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SCOAT-Net: A Novel Network for Segmenting
COVID-19 Lung Opacification from CT Images

Shixuan Zhao, Zhidan Li, Yang Chen, Wei Zhao, Xingzhi Xie, Jun Liu∗, Di Zhao∗, and Yongjie Li∗

Abstract— Coronavirus disease 2019 (COVID-19) caused
by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) has spread worldwide at a rapid rate. As
of yet, there is no clinically automated tool to quantify
the infection of COVID-19 patients, which is of great sig-
nificance for judging the disease development and treat-
ment response of patients. Automatic segmentation of
lung opacification from computed tomography (CT) images
shows excellent potential for this purpose but still faces
some challenges, including the complexity and variability
features of the opacity regions, the small difference be-
tween the infected and healthy tissues, and the noise of
CT images. However, due to limited medical resources, it
is impractical to obtain a large amount of data in a short
time, which further hinders the training of deep learning
models. To answer these challenges, we proposed a novel
spatial- and channel-wise coarse-to-fine attention network
(SCOAT-Net), inspired by the biological vision mechanism,
for the segmentation of COVID-19 lung opacification from
CT images. SCOAT-Net has a spatial-wise attention module
and a channel-wise attention module to attract the self-
attention learning of the network, which serves to extract
the practical features at the pixel and channel level suc-
cessfully. Experiments show that our proposed SCOAT-Net
achieves better results compared to state-of-the-art image
segmentation networks.

Index Terms— COVID-19, convolution neural network,
segmentation, lung opacification, attention mechanism

I. INTRODUCTION

THE Coronavirus disease 2019 (COVID-19), which is
caused by severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2), has become an ongoing pandemic [1]–
[4]. As of 9 September 2020, there have been 212 countries
with outbreaks, a total of 27,486,960 cases diagnosed, and
894,983 deaths, and the number of infected people continues to
increase [5]. Clinically, reverse transcription-polymerase chain
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reaction (RT-PCR) is the gold standard for diagnosing COVID-
19 [6], but it also has the disadvantages of a high false-negative
rate [7]–[9] and the inability to provide information about the
patient’s condition.

COVID-19 has certain typical visible imaging features,
such as lung opacification caused by ground-glass opacities
(GGO), consolidation, and pulmonary fibrosis, which can be
observed in thoracic computed tomography (CT) images [9]–
[11]. Therefore, CT can be used as an essential tool for
clinical diagnosis. CT can also directly reflect changes in lung
inflammation during the treatment process and is a crucial
indicator for evaluating the treatment effect [6]. However, in
the course of treatment, the need for repeated inspections leads
to a sharp increase in the workload of radiologists. In addition,
the assessment of inflammation requires a comparison of
the region of lesions before and after treatment. Quantitative
diagnosis by radiologists is inefficient and subjective and is
difficult to be widely promoted. Artificial intelligence (AI)
technology may gradually come to play an important role in
CT evaluation of COVID-19 by enabling the evaluation to be
carried out more quickly and accurately. AI can also realize
the rapid response by integrating multiple functionalities,
such as diagnosis [12], segmentation [13], and quantitative
analysis [14], assisting doctors in rapid screening, differential
diagnosis, disease course tracking, and efficacy evaluation to
improve the ability to handle COVID-19. In this study, we
focus on the segmentation of COVID-19 lung opacification
from CT images.

Benefiting from the rapid development of deep learning
[15], many excellent convolution neural networks (CNNs)
have been applied to medical image analysis tasks and have
achieved the most advanced performance [12], [16], [17].
CNNs can be applied in various image segmentation tasks due
to their excellent expression ability and data-driven adaptive
feature extraction model. However, the success of any CNN
is inseparable from the accurate manual labeling of a large
number of training images by medical personnel, so CNNs
are not suitable for all tasks. COVID-19 lung opacification
segmentation based on CT images is an arduous task that has
the following problems. First, in the emergency situation of
the COVID-19 outbreak, it is difficult to obtain enough data
with accurate labels to train deep learning models in a short
time due to limited medical resources. Second, the infection
areas in a CT slice show various features such as different
sizes, positions, and textures, and there is no distinct boundary,
which increases the difficulty of segmentation. Third, due
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to the complexity of the medical images, the lung opacity
area is quite similar to other lung tissues and structures,
making it challenging to identify. Several works [18]–[20]
have tried to solve these challenges from the perspectives
of reducing manual depiction time, using noisy labels, and
implementing semi-supervised learning, and have achieved
specific results. Our approach in this study is derived from
the attention learning mechanism, which makes full use of
the inherent extraordinary self-attention ability of CNN to
make the network generate attention maps and make the
attention vectors in the training process weight the spatial
domain feature and channel domain feature. The areas and
features activated by the network can diagnose the target area
more accurately. Furthermore, a series of studies [21]–[23]
have proved the effectiveness of the attention mechanism for
classification and segmentation tasks.

