution. The collection dates are shown at the bottom of each panel. The insets refer to numbers of strains in the color spectrum used. Note difference in numbers of strains used in panel A and panel B insets.

900

It is made available under a CC-BY-NC-ND 4.0 International license .

901 **FIG 3** Location of amino acid replacements in RNA-dependent RNA polymerase

902 (RdRp/Nsp12) among the 5,085 genomes of SARS-CoV-2 sequenced. The

various RdRp domains are color-coded. The numbers refer to amino acid site.

904 Note that several amino acid sites have multiple variants identified.

905

906 **FIG 4** Amino acid changes identified in Nsp12 (RdRp) in this study that may 907 influence interaction with remdesivir. The schematic at the top shows the domain 908 architecture of Nsp12. (Left) Ribbon representation of the crystal structure of 909 Nsp12-remdesivir monophosphate-RNA complex (PDB code: 7BV2). The 910 structure in the right panel shows a magnified view of the boxed area in the left 911 panel. The Nsp12 domains are colored as in the schematic at the top. The 912 catalytic site in Nsp12 is marked by a black circle in the right panel. The side 913 chains of amino acids comprising the catalytic site of RdRp (Ser758, Asp759, 914 and Asp760) are shown as balls and stick and colored yellow. The nucleotide 915 binding site is boxed in the right panel. The side chains of amino acids 916 participating in nucleotide binding (Lys544, Arg552, and Arg554) are shown as 917 balls and sticks and colored light blue. Remdesivir molecule incorporated into the 918 nascent RNA is shown as balls and sticks and colored light pink. The RNA is 919 shown as a blue cartoon and bases are shown as sticks. The positions of $C\alpha$ 920 atoms of amino acids identified in this study are shown as red and green spheres 921 and labeled. The amino acids that are shown as red spheres are located above 922 the nucleotide binding site, whereas Cys812 located at the catalytic site is shown

It is made available under a CC-BY-NC-ND 4.0 International license .

923 as a green sphere. The side chain of active site residue Ser758 is shown as ball

924 and sticks and colored yellow. The location of C α atoms of remdesivir resistance

925 conferring amino acid Val556 is shown as blue sphere and labeled.

926

FIG 5 Location of amino acid replacements in spike protein among the 5,085
genomes of SARS-CoV-2 sequenced. The various spike protein domains are
color-coded. The numbers refer to amino acid site. Note that many amino acid
sites have multiple variants identified.

931

932 FIG 6 Location of amino acid substitutions mapped on the SARS-CoV-2 spike 933 protein. Model of the SARS-CoV-2 spike protein with one protomer shown as 934 ribbons and the other two protomers shown as a molecular surface. The C α atom 935 of residues found to be substituted in one or more virus isolates identified in this 936 study is shown as a sphere on the ribbon representation. Residues found to be 937 substituted in 1–9 isolates are colored tan, 10–99 isolates yellow, 100–999 938 isolates colored red (H49Y and F1052L), and >1000 isolates purple (D614G). 939 The surface of the aminoterminal domain (NTD) that is distal to the trimeric axis has a high density of substituted residues. RBD, receptor binding domain. 940

941

FIG 7 Cycle threshold (Ct) for every SARS-CoV-2 patient sample tested using
the Hologic Panther assay. Data are presented as mean +/- standard error of the

It is made available under a CC-BY-NC-ND 4.0 International license .

mean for strains with an aspartate (D614, *n*=102 strains, blue) or glycine
(G614, *n*=812 strains, red) at amino acid 614 of the spike protein. Mann-Whitney
test, **P*<0.0001.

947

948	FIG 8 Biochemical characterization of spike RBD variants. (A) Size-exclusion
949	chromatography (SEC) traces of the indicated spike-RBD variants. Dashed line
950	indicates the elution peak of spike-6P. (B) The relative expression of all RBD
951	variants as determined by the area under the SEC traces. All expression levels
952	are normalized relative to spike-6P. (C) Thermostability analysis of RBD variants
953	by differential scanning fluorimetry. Each sample had three replicates and only
954	mean values were plotted. Black vertical dashed line indicates the first melting
955	temperature of 6P-D614G and orange vertical dashed line indicates the first
956	melting temperature of the least stable variant (spike-G446V). (D) First apparent
957	melting temperature of all RBD variants. (E) ELISA-based binding affinities for
958	ACE2 and (F) the neutralizing antibody CR3022 to the indicated RBD variants.
959	(G) Summary of EC50s for all measured RBD variants.
060	

960

It is made available under a CC-BY-NC-ND 4.0 International license .

962 [Supplemental Figure Legends]

Supplemental FIG 1 Geographic distribution of representative SARS-CoV-2 963 964 subclades in the Houston metropolitan region. Blue shaded areas denote zip 965 codes containing COVID-19 cases with the designated subclade. 966 967 **Supplemental FIG 2** Cladograms showing distribution of patient metadata. 968 including (A) age (in decade), (B) sex, (C) ethnicity/ethnic group, (D) wave, (E) 969 level of care, (F) mechanical ventilation, (G) length of stay, and (H) mortality. 970 971 **Supplemental FIG 3** Distribution of subclades characterized by particular amino 972 acid replacements in Nsp12 (RdRp). 973 974 **Supplemental FIG 4** Mapping the location of amino acid replacements on 975 Nsp12 (RdRp) from COVID-19 virus. The schematic on the top shows the domain architecture of Nsp12. The individual domains of Nsp12 are color-coded 976 977 and labeled. Ribbon representation of the crystal structure of Nsp12-remdesivir monophosphate-RNA complex is shown (PDB code: 7BV2). The structure in the 978 979 right panel is obtained by rotating the left panel 180° along the y-axis. The Nsp12 980 domains are colored as in the schematic at the top. The positions of $C\alpha$ atoms of 981 the surface-exposed amino acids identified in this study are shown as yellow spheres, whereas the positions of $C\alpha$ atoms of the buried amino acids are 982 983 depicted as cyan spheres. The catalytic site in RdRp is marked by a black circle

984 in the right panel. The side chains of amino acids comprising the catalytic site of

It is made available under a CC-BY-NC-ND 4.0 International license .

985	RdRp are shown as balls and sticks and colored yellow. The nucleotide binding
986	site is boxed and labeled in the right panel. The side chains of amino acids
987	participating in nucleotide binding (Lys545, Arg553, and Arg555) are shown as
988	balls and sticks. Remdesivir molecule incorporated into the nascent RNA is
989	shown as balls and sticks and colored light pink. The RNA is shown as blue
990	cartoon and bases are shown as sticks. The positions of $C\alpha$ atoms of amino
991	acids that are predicted to influence remdesivir binding are shown as red
992	spheres. The amino acid Cys812 located at the catalytic site is shown as green
993	sphere. The location of C $\!\alpha$ atoms of remdesivir resistance conferring amino acid
994	Val556 is shown as blue sphere and labeled.

995

996 Supplemental FIG 5 Distribution of subclades characterized by particular amino
997 acid replacements in spike protein.

998

Supplemental FIG 6 Biochemical characterization of single amino acid variants of spike protein RBD. (A, B) Size-exclusion chromatography (SEC) traces of the indicated spike-RBD variants. Dashed line indicates the elution peak of spike-6P.
(C) Thermostability analysis of RBD variants. Each sample had three replicates and only mean values were plotted. Black vertical dashed line indicates the first melting temperature of 6P-D614G. (D) ELISA-based binding affinities for ACE2 and (E) neutralizing monoclonal antibody CR3022 to the indicated RBD variants.

1007

It is made available under a CC-BY-NC-ND 4.0 International license .

1008	[Supplemental Table Legends]
1009	Supplemental Table 1 Patient demographics in wave 1 and wave 2.
1010	
1011	Supplemental Table 2 Classifier accuracy scores and performance of machine
1012	learning models.
1013	
1014	Supplemental Table 3 Pearson correlation coefficient data for correlation
1015	analysis.
1016	
1017	Supplemental Table 4 Primers and plasmids used for the in vitro
1018	characterization of recombinant proteins with single amino acid replacements in
1019	the receptor binding domain (RBD) region of spike protein, and their biophysical
1020	properties. To test the hypothesis that RBD amino acid changes enhance viral
1021	fitness, we expressed spike variants with the Asp614Gly replacement and 13
1022	clinical RBD variants identified in our genome sequencing studies. Table S4A
1023	contains the primers used, Table S4B contains the plasmid construct information,
1024	and Table S4C contains the biophysical properties of the resultant spike protein
1025	variants.

It is made available under a CC-BY-NC-ND 4.0 International license .

1026 **REFERENCES**

1027	1.	2020. World Health Organization Coronavirus Disease 2019 (COVID-19) Situation Report.
1028		https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200420-sitrep-91-
1029		covid-19.pdf?sfvrsn=fcf0670b_4. Accessed April 21.
1030	2.	Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, Haagmans BL,
1031		Lauber C, Leontovich AM, Neuman BW, Penzar D, Perlman S, Poon LLM, Samborskiy DV,
1032		Sidorov IA, Sola I, Ziebuhr J, Coronaviridae Study Group of the International Committee on
1033		Taxonomy of V. 2020. The species Severe acute respiratory syndrome-related coronavirus:
1034		classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology 5:536-544.
1035	3.	Wang C, Horby PW, Hayden FG, Gao GF. 2020. A novel coronavirus outbreak of global health
1036	5.	concern. Lancet 395:470-473.
1030	4.	Perlman S. 2020. Another Decade, Another Coronavirus. New England Journal of Medicine
1038	ч.	382:760-762.
1030	5.	Allel K, Tapia-Muñoz T, Morris W. 2020. Country-level factors associated with the early spread
1037	5.	of COVID-19 cases at 5, 10 and 15 days since the onset. Glob Public Health
1040		
1041	6	doi:10.1080/17441692.2020.1814835:1-14.
	6.	Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia
1043		J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R,
1044		Gao Z, Jin Q, Wang J, Cao B. 2020. Clinical features of patients infected with 2019 novel
1045	_	coronavirus in Wuhan, China. Lancet 395:497-506.
1046	7.	Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F,
1047		Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W. 2020. A Novel Coronavirus from Patients with
1048		Pneumonia in China, 2019. New England Journal of Medicine 382:727-733.
1049	8.	Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, Xing F, Liu J, Yip CC, Poon RW, Tsoi HW,
1050		Lo SK, Chan KH, Poon VK, Chan WM, Ip JD, Cai JP, Cheng VC, Chen H, Hui CK, Yuen KY.
1051		2020. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating
1052		person-to-person transmission: a study of a family cluster. Lancet 395:514-523.
1053	9.	Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML,
1054		Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ. 2020. A new
1055		coronavirus associated with human respiratory disease in China. Nature 579:265-269.
1056	10.	Bedford T, Greninger AL, Roychoudhury P, Starita LM, Famulare M, Huang M-L, Nalla A,
1057		Pepper G, Reinhardt A, Xie H, Shrestha L, Nguyen TN, Adler A, Brandstetter E, Cho S, Giroux
1058		D, Han PD, Fay K, Frazar CD, Ilcisin M, Lacombe K, Lee J, Kiavand A, Richardson M, Sibley
1059		TR, Truong M, Wolf CR, Nickerson DA, Rieder MJ, Englund JA, Hadfield J, Hodcroft EB,
1060		Huddleston J, Moncla LH, Müller NF, Neher RA, Deng X, Gu W, Federman S, Chiu C, Duchin J,
1061		Gautom R, Melly G, Hiatt B, Dykema P, Lindquist S, Queen K, Tao Y, Uehara A, Tong S, et al.
1062		2020. Cryptic transmission of SARS-CoV-2 in Washington State. medRxiv
1063		doi:10.1101/2020.04.02.20051417:2020.04.02.20051417.
1064	11.	Gonzalez-Reiche AS, Hernandez MM, Sullivan MJ, Ciferri B, Alshammary H, Obla A, Fabre S,
1065		Kleiner G, Polanco J, Khan Z, Alburquerque B, van de Guchte A, Dutta J, Francoeur N, Melo BS,
1066		Oussenko I, Deikus G, Soto J, Sridhar SH, Wang Y-C, Twyman K, Kasarskis A, Altman DR,
1067		Smith M, Sebra R, Aberg J, Krammer F, García-Sastre A, Luksza M, Patel G, Paniz-Mondolfi A,
1068		Gitman M, Sordillo EM, Simon V, van Bakel H. 2020. Introductions and early spread of SARS-
1069		CoV-2 in the New York City area. Science 369:297-301.
1070	12.	Health N. 2020. COVID-19 Data. https://www1.nyc.gov/site/doh/covid/covid-19-data.page.
1071		Accessed August 19.
1072	13.	County K. 2020. Daily COVID-19 outbreak summary.
1073		https://www.kingcounty.gov/depts/health/covid-19/data/daily-summary.aspx. Accessed August
1074		18.
1075	14.	Cline M, Emerson M, bratter j, howell j, Jeanty P. 2012. Houston Region Grows More
1076		Racially/Ethnically Diverse, With Small Declines in Segregation. A Joint Report Analyzing Census
1077		Data from 1990, 2000, and 2010.
1078	15.	Emerson M, Bratter J, Howell J, Jeanty P, Cline M. 2012. Houston Region Grows More