The attention mechanism stems from the study of biological
vision mechanisms [24], particularly selective attention, a
characteristic of human vision. In cognitive neuroscience, it
is believed that an individual cannot receive and pay attention
to all stimuli due to the bottleneck of information processing.
Humans selectively focus on some information while ignoring
other visible information. The feature integration theory pro-
posed by Treisman [25] uses a spotlight to describe the spatial
selectivity of attention metaphorically. This model points out
that visual processing is divided into two stages. In the first
stage, visual processing quickly and spontaneously performs
low-level feature extraction, including orientation, brightness,
and color, from the visual input in various dimensions in a
parallel manner. In the second stage, visual processing will
locate objects based on the features of the previous stage,
generate a map of locations, and dynamically assemble the
low-level features of each dimension of the activation area into
high-level features. Generally speaking, essential areas attract
the attention of the visual system more strongly. Wolfe believes
that the attention mechanism uses not only the bottom-up
information of the image but also top-down information of
the high-level visual organization structure [26], and the high-
level information can effectively filter out a large amount of
irrelevant information.

This work is inspired by the biological vision mechanism
and proposes a novel attention learning method. We use a
traditional CNN to complete the extraction of local image
features spontaneously. After that, we generate an attention
map based on the low-level features of the previous stage
to activate the spatial response of the feature, then calculate
the attention vector based on the feature interdependence of
the activation area to activate the channel response of the
feature, and finally complete the reorganization of the high-
level features. The attention map and attention vector contain
top-down information fed back to the current local features in
the form of gating. We call this attention process a coarse-
to-fine process, which is a hybrid domain attention mode that
includes spatial-wise and channel-wise attention modules.

We believe that the attention learning method proposed
above aids the issues faced by segmenting COVID-19 lung
opacification. The lung CT slices of patients with pneumonia
contain tissue structures easily confused with inflammation

areas such as the trachea, blood vessels, emphysema back-
ground, and the CNNs method calculations based on the local
image, leading inevitably to the overfitting of irrelevant in-
formation of the model. We designed the spatial-wise module
to generate attention maps in feature extraction, suppressing
irrelevant information, and enhancing essential information
in the spatial domain. Given the large intra-class differences
between opacity regions, the channel-wise module can select
and reorganize the spatial domain features.

Based on this method, we propose a spatial and channel-
wise coarse-to-fine attention network (SCOAT-Net) and use it
to solve the segmentation task of COVID-19 lung opacifica-
tion. Compared with traditional CNNs, our model recognizes
the opacity area better, making it more suitable for complex
medical imaging tasks. The contributions of this paper are
threefold:

• We propose a novel coarse-to-fine attention network
for segmentation of COVID-19 lung opacification from
CT images, which utilizes embedded spatial-wise and
channel-wise attention modules and achieves state-of-the-
art performance (i.e., an average Dice similarity coeffi-
cient, or DSC, of 0.8948).

• We use the self-attention method so that the neural
network can generate attention maps without external
region of interest (ROI) supervision. Furthermore, we
use this method to understand the training process of the
network by observing the areas that the network focuses
on in different stages and increasing the interpretability
of the neural network.

• We verify the robustness and compatibility of the SCOAT-
Net on different types of CT scans and confirm that it
has specific data migration capability. Moreover, it can
provide a quantitative assessment of pulmonary involve-
ment, a difficult task for radiologists, and thus enhance
the clinical follow-up of patient disease development and
treatment response.

II. RELATED WORKS

A. Segmentation Networks
Deep neural networks (DNNs) have shown excellent per-

formance for many automatic image segmentation tasks. Zhao
et al. proposed the pyramid scene parsing network (PSPNet)
[27], which introduces global pyramid pooling into the fully
convolutional network (FCN) to make the global and local
information act on the prediction target together. DeeplabV3
[28], [29] proposed the ASPP (atrous spatial pyramid pool-
ing) module to make the segmentation model perform better
on multi-scale objects. U-Net [13] was introduced by Ron-
neberger et al. based on the encoder-decoder structure that is
widely used in medical image segmentation due to its excellent
performance. It uses skip connections to connect the high-level
low-resolution semantic feature map and the low-level high-
resolution structural feature map of the encoder and decoder so
that the network output has a better spatial resolution. Oktay et
al. [21] proposed the attention gate model and applied it to the
U-Net model, which improved the sensitivity and prediction
accuracy of the model without increasing the calculation cost.
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Fig. 1. Comparison of UNet++ (a) and the proposed SCOAT-Net (b).