1079 Racially/Ethnically Diverse, With Small Declines in Segregation. A Joint Report Analyzing

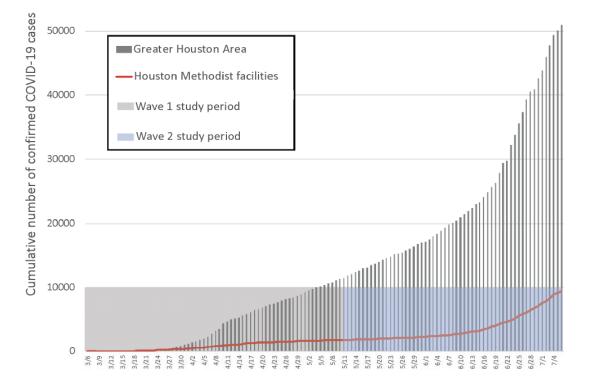
1080		Census Data from 1990, 2000, and 2010. Kinder Institute for Urban Research & the Hobby
1081		Center for the Study of Texas,
1082	16.	Services THaH. 2020. Texas Health and Human Services. <u>https://hhs.texas.gov/</u> . Accessed
1083 1084	17.	August 18. Vahidy FS, Drews AL, Masud FN, Schwartz RL, Askary BB, Boom ML, Phillips RA. 2020.
1084	17.	Characteristics and Outcomes of COVID-19 Patients During Initial Peak and Resurgence in the
1085		Houston Metropolitan Area. Jama doi:10.1001/jama.2020.15301.
1087	18.	Diehl WE, Lin AE, Grubaugh ND, Carvalho LM, Kim K, Kyawe PP, McCauley SM, Donnard E,
1088	101	Kucukural A, McDonel P, Schaffner SF, Garber M, Rambaut A, Andersen KG, Sabeti PC, Luban
1089		J. 2016. Ebola Virus Glycoprotein with Increased Infectivity Dominated the 2013-2016 Epidemic.
1090		Cell 167:1088-1098.e6.
1091	19.	Urbanowicz RA, McClure CP, Sakuntabhai A, Sall AA, Kobinger G, Müller MA, Holmes EC,
1092		Rey FA, Simon-Loriere E, Ball JK. 2016. Human Adaptation of Ebola Virus during the West
1093		African Outbreak. Cell 167:1079-1087.e5.
1094	20.	Dietzel E, Schudt G, Krähling V, Matrosovich M, Becker S. 2017. Functional Characterization of
1095		Adaptive Mutations during the West African Ebola Virus Outbreak. J Virol 91.
1096	21.	Kachroo P, Eraso JM, Beres SB, Olsen RJ, Zhu L, Nasser W, Bernard PE, Cantu CC, Saavedra
1097		MO, Arredondo MJ, Strope B, Do H, Kumaraswami M, Vuopio J, Grondahl-Yli-Hannuksela K,
1098		Kristinsson KG, Gottfredsson M, Pesonen M, Pensar J, Davenport ER, Clark AG, Corander J,
1099 1100		Caugant DA, Gaini S, Magnussen MD, Kubiak SL, Nguyen HAT, Long SW, Porter AR, DeLeo
1100		FR, Musser JM. 2019. Integrated analysis of population genomics, transcriptomics and virulence provides novel insights into Streptococcus pyogenes pathogenesis. Nat Genet 51:548-559.
1101	22.	Gao Y, Yan L, Huang Y, Liu F, Zhao Y, Cao L, Wang T, Sun Q, Ming Z, Zhang L, Ge J, Zheng
1102	22.	L, Zhang Y, Wang H, Zhu Y, Zhu C, Hu T, Hua T, Zhang B, Yang X, Li J, Yang H, Liu Z, Xu W,
1103		Guddat LW, Wang Q, Lou Z, Rao Z. 2020. Structure of the RNA-dependent RNA polymerase
1105		from COVID-19 virus. Science doi:10.1126/science.abb7498:eabb7498.
1106	23.	Yin W, Mao C, Luan X, Shen D-D, Shen Q, Su H, Wang X, Zhou F, Zhao W, Gao M, Chang S,
1107		Xie Y-C, Tian G, Jiang H-W, Tao S-C, Shen J, Jiang Y, Jiang H, Xu Y, Zhang S, Zhang Y, Xu
1108		HE. 2020. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-
1109		CoV-2 by remdesivir. Science 368:1499-1504.
1110	24.	Shannon A, Le NT, Selisko B, Eydoux C, Alvarez K, Guillemot JC, Decroly E, Peersen O, Ferron
1111		F, Canard B. 2020. Remdesivir and SARS-CoV-2: Structural requirements at both nsp12 RdRp
1112		and nsp14 Exonuclease active-sites. Antiviral Res 178:104793.
1113	25.	Gordon CJ, Tchesnokov EP, Woolner E, Perry JK, Feng JY, Porter DP, Gotte M. 2020.
1114		Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe
1115		acute respiratory syndrome coronavirus 2 with high potency. J Biol Chem
1116 1117	26	doi:10.1074/jbc.RA120.013679.
1117	26.	Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, Smith EC, Case JB, Feng JY, Jordan R, Ray AS, Cihlar T, Siegel D, Mackman RL, Clarke MO, Baric RS, Denison MR.
1110		2018. Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral
1120		Polymerase and the Proofreading Exoribonuclease. mBio 9.
1120	27.	de Wit E, Feldmann F, Cronin J, Jordan R, Okumura A, Thomas T, Scott D, Cihlar T, Feldmann
1122	27.	H. 2020. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque
1123		model of MERS-CoV infection. Proc Natl Acad Sci U S A 117:6771-6776.
1124	28.	Williamson BN, Feldmann F, Schwarz B, Meade-White K, Porter DP, Schulz J, van Doremalen
1125		N, Leighton I, Yinda CK, Pérez-Pérez L, Okumura A, Lovaglio J, Hanley PW, Saturday G, Bosio
1126		CM, Anzick S, Barbian K, Cihlar T, Martens C, Scott DP, Munster VJ, de Wit E. 2020. Clinical
1127		benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. Nature 585:273-276.
1128	29.	Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, Feldt T, Green G, Green ML,
1129		Lescure FX, Nicastri E, Oda R, Yo K, Quiros-Roldan E, Studemeister A, Redinski J, Ahmed S,
1130		Bernett J, Chelliah D, Chen D, Chihara S, Cohen SH, Cunningham J, D'Arminio Monforte A,
1131		Ismail S, Kato H, Lapadula G, L'Her E, Maeno T, Majumder S, Massari M, Mora-Rillo M, Mutoh
1132		Y, Nguyen D, Verweij E, Zoufaly A, Osinusi AO, DeZure A, Zhao Y, Zhong L, Chokkalingam A,
1133		Elboudwarej E, Telep L, Timbs L, Henne I, Sellers S, Cao H, Tan SK, Winterbourne L, Desai P,
1134 1135		et al. 2020. Compassionate Use of Remdesivir for Patients with Severe Covid-19. N Engl J Med doi:10.1056/NEJMoa2007016.
1155		u01.10.1050/INLJIVI0a2007010.

1136 1137	30.	Goldman JD, Lye DCB, Hui DS, Marks KM, Bruno R, Montejano R, Spinner CD, Galli M, Ahn MY, Nahass RG, Chen YS, SenGupta D, Hyland RH, Osinusi AO, Cao H, Blair C, Wei X,
1138		Gaggar A, Brainard DM, Towner WJ, Muñoz J, Mullane KM, Marty FM, Tashima KT, Diaz G,
1139		Subramanian A. 2020. Remdesivir for 5 or 10 Days in Patients with Severe Covid-19. N Engl J
1140		Med doi:10.1056/NEJMoa2015301.
1141	31.	Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, Hohmann E, Chu HY,
1142		Luetkemeyer A, Kline S, Lopez de Castilla D, Finberg RW, Dierberg K, Tapson V, Hsieh L,
1143		Patterson TF, Paredes R, Sweeney DA, Short WR, Touloumi G, Lye DC, Ohmagari N, Oh MD,
1144		Ruiz-Palacios GM, Benfield T, Fätkenheuer G, Kortepeter MG, Atmar RL, Creech CB, Lundgren
1145		J, Babiker AG, Pett S, Neaton JD, Burgess TH, Bonnett T, Green M, Makowski M, Osinusi A,
1146		Nayak S, Lane HC. 2020. Remdesivir for the Treatment of Covid-19 - Preliminary Report. N Engl
1147		J Med doi:10.1056/NEJMoa2007764.
1148	32.	Spinner CD, Gottlieb RL, Criner GJ, Arribas López JR, Cattelan AM, Soriano Viladomiu A,
1149	021	Ogbuagu O, Malhotra P, Mullane KM, Castagna A, Chai LYA, Roestenberg M, Tsang OTY,
1150		Bernasconi E, Le Turnier P, Chang SC, SenGupta D, Hyland RH, Osinusi AO, Cao H, Blair C,
1151		Wang H, Gaggar A, Brainard DM, McPhail MJ, Bhagani S, Ahn MY, Sanyal AJ, Huhn G, Marty
1152		FM. 2020. Effect of Remdesivir vs Standard Care on Clinical Status at 11 Days in Patients With
1153		Moderate COVID-19: A Randomized Clinical Trial. Jama doi:10.1001/jama.2020.16349.
1154	33.	Olender SA, Perez KK, Go AS, Balani B, Price-Haywood EG, Shah NS, Wang S, Walunas TL,
1155	55.	Swaminathan S, Slim J, Chin B, De Wit S, Ali SM, Soriano Viladomiu A, Robinson P, Gottlieb
1156		RL, Tsang TYO, Lee IH, Haubrich RH, Chokkalingam AP, Lin L, Zhong L, Bekele BN, Mera-
1157		Giler R, Gallant J, Smith LE, Osinusi AO, Brainard DM, Hu H, Phulpin C, Edgar H, Diaz-Cuervo
1158		H, Bernardino JI. 2020. Remdesivir for Severe COVID-19 versus a Cohort Receiving Standard of
1159		Care. Clin Infect Dis doi:10.1093/cid/ciaa1041.
1160	34.	(CNCB) CNCfB. 2020. 2019 Novel Coronavirus Resource (2019nCoVR).
1161	51.	https://bigd.big.ac.cn/ncov/about?lang=en. Accessed August 19.
1162	35.	Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, Graham BS, McLellan JS.
1163	55.	2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science
1165		367:1260-1263.
1165	36.	Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. 2020. Structure, Function,
1166	50.	and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 181:281-292.e6.
1167	37.	Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Lu G, Qiao C, Hu Y, Yuen KY, Wang Q,
1168	57.	Zhou H, Yan J, Qi J. 2020. Structural and Functional Basis of SARS-CoV-2 Entry by Using
1169		Human ACE2. Cell doi:10.1016/j.cell.2020.03.045.
1170	38.	Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, McCullough MP,
1171	50.	Chappell JD, Denison MR, Stevens LJ, Pruijssers AJ, McDermott A, Flach B, Doria-Rose NA,
1172		Corbett KS, Morabito KM, O'Dell S, Schmidt SD, Swanson PA, 2nd, Padilla M, Mascola JR,
1173		Neuzil KM, Bennett H, Sun W, Peters E, Makowski M, Albert J, Cross K, Buchanan W, Pikaart-
1174		Tautges R, Ledgerwood JE, Graham BS, Beigel JH. 2020. An mRNA Vaccine against SARS-
1175		CoV-2 - Preliminary Report. N Engl J Med doi:10.1056/NEJMoa2022483.
1176	39.	Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, Bellj-Rammerstorfer S, Bellamy D, Bibi S,
1177	57.	Bittaye M, Clutterbuck EA, Dold C, Faust SN, Finn A, Flaxman AL, Hallis B, Heath P, Jenkin D,
1178		Lazarus R, Makinson R, Minassian AM, Pollock KM, Ramasamy M, Robinson H, Snape M,
1179		Tarrant R, Voysey M, Green C, Douglas AD, Hill AVS, Lambe T, Gilbert SC, Pollard AJ. 2020.
1180		Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a
1181		preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 396:467-478.
1182	40.	Zhu FC, Guan XH, Li YH, Huang JY, Jiang T, Hou LH, Li JX, Yang BF, Wang L, Wang WJ, Wu
1183	10.	SP, Wang Z, Wu XH, Xu JJ, Zhang Z, Jia SY, Wang BS, Hu Y, Liu JJ, Zhang J, Qian XA, Li Q,
1184		Pan HX, Jiang HD, Deng P, Gou JB, Wang XW, Wang XH, Chen W. 2020. Immunogenicity and
1185		safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18
1186		years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 396:479-488.
1187	41.	Brouwer PJM, Caniels TG, van der Straten K, Snitselaar JL, Aldon Y, Bangaru S, Torres JL, Okba
1188		NMA, Claireaux M, Kerster G, Bentlage AEH, van Haaren MM, Guerra D, Burger JA, Schermer
1189		EE, Verheul KD, van der Velde N, van der Kooi A, van Schooten J, van Breemen MJ, Bijl TPL,
1190		Sliepen K, Aartse A, Derking R, Bontjer I, Kootstra NA, Wiersinga WJ, Vidarsson G, Haagmans
		Surpen 1, million 1, Denning 1, Denger 1, Rootstua 141, mersinga 113, Marsson O, Maginans

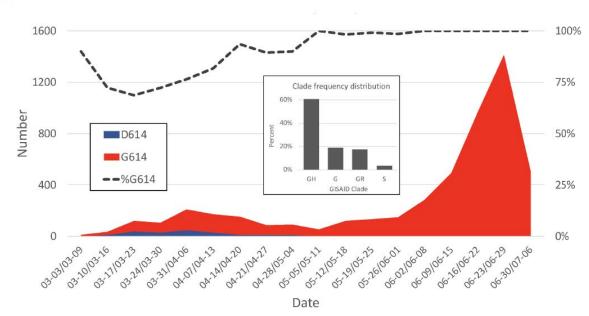
1191		BL, Ward AB, de Bree GJ, Sanders RW, van Gils MJ. 2020. Potent neutralizing antibodies from
1192		COVID-19 patients define multiple targets of vulnerability. Science 369:643-650.
1193	42.	Chi X, Yan R, Zhang J, Zhang G, Zhang Y, Hao M, Zhang Z, Fan P, Dong Y, Yang Y, Chen Z,
1194		Guo Y, Zhang J, Li Y, Song X, Chen Y, Xia L, Fu L, Hou L, Xu J, Yu C, Li J, Zhou Q, Chen W.
1195		2020. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of
1196		
	42	SARS-CoV-2. Science 369:650-655.
1197	43.	Wec AZ, Wrapp D, Herbert AS, Maurer DP, Haslwanter D, Sakharkar M, Jangra RK, Dieterle
1198		ME, Lilov A, Huang D, Tse LV, Johnson NV, Hsieh C-L, Wang N, Nett JH, Champney E,
1199		Burnina I, Brown M, Lin S, Sinclair M, Johnson C, Pudi S, Bortz R, Wirchnianski AS,
1200		Laudermilch E, Florez C, Fels JM, O'Brien CM, Graham BS, Nemazee D, Burton DR, Baric RS,
1201		Voss JE, Chandran K, Dye JM, McLellan JS, Walker LM. 2020. Broad neutralization of SARS-
1202		related viruses by human monoclonal antibodies. Science 369:731-736.
1203	44.	Zost SJ, Gilchuk P, Case JB, Binshtein E, Chen RE, Nkolola JP, Schäfer A, Reidy JX, Trivette A,
1204		Nargi RS, Sutton RE, Suryadevara N, Martinez DR, Williamson LE, Chen EC, Jones T, Day S,
1205		Myers L, Hassan AO, Kafai NM, Winkler ES, Fox JM, Shrihari S, Mueller BK, Meiler J,
1205		Chandrashekar A, Mercado NB, Steinhardt JJ, Ren K, Loo YM, Kallewaard NL, McCune BT,
1200		
		Keeler SP, Holtzman MJ, Barouch DH, Gralinski LE, Baric RS, Thackray LB, Diamond MS,
1208		Carnahan RH, Crowe JE, Jr. 2020. Potently neutralizing and protective human antibodies against
1209		SARS-CoV-2. Nature 584:443-449.
1210	45.	Greaney AJ, Starr TN, Gilchuk P, Zost SJ, Binshtein E, Loes AN, Hilton SK, Huddleston J, Eguia
1211		R, Crawford KH, Dingens AS, Nargi RS, Sutton RE, Suryadevara N, Rothlauf PW, Liu Z, Whelan
1212		SP, Carnahan RH, Crowe JE, Bloom JD. 2020. Complete mapping of mutations to the SARS-
1213		CoV-2 spike receptor-binding domain that escape antibody recognition. bioRxiv
1214		doi:10.1101/2020.09.10.292078:2020.09.10.292078.
1215	46.	Baum A, Copin R, Ajithdoss D, Zhou A, Lanza K, Negron N, Ni M, Wei Y, Atwal GS, Oyejide
1216	10.	A, Goez-Gazi Y, Dutton J, Clemmons E, Staples HM, Bartley C, Klaffke B, Alfson K, Gazi M,
1210		Gonzales O, Dick E, Carrion R, Pessaint L, Porto M, Cook A, Brown R, Ali V, Greenhouse J,
1217		
		Taylor T, Andersen H, Lewis MG, Stahl N, Murphy AJ, Yancopoulos GD, Kyratsous CA. 2020.
1219		REGN-COV2 antibody cocktail prevents and treats SARS-CoV-2 infection in rhesus macaques
1220		and hamsters. bioRxiv doi:10.1101/2020.08.02.233320:2020.08.02.233320.
1221	47.	Baum A, Fulton BO, Wloga E, Copin R, Pascal KE, Russo V, Giordano S, Lanza K, Negron N, Ni
1222		M, Wei Y, Atwal GS, Murphy AJ, Stahl N, Yancopoulos GD, Kyratsous CA. 2020. Antibody
1223		cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual
1224		antibodies. Science 369:1014-1018.
1225	48.	Barnes CO, West AP, Jr., Huey-Tubman KE, Hoffmann MAG, Sharaf NG, Hoffman PR, Koranda
1226		N, Gristick HB, Gaebler C, Muecksch F, Lorenzi JCC, Finkin S, Hägglöf T, Hurley A, Millard
1227		KG, Weisblum Y, Schmidt F, Hatziioannou T, Bieniasz PD, Caskey M, Robbiani DF,
1228		Nussenzweig MC, Bjorkman PJ. 2020. Structures of Human Antibodies Bound to SARS-CoV-2
1220		Spike Reveal Common Epitopes and Recurrent Features of Antibodies. Cell 182:828-842.e16.
122)	49.	
	49.	Alsoussi WB, Turner JS, Case JB, Zhao H, Schmitz AJ, Zhou JQ, Chen RE, Lei T, Rizk AA,
1231		McIntire KM, Winkler ES, Fox JM, Kafai NM, Thackray LB, Hassan AO, Amanat F, Krammer F,
1232		Watson CT, Kleinstein SH, Fremont DH, Diamond MS, Ellebedy AH. 2020. A Potently
1233		Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection. J Immunol 205:915-922.
1234	50.	Salazar E, Kuchipudi SV, Christensen PA, Eagar T, Yi X, Zhao P, Jin Z, Long SW, Olsen RJ,
1235		Chen J, Castillo B, Leveque C, Towers D, Lavinder JJ, Gollihar J, Cardona JA, Ippolito GC,
1236		Nissly RH, Bird I, Greenawalt D, Rossi RM, Gontu A, Srinivasan S, Poojary I, Cattadori IM,
1237		Hudson P, Josleyn NM, Prugar L, Huie KE, Herbert AS, Bernard DW, Dye JM, Kapur V, Musser
1238		JM. 2020. Convalescent plasma anti-SARS-CoV-2 spike protein ectodomain and receptor binding
1239		domain IgG correlate with virus neutralization. The Journal of Clinical Investigation
1240		doi:10.1172/JCI141206.
1241	51.	Salazar E, Christensen PA, Graviss EA, Nguyen DT, Castillo B, Chen J, Lopez BV, Eagar TN, Yi
1241	51.	X, Zhao P, Rogers J, Shehabeldin A, Joseph D, Leveque C, Olsen RJ, Bernard DW, Gollihar J,
1242		Musser JM. 2020. Treatment of COVID-19 Patients with Convalescent Plasma Reveals a Signal
1243		
	50	of Significantly Decreased Mortality. Am J Pathol doi:10.1016/j.ajpath.2020.08.001.
1245	52.	Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KHD, Dingens AS, Navarro MJ, Bowen JE,
1246		Tortorici MA, Walls AC, King NP, Veesler D, Bloom JD. 2020. Deep Mutational Scanning of