UNet++ [30] uses a series of nested and dense skip paths
to connect the encoder and decoder sub-networks based on
the U-NET framework, which further reduces the semantic
relationship between the encoder and decoder and achieves
better performance in liver segmentation tasks.

B. Artificial Intelligence for COVID-19 based on CT

The segmentation of lung opacification based on CT images
is an integral part of COVID-19 image processing, and there
are many related works on this topic. Using the lungs and
pulmonary opacities manually segmented by experts as stan-
dards, Cao et al. [31] and Huang et al. [32] developed a CT
image prediction model based on CNNs to monitor COVID-
19 disease development, and it showed excellent potential for
the quantification of lung involvement. Some studies [33]–
[37] trained segmentation models with CT and segmentation
templates of abnormal lung cases, which can extract the
areas related to lung diseases, making the learning process
of pneumonia type classification easier in the next steps. The
deep learning model relies on a large amount of data training,
and it is impractical to collect a large amount of data with
professional labels in a short time. Several research groups
[18]–[20] attempted to solve this challenge from the perspec-
tives of reducing manual delineation time, using noisy labels,
and implementing semi-supervised learning. VB-Net [18] has
a perfect effect on the segmentation of COVID-19 infection
regions. The mean percentage of infection (POI) estimation
error for automatic segmentation and manual segmentation
on the verification set is only 0.3%. In particular, it adopts
a human-in-the-loop strategy to reduce the time of manual de-
lineation significantly. Wang et al. [19] proposed noise-robust
Dice loss and applied it in COPLE-Net, which surpasses other
anti-noise training methods to learn COVID-19 pneumonia
lesion segmentation in noisy labels. Inf-Net [20] uses a parallel
partial decoder to aggregate high-level features and generate
a global map to enhance the boundary area. It also uses a
semi-supervised segmentation framework to achieve excellent
performance in lung infection area segmentation.

C. Attention Mechanism
More and more attempts have been focused on the combina-

tion of deep learning and visual attention mechanisms, which
can be roughly divided into two categories: external-attention
mechanisms and self-attention mechanisms. An external-
attention mechanism allows the network to learn to generate
an attention map during the training process by conducting
ROI supervision externally so that the region activated by the
network can accurately diagnose disease changes. One study
[23], [38] applied this mechanism to the diagnosis of COVID-
19 and glaucoma, and the sensitivity was greatly improved. In
contrast, a self-attention mechanism does not rely on external
ROI supervision but rather exploits the intrinsic self-attention
ability of CNN. Self-attention consists of two parts, among
which spatial-wise attention [21], [39], [40] redistributes the
network’s attention at the pixel level of the feature map
to achieve more precise location, and channel-wise attention
[41] redistributes the attention at the channel level to instruct
the network in selecting practical features. In [42], spatial
and channel dimension attention were combined with parallel
mode to jointly guide network training, which captured rich
contextual dependencies to address the segmentation task.
Chen et al. [43] proposed SCA-CNN for the task of image
captioning, which incorporated spatial- and channel-wise at-
tention mechanisms. Zhang et al. [22] proposed an attention
learning method with the higher layer feature as the attention
mask of the lower layer feature, which can achieve the best
performance in skin lesion classification.

III. METHOD

UNet++ is an excellent image segmentation network which
has achieved high-grade performance in medical imaging
tasks. It contains dense connections that make the contex-
tual information of different scales closely related. However,
although this complicated connection method improves the
generalization ability of the model, it also causes information
redundancy and weak convergence of the loss function on a
small data set. Medical images have the characteristics of high
complexity and noise, which cause model overfitting when
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Fig. 2. Illustration of spatial-wise attention module and channel-wise attention module.

the amount of training data is insufficient. The SCOAT-Net
proposed in this work redesigns the connection structure of
UNet++ and introduces the attention learning mechanism. It
extracts the spatial and channel features from coarse to fine
with only a few added parameters and obtains more accurate
segmentation results.

A. Structure of the Lung Opacification Segmentation
Network

Fig. 1 compares the basic structures of UNet++ and the pro-
posed SCOAT-Net. Inheriting the basic structure of UNet++,
SCOAT-Net is composed of an encoder and a decoder con-
nected by skip connections. The encoder extracts the informa-
tion of the semantic level of the image and provides a rela-
tively coarse location, using a max-pooling layer as a down-
sampling module. The decoder reconstructs the segmentation
template from the semantic information. It uses U-shaped skip
connections to receive the corresponding low-level features of
the encoder and calculate the final segmentation result. The
upsampling module of the decoder uses the bilinear inter-
polation layer instead of the deconvolution layer to improve
the resolution of the feature map. This method dramatically
reduces the number of parameters as well as the calculation
cost, and it has good performance on small-scale datasets.