1247		SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell
1248		doi:10.1016/j.cell.2020.08.012.
1249	53.	Steffen TL, Stone ET, Hassert M, Geerling E, Grimberg BT, Espino AM, Pantoja P, Climent C,
1250	55.	Hoft DF, George SL, Sariol CA, Pinto AK, Brien JD. 2020. The receptor binding domain of
1251		SARS-CoV-2 spike is the key target of neutralizing antibody in human polyclonal sera. bioRxiv
1252		doi:10.1101/2020.08.21.261727:2020.08.21.261727.
1253	54.	Corbett KS, Flynn B, Foulds KE, Francica JR, Boyoglu-Barnum S, Werner AP, Flach B,
1254		O'Connell S, Bock KW, Minai M, Nagata BM, Andersen H, Martinez DR, Noe AT, Douek N,
1255		Donaldson MM, Nji NN, Alvarado GS, Edwards DK, Flebbe DR, Lamb E, Doria-Rose NA, Lin
1256		BC, Louder MK, O'Dell S, Schmidt SD, Phung E, Chang LA, Yap C, Todd J-PM, Pessaint L, Van
1250		
		Ry A, Browne S, Greenhouse J, Putman-Taylor T, Strasbaugh A, Campbell T-A, Cook A, Dodson
1258		A, Steingrebe K, Shi W, Zhang Y, Abiona OM, Wang L, Pegu A, Yang ES, Leung K, Zhou T,
1259		Teng I-T, Widge A, et al. 2020. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in
1260		Nonhuman Primates. New England Journal of Medicine doi:10.1056/NEJMoa2024671.
1261	55.	van Doremalen N, Lambe T, Spencer A, Belij-Rammerstorfer S, Purushotham JN, Port JR,
1262		Avanzato VA, Bushmaker T, Flaxman A, Ulaszewska M, Feldmann F, Allen ER, Sharpe H,
1263		Schulz J, Holbrook M, Okumura A, Meade-White K, Pérez-Pérez L, Edwards NJ, Wright D,
1263		
		Bissett C, Gilbride C, Williamson BN, Rosenke R, Long D, Ishwarbhai A, Kailath R, Rose L,
1265		Morris S, Powers C, Lovaglio J, Hanley PW, Scott D, Saturday G, de Wit E, Gilbert SC, Munster
1266		VJ. 2020. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques.
1267		Nature doi:10.1038/s41586-020-2608-y.
1268	56.	Wang C, Li W, Drabek D, Okba NMA, van Haperen R, Osterhaus A, van Kuppeveld FJM,
1269		Haagmans BL, Grosveld F, Bosch BJ. 2020. A human monoclonal antibody blocking SARS-CoV-
1270		2 infection. Nat Commun 11:2251.
1270	57.	Ju B, Zhang Q, Ge J, Wang R, Sun J, Ge X, Yu J, Shan S, Zhou B, Song S, Tang X, Yu J, Lan J,
	57.	
1272		Yuan J, Wang H, Zhao J, Zhang S, Wang Y, Shi X, Liu L, Zhao J, Wang X, Zhang Z, Zhang L.
1273		2020. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 584:115-119.
1274	58.	Liu L, Wang P, Nair MS, Yu J, Rapp M, Wang Q, Luo Y, Chan JF, Sahi V, Figueroa A, Guo XV,
1275		Cerutti G, Bimela J, Gorman J, Zhou T, Chen Z, Yuen KY, Kwong PD, Sodroski JG, Yin MT,
1276		Sheng Z, Huang Y, Shapiro L, Ho DD. 2020. Potent neutralizing antibodies against multiple
1277		epitopes on SARS-CoV-2 spike. Nature 584:450-456.
1278	59.	Rogers TF, Zhao F, Huang D, Beutler N, Burns A, He W-t, Limbo O, Smith C, Song G, Woehl J,
1270	57.	Yang L, Abbott RK, Callaghan S, Garcia E, Hurtado J, Parren M, Peng L, Ramirez S, Ricketts J,
1280		Ricciardi MJ, Rawlings SA, Wu NC, Yuan M, Smith DM, Nemazee D, Teijaro JR, Voss JE,
1281		Wilson IA, Andrabi R, Briney B, Landais E, Sok D, Jardine JG, Burton DR. 2020. Isolation of
1282		potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model.
1283		Science 369:956-963.
1284	60.	Hassan AO, Case JB, Winkler ES, Thackray LB, Kafai NM, Bailey AL, McCune BT, Fox JM,
1285		Chen RE, Alsoussi WB, Turner JS, Schmitz AJ, Lei T, Shrihari S, Keeler SP, Fremont DH, Greco
1286		S, McCray PB, Jr., Perlman S, Holtzman MJ, Ellebedy AH, Diamond MS. 2020. A SARS-CoV-2
1287		Infection Model in Mice Demonstrates Protection by Neutralizing Antibodies. Cell 182:744-
1287		
	<i>c</i> 1	753.e4.
1289	61.	Chandrashekar A, Liu J, Martinot AJ, McMahan K, Mercado NB, Peter L, Tostanoski LH, Yu J,
1290		Maliga Z, Nekorchuk M, Busman-Sahay K, Terry M, Wrijil LM, Ducat S, Martinez DR, Atyeo C,
1291		Fischinger S, Burke JS, Slein MD, Pessaint L, Van Ry A, Greenhouse J, Taylor T, Blade K, Cook
1292		A, Finneyfrock B, Brown R, Teow E, Velasco J, Zahn R, Wegmann F, Abbink P, Bondzie EA,
1293		Dagotto G, Gebre MS, He X, Jacob-Dolan C, Kordana N, Li Z, Lifton MA, Mahrokhian SH,
1294		Maxfield LF, Nityanandam R, Nkolola JP, Schmidt AG, Miller AD, Baric RS, Alter G, Sorger
1295		PK, Estes JD, et al. 2020. SARS-CoV-2 infection protects against rechallenge in rhesus macaques.
1295		Science 369:812-817.
	<i>(</i>)	
1297	62.	Mercado NB, Zahn R, Wegmann F, Loos C, Chandrashekar A, Yu J, Liu J, Peter L, McMahan K,
1298		Tostanoski LH, He X, Martinez DR, Rutten L, Bos R, van Manen D, Vellinga J, Custers J,
1299		Langedijk JP, Kwaks T, Bakkers MJG, Zuijdgeest D, Huber SKR, Atyeo C, Fischinger S, Burke
1300		JS, Feldman J, Hauser BM, Caradonna TM, Bondzie EA, Dagotto G, Gebre MS, Hoffman E,
1301		Jacob-Dolan C, Kirilova M, Li Z, Lin Z, Mahrokhian SH, Maxfield LF, Nampanya F,
1302		Nityanandam R, Nkolola JP, Patel S, Ventura JD, Verrington K, Wan H, Pessaint L, Ry AV,
		, , , , , , , , , , , , , , , , , , ,

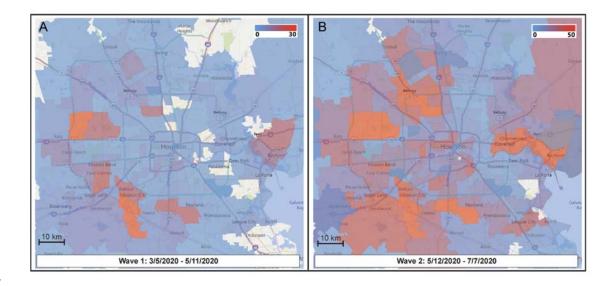
1303		Blade K, Strasbaugh A, Cabus M, et al. 2020. Single-shot Ad26 vaccine protects against SARS-
1303		CoV-2 in rhesus macaques. Nature doi:10.1038/s41586-020-2607-z.
1305	63.	Yuan M, Wu NC, Zhu X, Lee CD, So RTY, Lv H, Mok CKP, Wilson IA. 2020. A highly
1306	02.	conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV.
1307		Science 368:630-633.
1308	64.	Hsieh C-L, Goldsmith JA, Schaub JM, DiVenere AM, Kuo H-C, Javanmardi K, Le KC, Wrapp D,
1309		Lee AG, Liu Y, Chou C-W, Byrne PO, Hjorth CK, Johnson NV, Ludes-Meyers J, Nguyen AW,
1310		Park J, Wang N, Amengor D, Lavinder JJ, Ippolito GC, Maynard JA, Finkelstein IJ, McLellan JS.
1311		2020. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 369:1501-
1312		1505.
1313	65.	Woo H, Park SJ, Choi YK, Park T, Tanveer M, Cao Y, Kern NR, Lee J, Yeom MS, Croll TI, Seok
1314		C, Im W. 2020. Developing a Fully Glycosylated Full-Length SARS-CoV-2 Spike Protein Model
1315 1316	66	in a Viral Membrane. J Phys Chem B 124:7128-7137.
1310	66.	Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, Hengartner N, Giorgi EE, Bhattacharya T, Foley B, Hastie KM, Parker MD, Partridge DG, Evans CM, Freeman TM, de
1317		Silva TI, McDanal C, Perez LG, Tang H, Moon-Walker A, Whelan SP, LaBranche CC, Saphire
1310		EO, Montefiori DC. 2020. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G
1320		Increases Infectivity of the COVID-19 Virus. Cell 182:812-827.e19.
1321	67.	Hu J, He C-L, Gao Q-Z, Zhang G-J, Cao X-X, Long Q-X, Deng H-J, Huang L-Y, Chen J, Wang
1322	07.	K, Tang N, Huang A-L. 2020. D614G mutation of SARS-CoV-2 spike protein enhances viral
1323		infectivity. bioRxiv doi:10.1101/2020.06.20.161323:2020.06.20.161323.
1324	68.	Lorenzo-Redondo R, Nam HH, Roberts SC, Simons LM, Jennings LJ, Qi C, Achenbach CJ,
1325		Hauser AR, Ison MG, Hultquist JF, Ozer EA. 2020. A Unique Clade of SARS-CoV-2 Viruses is
1326		Associated with Lower Viral Loads in Patient Upper Airways. medRxiv
1327		doi:10.1101/2020.05.19.20107144:2020.05.19.20107144.
1328	69.	Cassia Wagner PR, Chris D. Frazar, Jover Lee, Nicola F. Müller, Louise H. Moncla, James
1329		Hadfield, Emma B. Hodcroft, Benjamin Pelle, Matthew Richardson, Caitlin Behrens, Meei-Li
1330		Huang, Patrick Mathias, Gregory Pepper, Lasata Shrestha, Hong Xie, Amin Addetia, Truong
1331		Nguyen, Victoria M Rachleff, Romesh Gautom, Geoff Melly, Brian Hiatt, Philip Dykema,
1332		Amanda Adler, Elisabeth Brandstetter, Peter D. Han, Kairsten Fay, Misja Ilcisin, Kirsten
1333 1334		Lacombe, Thomas R. Sibley, Melissa Truong, Caitlin R. Wolf, Karen Cowgill, Stephanie Schrag,
1334		Jeff Duchin, Michael Boeckh, Janet A. Englund, Michael Famulare, Barry R. Lutz, Mark J. Rieder, Matthew Thompson, Richard A. Neher, Geoffrey S. Baird, Lea M. Starita, Helen Y. Chu,
1335		Jay Shendure, Scott Lindquist, Deborah A. Nickerson, Alexander L. Greninger, Keith R. Jerome,
1330		Trevor Bedford. 2020. Comparing viral load and clinical outcomes in Washington State across
1338		D614G substitution in spike protein of SARS-CoV-2. <u>https://github.com/blab/ncov-wa-d614g</u> .
1339		Accessed September 8.
1340	70.	Volz EM, Hill V, McCrone JT, Price A, Jorgensen D, O'Toole A, Southgate JA, Johnson R,
1341		Jackson B, Nascimento FF, Rey SM, Nicholls SM, Colquhoun RM, da Silva Filipe A, Shepherd
1342		JG, Pascall DJ, Shah R, Jesudason N, Li K, Jarrett R, Pacchiarini N, Bull M, Geidelberg L,
1343		Siveroni I, Goodfellow IG, Loman NJ, Pybus O, Robertson DL, Thomson EC, Rambaut A,
1344		Connor TR. 2020. Evaluating the effects of SARS-CoV-2 Spike mutation D614G on
1345		transmissibility and pathogenicity. medRxiv
1346		doi:10.1101/2020.07.31.20166082:2020.07.31.20166082.
1347	71.	Lv Z, Deng Y-Q, Ye Q, Cao L, Sun C-Y, Fan C, Huang W, Sun S, Sun Y, Zhu L, Chen Q, Wang
1348		N, Nie J, Cui Z, Zhu D, Shaw N, Li X-F, Li Q, Xie L, Wang Y, Rao Z, Qin C-F, Wang X. 2020.
1349		Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic
1350 1351	70	antibody. Science 369:1505-1509.
1351	72.	Yurkovetskiy L, Wang X, Pascal KE, Tomkins-Tinch C, Nyalile T, Wang Y, Baum A, Diehl WE, Dauphin A, Carbone C, Veinotte K, Egri SB, Schaffner SF, Lemieux JE, Munro J, Rafique A,
1352		Barve A, Sabeti PC, Kyratsous CA, Dudkina N, Shen K, Luban J. 2020. Structural and Functional
1353		Analysis of the D614G SARS-CoV-2 Spike Protein Variant. bioRxiv
1355		doi:10.1101/2020.07.04.187757:2020.07.04.187757.
1356	73.	Zhang L, Jackson CB, Mou H, Ojha A, Rangarajan ES, Izard T, Farzan M, Choe H. 2020. The
1357		D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity.
1358		bioRxiv doi:10.1101/2020.06.12.148726:2020.06.12.148726.


1359	74.	Huo J, Zhao Y, Ren J, Zhou D, Duyvesteyn HME, Ginn HM, Carrique L, Malinauskas T, Ruza
1360	/4.	RR, Shah PNM, Tan TK, Rijal P, Coombes N, Bewley KR, Tree JA, Radecke J, Paterson NG,
1361		Supasa P, Mongkolsapaya J, Screaton GR, Carroll M, Townsend A, Fry EE, Owens RJ, Stuart DI.
1362		2020. Neutralization of SARS-CoV-2 by Destruction of the Prefusion Spike. Cell Host Microbe
1363		doi:10.1016/j.chom.2020.06.010.
1364	75.	Long SW, Olsen RJ, Christensen PA, Bernard DW, Davis JR, Shukla M, Nguyen M, Ojeda
1365		Saavedra M, Cantu CC, Yerramilli P, Pruitt L, Subedi S, Hendrickson H, Eskandari G,
1366		Kumaraswami M, McLellan JS, Musser JM. 2020. Molecular Architecture of Early Dissemination
1367		and Evolution of the SARS-CoV-2 Virus in Metropolitan Houston, Texas. bioRxiv
1368		doi:10.1101/2020.05.01.072652:2020.05.01.072652.
1369	76.	Plante JA, Liu Y, Liu J, Xia H, Johnson BA, Lokugamage KG, Zhang X, Muruato AE, Zou J,
1370		Fontes-Garfias CR, Mirchandani D, Scharton D, Bilello JP, Ku Z, An Z, Kalveram B, Freiberg
1371		AN, Menachery VD, Xie X, Plante KS, Weaver SC, Shi P-Y. 2020. Spike mutation D614G alters
1372		SARS-CoV-2 fitness and neutralization susceptibility. bioRxiv
1373		doi:10.1101/2020.09.01.278689:2020.09.01.278689.
1374	77.	Latz CA, DeCarlo C, Boitano L, Png CYM, Patell R, Conrad MF, Eagleton M, Dua A. 2020.
1375		Blood type and outcomes in patients with COVID-19. Ann Hematol 99:2113-2118.
1376	78.	Wu BB, Gu DZ, Yu JN, Yang J, Shen WQ. 2020. Association between ABO blood groups and
1377		COVID-19 infection, severity and demise: A systematic review and meta-analysis. Infect Genet
1378		Evol 84:104485.
1379	79.	Zhao J, Yang Y, Huang H, Li D, Gu D, Lu X, Zhang Z, Liu L, Liu T, Liu Y, He Y, Sun B, Wei M,
1380		Yang G, Wang X, Zhang L, Zhou X, Xing M, Wang PG. 2020. Relationship between the ABO
1381		Blood Group and the COVID-19 Susceptibility. Clin Infect Dis doi:10.1093/cid/ciaa1150.
1382	80.	Zietz M, Tatonetti NP. 2020. Testing the association between blood type and COVID-19 infection,
1383		intubation, and death. medRxiv doi:10.1101/2020.04.08.20058073.
1384	81.	Lemieux J, Siddle KJ, Shaw BM, Loreth C, Schaffner S, Gladden-Young A, Adams G, Fink T,
1385		Tomkins-Tinch CH, Krasilnikova LA, Deruff KC, Rudy M, Bauer MR, Lagerborg KA,
1386		Normandin E, Chapman SB, Reilly SK, Anahtar MN, Lin AE, Carter A, Myhrvold C, Kemball M,
1387		Chaluvadi S, Cusick C, Flowers K, Neumann A, Cerrato F, Farhat M, Slater D, Harris JB, Branda
1388		J, Hooper D, Gaeta JM, Baggett TP, O'Connell J, Gnirke A, Lieberman TD, Philippakis A, Burns
1389		M, Brown C, Luban J, Ryan ET, Turbett SE, LaRocque RC, Hanage WP, Gallagher G, Madoff
1390		LC, Smole S, Pierce VM, Rosenberg ES, et al. 2020. Phylogenetic analysis of SARS-CoV-2 in the
1391		Boston area highlights the role of recurrent importation and superspreading events. medRxiv
1392		doi:10.1101/2020.08.23.20178236:2020.08.23.20178236.
1393	82.	Gudbjartsson DF, Helgason A, Jonsson H, Magnusson OT, Melsted P, Norddahl GL,
1394		Saemundsdottir J, Sigurdsson A, Sulem P, Agustsdottir AB, Eiriksdottir B, Fridriksdottir R,
1395		Gardarsdottir EE, Georgsson G, Gretarsdottir OS, Gudmundsson KR, Gunnarsdottir TR, Gylfason
1396		A, Holm H, Jensson BO, Jonasdottir A, Jonsson F, Josefsdottir KS, Kristjansson T, Magnusdottir
1397		DN, le Roux L, Sigmundsdottir G, Sveinbjornsson G, Sveinsdottir KE, Sveinsdottir M,
1398		Thorarensen EA, Thorbjornsson B, Löve A, Masson G, Jonsdottir I, Möller AD, Gudnason T,
1399		Kristinsson KG, Thorsteinsdottir U, Stefansson K. 2020. Spread of SARS-CoV-2 in the Icelandic
1400		Population. N Engl J Med doi:10.1056/NEJMoa2006100.
1401	83.	Candido DS, Claro IM, de Jesus JG, Souza WM, Moreira FRR, Dellicour S, Mellan TA, du
1402		Plessis L, Pereira RHM, Sales FCS, Manuli ER, Thézé J, Almeida L, Menezes MT, Voloch CM,
1403		Fumagalli MJ, Coletti TM, da Silva CAM, Ramundo MS, Amorim MR, Hoeltgebaum HH, Mishra
1404		S, Gill MS, Carvalho LM, Buss LF, Prete CA, Ashworth J, Nakaya HI, Peixoto PS, Brady OJ,
1405		Nicholls SM, Tanuri A, Rossi ÁD, Braga CKV, Gerber AL, de C. Guimarães AP, Gaburo N,
1406		Alencar CS, Ferreira ACS, Lima CX, Levi JE, Granato C, Ferreira GM, Francisco RS, Granja F,
1407		Garcia MT, Moretti ML, Perroud MW, Castiñeiras TMPP, Lazari CS, et al. 2020. Evolution and
1408	0.1	epidemic spread of SARS-CoV-2 in Brazil. Science 369:1255-1260.
1409	84.	Ellinghaus D, Degenhardt F, Bujanda L, Buti M, Albillos A, Invernizzi P, Fernández J, Prati D,
1410		Baselli G, Asselta R, Grimsrud MM, Milani C, Aziz F, Kässens J, May S, Wendorff M,
1411		Wienbrandt L, Uellendahl-Werth F, Zheng T, Yi X, de Pablo R, Chercoles AG, Palom A, Garcia-
1412		Fernandez AE, Rodriguez-Frias F, Zanella A, Bandera A, Protti A, Aghemo A, Lleo A, Biondi A,
1413		Caballero-Garralda A, Gori A, Tanck A, Carreras Nolla A, Latiano A, Fracanzani AL, Peschuck
1414		A, Julià A, Pesenti A, Voza A, Jiménez D, Mateos B, Nafria Jimenez B, Quereda C, Paccapelo C,