We reconstruct the connection at the top of the network
(except for the bottom layer X0,j) and introduce the attention
module. This causes the calculation of the attention mechanism
to act on the high-level semantic information and keep the
bottom layer of the detailed image information as much as
possible, resulting in fine, high-resolution segmentation. The
proposed attention module consists of two parts: the spatial-
wise attention module and the channel-wise attention module.

We use context feature maps with different resolutions
as information of different dimensions for the spatial-wise
attention module, as shown in the green circle of Fig. 1, which
can combine all the multi-dimensional feature maps extracted

by all the filters to calculate the attention map of the image and
adjust the target area of the network adaptively. The output of
the spatial-wise attention module is contacted with the feature
maps of the same layer to enter the channel-wise attention
module, as shown in the orange circle. The channel-wise
attention module calculates the interdependence between the
channels and adaptively recalibrates the information response
of the channel. Additionally, in each convolution module, we
use the residual block to train our network.

B. Spatial-Wise Attention
The proposed spatial-wise attention module emphasizes

attention at the pixel level, making the network pay attention to
the key formation and ignore irrelevant information. Normally,
in a CNN, the features extracted by the network change from
simple low-level features to complex high-level features with
the deepening of the convolutional layers. When calculating
the attention map, we can not only use the information of
single-layer features but also combine the upper and lower
features of different resolutions. The final output of this
module is expressed as xs ∈ RHu×Wu×Cu , which is given
by (1) and (2):

xi,j+1
M = HS

(
HR

(
xi,j
)
+HR

(
FU (x

i+1,j)
))
, (1)

xs = (1 + xi,j+1
M ) · FU (x

i+1,j), (2)

where the function HR(·) stands for the convolution of size
1×1 followed by a batch normalization and a ReLU, used for
feature integration. HS(·) denotes the convolution of size 1×1
followed by a batch normalization and a sigmoid activation
function, used for feature integration and generation of the
attention maps. FU (·) is the up-sampling operation with a
bilinear interpolation function. The input of this module is
composed of the upper layer feature xi,j ∈ RHu×Wu×Cu and
the lower layer feature xi+1,j ∈ RHd×Wd×Cd , where xi,j

represents the output of each convolution module Xi,j . xM ∈
RHu×Wu×1 is the attention map generated by this module,
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which uses the saliency information in the spatial position
to weigh the input features to complete the redistribution of
the feature attention at the pixel level. The attention map
generated by the sigmoid function is normalized between 0
and 1, and the output response will be weakened after point
multiplication with the current feature map. Nested structure
uses of this method will lead to over-fitting or the degradation
of model performance caused by the gradient’s disappearance.
To improve this phenomenon, inspired by the ResNet, we add
the original features xi+1,j after weighting them by xi,j+1

M , as
shown in (2). The final output xs is sent to the next channel-
wise attention module.

C. Channel-Wise Attention

The input xc ∈ RHu×Wu×Cm of the proposed channel-wise
attention module is obtained by concatenating the spatial-wise
attention module’s output xs with the feature map of the same
layer, as in (3):

xc =
[[
xi,k

]j−1

k=0
, xs

]
, (3)

where [·] represents concatenation. xg ∈ R1×1×Cm is the
channel-wise statistical information calculated by xc through
a global average pooling layer, as in (4), which can reflect the
response degree on each feature map.

xg = FP (xc) =
1

Hu ×Wu

Hu∑
i=1

Wu∑
j=1

xc(i, j). (4)

We want the module to adaptively learn the feature channels
that require more attention, and we also want it to learn
the interdependence between channels. Inspired by the SENet
[41], we pass xg through two fully connected (FC) layers
with parameters ω1 and ω2 to obtain the attention vector
xV ∈ R1×1×Cm of the channel, as in (5):

xV = FL(xg) = σ (ω2ρ (ω1xg)) , (5)

where ρ(·) refers to the ReLU activation function, and σ(·)
refers to the sigmoid activation function. A structure con-
taining two fully connected layers, which reduces the com-
plexity and improves the generalization ability of the model,
is adopted here. The fully connected layer of parameter
ω1 ∈ R

Cm
r ×Cm reduces the feature channels’ dimension with

reduction ratio r (r = 16 in this experiment). In contrast, the
fully connected layer of parameter ω2 ∈ RCm×Cm

r recombines
the feature channels to increase its dimension to Cm. The
attention vector xV finally weights the input feature map
xc, and after the convolution operation completes the feature
extraction, it is added to itself to obtain the final output
xi,j+1 ∈ RHu×Wu×Cu , as in (6):

xi,j+1 = H2
R(xV · xc) +HR(xc), (6)

where H2
R(·) represents the two-layer convolution for feature

extraction.