1415		Gassner C, Angelini C, Cea C, Solier A, et al. 2020. Genomewide Association Study of Severe
1416		Covid-19 with Respiratory Failure. N Engl J Med doi:10.1056/NEJMoa2020283.
1417	85.	2020. The COVID-19 Host Genetics Initiative, a global initiative to elucidate the role of host
1418		genetic factors in susceptibility and severity of the SARS-CoV-2 virus pandemic. Eur J Hum
1419		Genet 28:715-718.
1420	86.	Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JCC, Muecksch F, Rutkowska M,
1421		Hoffmann H-H, Michailidis E, Gaebler C, Agudelo M, Cho A, Wang Z, Gazumyan A, Cipolla M,
1422		Luchsinger L, Hillyer CD, Caskey M, Robbiani DF, Rice CM, Nussenzweig MC, Hatziioannou T,
1423		Bieniasz PD. 2020. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants.
1424		bioRxiv doi:10.1101/2020.07.21.214759:2020.07.21.214759.
1425	87.	Li T, Han X, Wang Y, Gu C, Wang J, Hu C, Li S, Wang K, Luo F, Huang J, Long Y, Song S,
1426		Wang W, Hu J, Wu R, Mu S, Hao Y, Chen Q, Gao F, Shen M, Long S, Gong F, Li L, Wu Y, Xu
1427		W, Cai X, Qu D, Yuan Z, Gao Q, Zhang G, He C, Nai Y, Deng K, Du L, Tang N, Xie Y, Huang
1428 1429		A, Jin A. 2020. A key linear epitope for a potent neutralizing antibody to SARS-CoV-2 S-RBD.
1429	00	bioRxiv doi:10.1101/2020.09.11.292631:2020.09.11.292631.
1430	88.	Hansen J, Baum A, Pascal KE, Russo V, Giordano S, Wloga E, Fulton BO, Yan Y, Koon K, Patel
1431		K, Chung KM, Hermann A, Ullman E, Cruz J, Rafique A, Huang T, Fairhurst J, Libertiny C, Malbec M, Lee W-y, Welsh R, Farr G, Pennington S, Deshpande D, Cheng J, Watty A, Bouffard
1433		P, Babb R, Levenkova N, Chen C, Zhang B, Romero Hernandez A, Saotome K, Zhou Y, Franklin
1434		M, Sivapalasingam S, Lye DC, Weston S, Logue J, Haupt R, Frieman M, Chen G, Olson W,
1435		Murphy AJ, Stahl N, Yancopoulos GD, Kyratsous CA. 2020. Studies in humanized mice and
1436		convalescent humans yield a SARS-CoV-2 antibody cocktail. Science 369:1010-1014.
1437	89.	Long SW, Olsen RJ, Eagar TN, Beres SB, Zhao P, Davis JJ, Brettin T, Xia F, Musser JM. 2017.
1438	0,7.1	Population Genomic Analysis of 1,777 Extended-Spectrum Beta-Lactamase-Producing
1439		Klebsiella pneumoniae Isolates, Houston, Texas: Unexpected Abundance of Clonal
1440		Group 307. mBio 8:e00489-17.
1441	90.	Stucker KM, Schobel SA, Olsen RJ, Hodges HL, Lin X, Halpin RA, Fedorova N, Stockwell TB,
1442		Tovchigrechko A, Das SR, Wentworth DE, Musser JM. 2015. Haemagglutinin mutations and
1443		glycosylation changes shaped the 2012/13 influenza A(H3N2) epidemic, Houston, Texas. Euro
1444		Surveill 20.
1445	91.	Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7:
1446		improvements in performance and usability. Mol Biol Evol 30:772-80.
1447	92.	Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. 2009. Jalview Version 2a
1448		multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189-91.
1449	93.	Price MN, Dehal PS, Arkin AP. 2010. FastTree 2approximately maximum-likelihood trees for
1450		large alignments. PLoS One 5:e9490.
1451	94.	Chen T, Guestrin C. 2016. XGBoost: A Scalable Tree Boosting System, abstr Proceedings of the
1452		22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San
1453	05	Francisco, California, USA, Association for Computing Machinery,
1454	95.	Nguyen M, Brettin T, Long SW, Musser JM, Olsen RJ, Olson R, Shukla M, Stevens RL, Xia F,
1455 1456		Yoo H. 2018. Developing an in silico minimum inhibitory concentration panel test for <i>Klebsiella</i>
1450	96.	pneumoniae. Scientific reports 8:421. Nguyen M, Long SW, McDermott PF, Olsen RJ, Olson R, Stevens RL, Tyson GH, Zhao S, Davis
1458	90.	JJ. 2019. Using machine learning to predict antimicrobial MICs and associated genomic features
1459		for nontyphoidal Salmonella. Journal of Clinical Microbiology 57:e01260-18.
1460	97.	Pedregosa F, Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
1461	11.	Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,
1462		Perrot, M., and Duchesnay, E. 2011. Scikit-learn: Machine Learning in Python. Journal of
1463		Machine Learning Research 12 (2011) 2825-2830.
1464	98.	Cai Y, Zhang J, Xiao T, Peng H, Sterling SM, Walsh RM, Jr., Rawson S, Rits-Volloch S, Chen B.
1465		2020. Distinct conformational states of SARS-CoV-2 spike protein. Science
1466		doi:10.1126/science.abd4251.
1467		


It is made available under a CC-BY-NC-ND 4.0 International license .

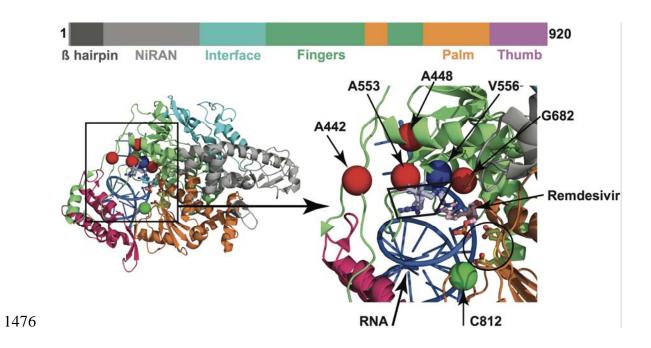
1468 **FIG 1**



В

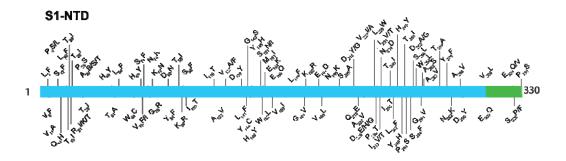
It is made available under a CC-BY-NC-ND 4.0 International license .

1471 **FIG 2**

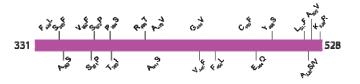

It is made available under a CC-BY-NC-ND 4.0 International license .

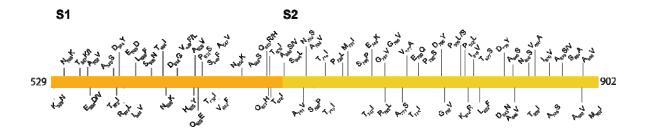
1473 **FIG 3**

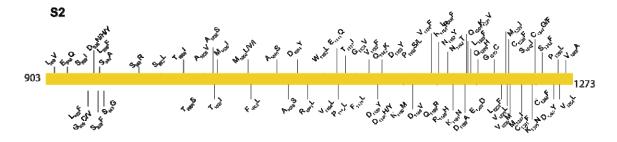
RNA-dependent RNA polymerase (RdRp) A. S. S. A. 28 43 Seð. \$ 44 NiRAN 397 200 ** ¦3 9 4 ا ز ŝ Fingers Thumb 398 Palm 932 خود تميير ا<u>خو</u> _____ \$ 9¥ 13 et i 1474


It is made available under a CC-BY-NC-ND 4.0 International license .

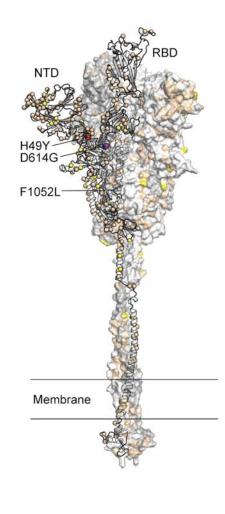
1475 **FIG 4**

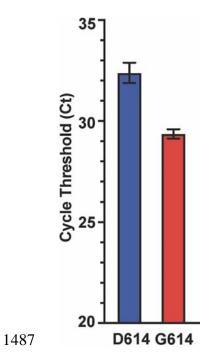



It is made available under a CC-BY-NC-ND 4.0 International license .

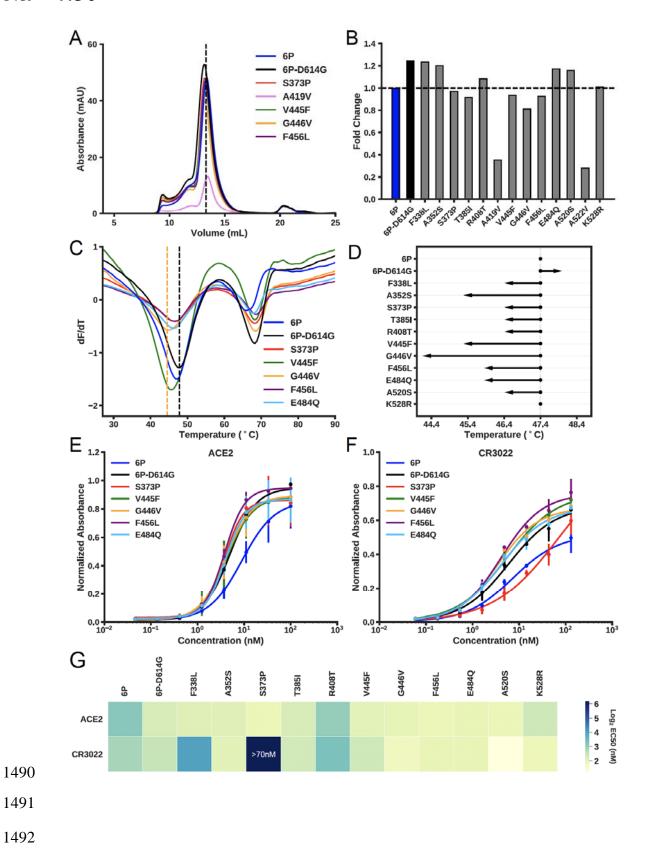

FIG 5

S1-RBD




- **FIG 6**

It is made available under a CC-BY-NC-ND 4.0 International license .


1486 **FIG 7**

It is made available under a CC-BY-NC-ND 4.0 International license .

1489 **FIG 8**

1493	Table 1. Nonsynonymous SNPs of SARS-CoV-2 nsp12.
17/5	

		Amino			,	
Genomic	Gene	Acid		Wave 1	Wave 2	Total
Locus	Locus	Change	Domain	(n=1026)	(n=4059)	(n=5085)
13446	C3T	A1V	N-terminus		2	2
13448	G5A	D2N	N-terminus	1		1
13487	C44T	A15V	N-terminus		138	138
13501	C58T	P20S	N-terminus		1	1
13514	G71A	G24D	N-terminus		3	3
13517	C74T	T25I	N-terminus		4	4
13520	G77A	S26N	N-terminus		1	1
13523	C80T	T27I	N-terminus		1	1
13526	A83C	D28A	N-terminus		1	1
13564	G121A	V41I	B hairpin		1	1
13568	C125T	A42V	B hairpin	1		1
13571	G128T	G43V	B hairpin	1		1
13576	G133T	A45S	B hairpin		12	12
13617	G174T	K58N	NiRAN		1	1
13618	G175T	D59Y	NiRAN		24	24
13620	C177G	D59E	NiRAN		1	1
13627	G184T	D62Y	NiRAN	1		1
13661	G218A	R73K	NiRAN		1	1
13667	C224T	T75I	NiRAN		2	2
13694	C251T	T84I	NiRAN		1	1
13712	A269G	K90R	NiRAN		1	1
13726	G283A	V95I	NiRAN		1	1
13730	C287T	A96V	NiRAN	2	2	4
13762	G319C	G107R	NiRAN		1	1
13774	C331A	P111T	NiRAN		1	1
13774	C331T	P111S	NiRAN		15	15
13777	C334T	H112Y	NiRAN		1	1
13790	A347G	Q116R	NiRAN		2	2
13835	G392T	R131M	NiRAN		1	1
13858	G415T	D139Y	NiRAN		3	3
13862	C419T	T140I	NiRAN	1	5	6
13868	A425G	K142R	NiRAN	1		1
13897	G454T	D152Y	NiRAN		4	4
13901	A458G	D153G	NiRAN		2	2
13957	C514T	R172C	NiRAN		2	2
13963	T520C	Y174H	NiRAN		1	1
13966	G523A	A175T	NiRAN		1	1
13975	G532T	G178C	NiRAN		4	4

		Amino				
Genomic	Gene	Acid	_ .	Wave 1	Wave 2	Total
Locus	Locus	Change	Domain	(n=1026)	(n=4059)	(n=5085)
13984	G541A	V181I	NiRAN		1	1
13994	C551T	A184V	NiRAN		8	8
14104	T661C	F221L	NiRAN	2		2
14109	A666G	1222M	NiRAN	1		1
14120	C677T	P226L	NiRAN		2	2
14185	A742G	R248G	NiRAN		1	1
14187	G744T	R248S	NiRAN		1	1
14188	G745A	A249T	NiRAN		1	1
14225	C782A	T261K	Interface		4	4
14230	C787T	P263S	Interface		1	1
14233	T790C	Y264H	Interface		1	1
14241	G798T	K266N	Interface		1	1
14290	G847T	D283Y	Interface		1	1
14335	G892T	V298F	Interface		8	8
14362	C919A	L307M	Interface		2	2
14371	G928C	A310P	Interface	1		1
14396	C953T	T318I	Interface		1	1
14398	G955T	V319L	Interface		1	1
14407	C964T	P322S	Interface		2	2
14408	C965T	P322L	Interface	843	4050	4893
14500	G1057T	V353L	Interface		5	5
14536	C1093T	L365F	Interface		1	1
14557	G1114T	V372L	Fingers		4	4
14584	G1141T	A381S			1	1
14585	C1142T	A381V	Fingers		10	10
14593	G1150A	G384S	Fingers	1		1
14657	C1214T	A405V	Fingers		1	1
14708	C1265T	A422V			1	1
14747	A1304G	E435G	Fingers		2	2
14768	C1325T	A442V	Fingers		21	21
14786	C1343T	A448V	Fingers	3	6	9
14821	C1378T	P460S	~		1	1
14829	G1386T	M462I	Fingers		59	59
14831	G1388T	C463F	Fingers		3	3
14857	G1414T	V472F	<u>v</u>		1	1
14870	A1427G	D476G	Fingers		5	5
14874	G1431T	K477N	Fingers	1		1
14912	A1469G	N490S	Fingers	1	1	2
14923	G1480A	V494I	Fingers		2	2

Genomic	Gene	Amino Acid		Wave 1	Wave 2	Total
Locus	Locus	Change	Domain	(n=1026)	(n=4059)	(n=5085)
14980	C1537T	L513F	Fingers	1	1	2
14990	A1547G	D516G			1	1
15006	G1563C	E521D	Fingers	2	3	5
15016	G1573T	A525S	Fingers		3	3
15026	C1583T	A528V	Fingers	5	1	6
15037	C1594T	R532C	Fingers		1	1
15100	G1657C	A553P	Fingers		1	1
15101	C1658T	A553V	Fingers		1	1
15124	A1681G	I561V	Fingers		2	2
15202	G1759C	V587L	Palm		7	7
15211	A1768G	T590A			1	1
15226	G1783A	G595S	Palm		1	1
15243	G1800T	M600I	Palm	71	4	75
15251	C1808G	T603S	Palm		1	1
15257	A1814G	Y605C			1	1
15260	G1817A	S606N	Palm		1	1
15327	G1884T	M628I	Fingers	3	1	4
15328	C1885T	L629F	Fingers	1		1
15334	A1891G	l631V	Fingers		1	1
15341	C1898T	A633V	Fingers		1	1
15352	C1909T	L637F	Fingers		1	1
15358	C1915T	R639C	Fingers		1	1
15362	A1919G	K640R	Fingers		1	1
15364	C1921G	H641D	Fingers	1		1
15368	C1925T	T642I	Fingers	1		1
15380	G1937T	S646I	Fingers	1		1
15386	C1943T	S648L	Fingers		2	2
15391	C1948T	R650C	Fingers		1	1
15406	G1963T	A655S	Fingers		3	3
15407	C1964T	A655V	Fingers	1		1
15436	A1993G	M665V	Fingers		2	2
15438	G1995T	M665I	Fingers		24	24
15452	G2009T	G670V	Fingers		28	28
15487	G2044C	G682R	Palm		1	1
15497	C2054A	T685K	Palm		1	1
15572	A2129G	D710G	Palm		1	1
15596	A2153G	Y718S	Palm	2		2
15619	C2176T	L726F	Palm	1		1
15638	G2195A	R732K	Palm	1		1

It is made available under a CC-BY-NC-ND 4.0 International license .

Genomic	Gene	Amino Acid		Wave 1	Wave 2	Total
Locus	Locus	Change	Domain	(n=1026)	(n=4059)	(n=5085)
15640	A2197G	N733D	Palm	1		1
15640	A2197T	N733Y	Palm	1		1
15655	A2212G	T738A	Palm		2	2
15656	C2213T	T738I	Palm		2	2
15658	G2215A	D739N	Palm		2	2
15664	G2221A	V741M	Palm		1	1
15715	T2272C	S758P	Palm		1	1
15760	G2317A	G773S	Palm	1		1
15761	G2318A	G773D	Palm		1	1
15827	A2384G	E795G	Palm	1		1
15848	C2405T	T802I	Palm		1	1
15850	G2407T	D803Y	Palm		1	1
15853	C2410T	L804F	Palm		2	2
15878	G2435T	C812F	Palm		1	1
15886	C2443T	H815Y	Palm		1	1
15906	G2463T	Q821H	Thumb	1	1	2
15908	G2465T	G822V	Thumb		1	1
15979	A2536G	1846V	Thumb	4		4
16045	C2602T	L868F	Thumb		1	1
16084	C2641T	H881Y	Thumb		1	1
16148	A2705G	Y902C	Thumb		1	1
16163	C2720T	T907I	Thumb		45	45
16178	C2735T	S912L	Thumb		2	2
16192	C2749T	P917S	Thumb		80	80

	14 Table 2. Nonsy	nonymous SNPs in SARS-CoV-2 spi	ike protein.
--	--------------------------	---------------------------------	--------------

Genomic	Gene	Amino Acid		Wave 1	Wave 2	Total
Locus	Locus	Change	Domain	(n=1026)	(n=4059)	(n=5085)
21575	C13T	L5F	S1	11	25	36
21578	G16T	V6F	S1		1	1
21587	C25T	P9S	S1	2		2
21588	C26T	P9L	S1	1	1	2
21594	T32C	V11A	S1		1	1
21597	C35T	S12F	S1		6	6
21604	G42T	Q14H	S1		1	1
21614	C52T	L18F	S1 - NTD	1	11	12
21618	C56T	T19I	S1 - NTD	1	1	2
21621	C59T	T20I	S1 - NTD		1	1
21624	G62T	R21I	S1 - NTD		6	6
21624	G62A	R21K	S1 - NTD		1	1
21624	G62C	R21T	S1 - NTD		3	3
21627	C65T	T22I	S1 - NTD	2	4	6
21638	C76T	P26S	S1 - NTD		17	17
21641	G79T	A27S	S1 - NTD	1	1	2
21641	G79A	A27T	S1 - NTD	1		1
21642	C80T	A27V	S1 - NTD		1	1
21648	C86T	T29I	S1 - NTD	1	4	5
21707	C145T	H49Y	S1 - NTD		142	142
21713	A151G	T51A	S1 - NTD		1	1
21724	G162T	L54F	S1 - NTD		11	11
21754	G192T	W64C	S1 - NTD		1	1
21767	C205T	H69Y	S1 - NTD	1	7	8
21770	G208A	V70I	S1 - NTD		1	1
21770	G208T	V70F	S1 - NTD	1		1
21774	C212T	S71F	S1 - NTD		1	1
21784	T222A	N74K	S1 - NTD	1		1
21785	G223C	G75R	S1 - NTD		1	1
21793	G231T	K77N	S1 - NTD		1	1
21824	G262A	D88N	S1 - NTD		1	1
21834	A272T	Y91F	S1 - NTD		1	1
21846	C284T	T95I	S1 - NTD	1	10	11
21852	A290G	K97R	S1 - NTD		1	1
21855	C293T	S98F	S1 - NTD	1	2	3
21861	T299C	I100T	S1 - NTD		2	2

Genomic	Gene	Amino Acid		Wave 1	Wave 2	Total
Locus	Locus	Change	Domain	(n=1026)	(n=4059)	(n=5085)
21918	T356C	I119T	S1 - NTD	1		1
21930	C368T	A123V	S1 - NTD		1	1
21941	G379T	V127F	S1 - NTD		1	1
21942	T380C	V127A	S1 - NTD		4	4
21974	G412T	D138Y	S1 - NTD	2		2
21985	G423T	L141F	S1 - NTD		1	1
21986	G424A	G142S	S1 - NTD		2	2
21993	A431G	Y144C	S1 - NTD	1		1
21995	T433C	Y145H	S1 - NTD	2		2
21998	C436T	H146Y	S1 - NTD	1	2	3
22014	G452A	S151N	S1 - NTD		1	1
22014	G452T	S151I	S1 - NTD		2	2
22017	G455T	W152L	S1 - NTD	1	1	2
22021	G459T	M153I	S1 - NTD		1	1
22021	G459A	M153I	S1 - NTD		1	1
22022	G460A	E154K	S1 - NTD		1	1
22028	G466C	E156Q	S1 - NTD	2		2
22037	G475A	V159I	S1 - NTD	1		1
22097	C535T	L179F	S1 - NTD		1	1
22104	G542T	G181V	S1 - NTD		1	1
22107	A545G	K182R	S1 - NTD		1	1
22135	A573T	E191D	S1 - NTD		1	1
22139	G577T	V193L	S1 - NTD		1	1
22150	T588G	N196K	S1 - NTD	1		1
22175	T613G	S205A	S1 - NTD		1	1
22205	G643T	D215Y	S1 - NTD		1	1
22206	A644G	D215G	S1 - NTD		2	2
22214	C652G	Q218E	S1 - NTD		1	1
22227	C665T	A222V	S1 - NTD		1	1
22241	G679A	V227I	S1 - NTD		2	2
22242	T680C	V227A	S1 - NTD	1	<u> </u>	1
22242	G682C	D228H	S1 - NTD	•	2	2
22244	A683G	D228G	S1 - NTD	1	<u> </u>	1
22245	T684G	D228E	S1 - NTD	2		2
22240	T686G	L229W	S1 - NTD	1		1
22240	C688A	P230T	S1 - NTD	1		1
22250	A691G	I2301	S1 - NTD	1		1
22200	AUSIG	12317	ST-INID	I		I

Genomic	Gene	Amino Acid		Wave 1	Wave 2	Total
Locus	Locus	Change	Domain	(n=1026)	(n=4059)	(n=5085)
22254	T692C	I231T	S1 - NTD	1		1
22259	A697G	I233V	S1 - NTD	1		1
22260	T698C	I233T	S1 - NTD	1		1
22262	A700G	N234D	S1 - NTD	1		1
22266	T704C	I235T	S1 - NTD	1		1
22281	C719T	T240I	S1 - NTD		5	5
22286	C724T	L242F	S1 - NTD		1	1
22295	C733T	H245Y	S1 - NTD		2	2
22304	T742C	Y248H	S1 - NTD		3	3
22311	C749T	T250I	S1 - NTD	1	4	5
22313	C751T	P251S	S1 - NTD		2	2
22320	A758G	D253G	S1 - NTD		2	2
22320	A758C	D253A	S1 - NTD	1		1
22323	C761T	S254F	S1 - NTD		3	3
22329	C767T	S256L	S1 - NTD	1		1
22335	G773T	W258L	S1 - NTD	1		1
22344	G782T	G261V	S1 - NTD	3		3
22346	G784T	A262S	S1 - NTD		4	4
22350	C788T	A263V	S1 - NTD	1		1
22382	A820G	T274A	S1 - NTD		1	1
22398	A836T	Y279F	S1 - NTD	1		1
22408	T846G	N282K	S1 - NTD		1	1
22425	C863T	A288V	S1 - NTD		1	1
22430	G868T	D290Y	S1 - NTD	1		1
22484	G922T	V308L	S1		3	3
22487	G925C	E309Q	S1		1	1
22532	G970C	E324Q	S1		1	1
22533	A971T	E324V	S1		1	1
22535	T973C	S325P	S1		1	1
22536	C974T	S325F	S1		1	1
22550	C988T	P330S	S1 - RBD		2	2
22574	T1012C	F338L	S1 - RBD	1		1
22608	C1046T	S349F	S1 - RBD		1	1
22616	G1054T	A352S	S1 - RBD		7	7
22661	G1099T	V367F	S1 - RBD		1	1
22673	T1111C	S371P	S1 - RBD		3	3
22679	T1117C	S373P	S1 - RBD		1	1

Genomic	Gene	Amino Acid		Wave 1	Wave 2	Total
Locus	Locus	Change	Domain	(n=1026)	(n=4059)	(n=5085)
22712	C1150T	P384S	S1 - RBD		1	1
22716	C1154T	T385I	S1 - RBD	3		3
22785	G1223C	R408T	S1 - RBD		1	1
22793	G1231T	A411S	S1 - RBD		1	1
22818	C1256T	A419V	S1 - RBD	1		1
22895	G1333T	V445F	S1 - RBD		1	1
22899	G1337T	G446V	S1 - RBD	2		2
22928	T1366C	F456L	S1 - RBD	1		1
23001	G1439T	C480F	S1 - RBD		1	1
23012	G1450C	E484Q	S1 - RBD	1		1
23046	A1484C	Y495S	S1 - RBD		1	1
23111	C1549T	L517F	S1 - RBD		1	1
23120	G1558T	A520S	S1 - RBD	1	6	7
23121	C1559T	A520V	S1 - RBD		1	1
23127	C1565T	A522V	S1 - RBD	1	1	2
23145	A1583G	K528R	S1 - RBD		2	2
23149	G1587T	K529N	S1		1	1
23170	C1608A	N536K	S1		1	1
23202	C1640A	T547K	S1		2	2
23202	C1640T	T547I	S1		1	1
23223	A1661T	E554V	S1		2	2
23224	G1662T	E554D	S1	4	31	35
23270	G1708T	A570S	S1		3	3
23277	C1715T	T572I	S1	5	5	10
23282	G1720T	D574Y	S1		1	1
23292	G1730T	R577L	S1	1		1
23311	G1749T	E583D	S1		6	6
23312	A1750G	1584V	S1		1	1
23315	C1753T	L585F	S1	1	7	8
23349	G1787A	S596N	S1		1	1
23373	C1811T	T604I	S1		2	2
23380	C1818A	N606K	S1		2	2
23403	A1841G	D614G	S1	841	4054	4895
23426	G1864T	V622F	S1		2	2
23426	G1864C	V622L	S1		2	2
23420	C1873T	H625Y	S1		1	1
23435	C1873T	A626V	S1		1	1

Genomic Locus	Gene Locus	Amino Acid Change	Domain	Wave 1 (n=1026)	Wave 2 (n=4059)	Total (n=5085)
23444	C1882G	Q628E	S1	(11=1020)	(11=4039) 7	(11=5065) 7
23444	C1891T	P631S	S1	1	1	1
23455	C1895T	T632I	S1	I	1	1
23437	C18951	S640F	S1	1	42	43
23481	G1924T	V642F	S1	l	42	43
23480	C1940T	A647V	S1		1	1
						-
23536	C1974A	N658K	S1		4	4
23564	G2002T	A668S	S1		1	1
23586	A2024G	Q675R	S1		14	14
23587	G2025C	Q675H	S1		1	1
23587	G2025T	Q675H	S1		4	4
23589	C2027T	T676I	S1	1	2	3
23593	G2031T	Q677H	S1	1	1	2
23595	C2033T	T678I	S1	1		1
23624	G2062T	A688S	S2		4	4
23625	C2063T	A688V	S2		16	16
23655	C2093T	S698L	S2		1	1
23664	C2102T	A701V	S2		21	21
23670	A2108G	N703S	S2		1	1
23679	C2117T	A706V	S2		1	1
23684	T2122C	S708P	S2		1	1
23709	C2147T	T716I	S2		1	1
23718	C2156T	T719I	S2		1	1
23745	C2183T	P728L	S2	1		1
23755	G2193T	M731I	S2	3	1	4
23798	T2236C	S746P	S2		1	1
23802	C2240T	T747I	S2		1	1
23804	G2242A	E748K	S2		1	1
23832	G2270T	G757V	S2		1	1
23856	G2294T	R765L	S2		1	1
23868	G2306T	G769V	S2		3	3
23873	G2311T	A771S	S2		8	8
23877	T2315C	V772A	S2		1	1
23895	C2333T	T778I	S2		1	1
23900	G2338C	E780Q	S2		1	1
23936	C2374T	P792S	S2		1	1

Genomic	Gene	Amino Acid	Domoin	Wave 1	Wave 2	Total
Locus	Locus	Change	Domain	(n=1026)	(n=4059)	(n=5085)
23948	G2386T	D796Y	S2	4	2	2
23955	G2393T	G798V	S2	1	0	1
23987	C2425T	P809S	S2		2	2
23988	C2426T	P809L	S2		1	1
23997	C2435T	P812L	S2		1	1
24003	A2441G	K814R	S2		1	1
24014	A2452G	1818V	S2 - FP		5	5
24026	C2464T	L822F	S2 - FP		97	97
24041	A2479T	T827S	S2 - FP		4	4
24077	G2515T	D839Y	S2	2		2
24089	G2527A	D843N	S2	1	1	2
24095	G2533T	A845S	S2		5	5
24099	C2537T	A846V	S2		1	1
24129	A2567G	N856S	S2		7	7
24138	C2576T	T859I	S2		5	5
24141	T2579C	V860A	S2		1	1
24170	A2608G	1870V	S2		3	3
24188	G2626T	A876S	S2		1	1
24197	G2635T	A879S	S2		31	31
24198	C2636T	A879V	S2		1	1
24212	T2650G	S884A	S2		11	11
24237	C2675T	A892V	S2		1	1
24240	C2678T	A893V	S2	1		1
24268	G2706T	M902I	S2		1	1
24287	A2725G	1909V	S2 - HR1		2	2
24314	G2752C	E918Q	S2 - HR1	1		1
24328	G2766C	L922F	S2 - HR1		2	2
24348	G2786T	S929I	S2 - HR1		1	1
24356	G2794T	G932C	S2 - HR1		1	1
24357	G2795T	G932V	S2 - HR1		1	1
24368	G2806A	D936N	S2 - HR1		3	3
24368	G2806C	D936H	S2 - HR1		1	1
24368	G2806T	D936Y	S2 - HR1	3	4	7
24374	C2812T	L938F	S2 - HR1	-	3	3
24378	C2816T	S939F	S2 - HR1		4	4
24380	T2818G	S940A	S2 - HR1		5	5
24389	A2827G	S943G	S2 - HR1		6	6

Genomic	Gene	Amino Acid	Domain	Wave 1 (n=1026)	Wave 2	Total (n=5085)
Locus 24463	Locus C2901A	Change S967R	S2 - HR1	2	(n=4059)	(11=5065) 2
24403	C2901A C2945T	S982L	S2 - HR1	2	1	1
24579	C29451 C3017T	T1006I	S2 - CH		1	1
24579					1	1
	C3026G	T1009S	S2 - CH	1	I	1
24621	C3059T	A1020V	S2 - CH	I	0	
24638	G3076T	A1026S	S2 - CH		2	2
24642	C3080T	T1027I	S2 - CH	5		5
24649	G3087T	M1029I	S2 - CH		1	1
24710	A3148T	M1050L	S2		1	1
24710	A3148G	M1050V	S2	1	1	2
24712	G3150T	M1050I	S2		2	2
24718	C3156A	F1052L	S2	1	166	167
24770	G3208T	A1070S	S2		2	2
24794	G3232T	A1078S	S2 - CD	3	2	5
24812	G3250T	D1084Y	S2 - CD	1	29	30
24834	G3272T	R1091L	S2 - CD	1		1
24867	G3305T	W1102L	S2 - CD		1	1
24872	G3310T	V1104L	S2 - CD		1	1
24893	G3331C	E1111Q	S2 - CD		2	2
24897	C3335T	P1112L	S2 - CD	2	2	4
24912	C3350T	T1117I	S2 - CD		1	1
24923	T3361C	F1121L	S2 - CD		2	2
24933	G3371T	G1124V	S2 - CD	1	2	3
24959	G3397T	V1133F	S2 - CD		1	1
24977	G3415T	D1139Y	S2 - CD		1	1
24986	C3424A	Q1142K	S2	1		1
24998	G3436T	D1146Y	S2		4	4
24998	G3436C	D1146H	S2		13	13
25019	G3457T	D1153Y	S2		11	11
25032	A3470T	K1157M	S2	1		1
25046	C3484T	P1162S	S2		5	5
25047	C3485T	P1162L	S2		3	3
25050	A3488T	D1163V	S2		2	2
25088	G3526T	V1176F	S2		18	18
25101	A3539G	Q1180R	S2		1	1
25104	A3542G	K1181R	S2		4	4
25116	G3554A	R1185H	S2		2	2

It is made available under a CC-BY-NC-ND 4.0 International license .

Genomic Locus	Gene Locus	Amino Acid Change	Domain	Wave 1 (n=1026)	Wave 2 (n=4059)	Total (n=5085)
25121	A3559T	N1187Y	S2		1	1
25135	G3573T	K1191N	S2		1	1
25137	A3575C	N1192T	S2	1		1
25158	A3596C	D1199A	S2		1	1
25160	C3598T	L1200F	S2		1	1
25163	C3601A	Q1201K	S2		1	1
25169	C3607T	L1203F	S2	1		1
25183	G3621T	E1207D	S2		1	1
25186	G3624T	Q1208H	S2	1		1
25217	G3655T	G1219C	S2	1	3	4
25234	G3672T	L1224F	S2		1	1
25241	A3679G	I1227V	S2	1		1
25244	G3682T	V1228L	S2		2	2
25249	G3687T	M1229I	S2		1	1
25249	G3687C	M1229I	S2		2	2
25250	G3688A	V1230M	S2		1	1
25266	G3704T	C1235F	S2		4	4
25273	G3711T	M1237I	S2		2	2
25284	G3722T	C1241F	S2		1	1
25287	G3725T	S1242I	S2		4	4
25297	G3735T	K1245N	S2		1	1
25301	T3739G	C1247G	S2		1	1
25302	G3740T	C1247F	S2		4	4
25305	G3743T	C1248F	S2		2	2
25317	C3755T	S1252F	S2		1	1
25340	G3778T	D1260Y	S2		2	2
25350	C3788T	P1263L	S2	1	2	3
25352	G3790T	V1264L	S2		1	1
25365	T3803C	V1268A	S2		1	1

1497

1498 The domain region of RBD is based on structural information found in Cai et al.1499 2020 (98).

1500

1501

1502 Forty-nine of these amino acid replacements (V11A, T51A, W64C, I119T,

1503 E156Q, S205A, D228G, L229W, P230T, N234D, I235T, T274A, A288V, E324Q,

1504 E324V, S325P, S349F, S371P, S373P, T385I, A419V, C480F, Y495S, L517F,

1505 K528R, Q628E, T632I, S708P, T719I, P728L, S746P, E748K, G757V, V772A,

- 1506 K814R, D843N, S884A, M902I, I909V, E918Q, S982L, M1029I, Q1142K,
- 1507 K1157M, Q1180R, D1199A, C1241F, C1247G, and V1268A) were not
- represented in a publicly available database (34) as of August 19, 2020.

It is made available under a CC-BY-NC-ND 4.0 International license .