D. Loss Function

SCOAT-Net has a deep supervision strategy, which can
use any one of the segmentation branch outputs (x0,j , j ∈
1, 2, 3, 4) to calculate the loss or use the output of all branches
to calculate the average of the loss. The choice depends on the
tasks and data. By combining binary cross-entropy (BCE) loss
and dice coefficient loss [44], we use a hybrid loss function
for segmentation as follows:

Lseg = Lbce + α× Ldice

= − 1

N

N∑
b=1

(
Yb · log(σ(Ŷb)) + (1− Yb) · log(σ(1− Ŷb))

)
− 2α× Y · Ŷ

Y 2 + Ŷ 2
, (7)

where Y = {Y1, Y2, · · · , Yb} denotes the ground truths, Ŷ
denotes the predicted probabilities, N indicates the batch size,
and σ(·) corresponds to the sigmoid activation function. This
hybrid loss includes pixel-level and batch-level information,
which helps the network parameters to be better optimized.

E. Evaluation Metrics

To evaluate the performance of lung opacification segmen-
tation, we measure the Dice similarity coefficient (DSC),
sensitivity (SEN), positive predicted value (PPV), volume
accuracy (VA), regional level precision (RLP), and regional
level recall (RLR) between the segmentation results and the
ground truth, which are defined as follows.

DSC =
2|Va ∩ Vb|
|Va|+ |Vb|

, SEN =
|Va ∩ Vb|
|Vb|

,

PPV =
|Va ∩ Vb|
|Va|

, V A = 1− 2abs(|Va| − |Vb|)
|Va|+ |Vb|

,

(8)

where Va and Vb refer to the segmented volumes by the model
and the ground truth, respectively. In addition to the above
voxel-level evaluation indicators, we also design the regional-
level evaluation indicators RLP and RLR, as in (9):

RLP =
Np

Na
, RLR =

Nt

Nb
. (9)

Na denotes the total number of connected regions of the
model prediction result, Np denotes the number of real opacity
regions predicted by the model, Nb denotes the total number
of real opacitiy regions, and Nt denotes the number of real
opacity regions predicted by the model. If the center of the
connected area predicted by the model is in a real opacity
region, then we accept that the predicted connected area is
correct. We calculate the center of the connected area as:

u = argmin
i

max
j
‖ui − vj‖ , (ui ∈ U, vj ∈ V ), (10)

where U represents the point set of a single connected area
of the prediction result, and V represents the point set of its
edge.
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IV. EXPERIMENT AND RESULTS

A. Data and Implementation

This study and its procedures were approved by the local
ethics committees. All methods were performed in accordance
with the relevant guidelines and regulations. Written informed
consent from the study patients was not required. The data
contained 19 lung CT scans of COVID-19 patients obtained
using SOMATOM Definition AS and 1117 lung opacification
segmentation delineated by radiologists on the single-slice CT.
Additionally, we prepared a total of eight lung CT scans of two
patients scanned at different times using SOMATOM go.Top,
and these scans were used to test the compatibility of our
model in different device types. We performed five-fold cross-
validation to test the results. The input images were single-
layer CT images, which were in the size of 512×512 pixels
to ensure the high resolution of the result and were normalized
before being sent to the network. The sketch templates of the
radiologists served as the ground truth, so they were used to
calculate the loss function with the final output of the network.
We used the gradient descent algorithm with Adam to optimize
the loss function that updates the network parameters. The
learning rate was set to 0.01, which was multiplied by 0.1 after
every ten epoch decays. When the iterative result converged,
we adjusted the learning rate to 0.001 for training again.
The learning rate decay strategy remained unchanged, and
the iteration was set to 50 times. The final results of training
in this warm-up [46] method will be slightly improved. All
experiments were conducted on an NVIDIA RTX GPU, and
the proposed SCOAT-Net was implemented based on a Pytorch
framework.

TABLE I
QUANTITATIVE EVALUATION OF SCOAT-NET WITH DEFFERENT LOSS

FUNCTIONS FOR LUNG OPACIFICATION SEGMENTATION.

Loss functions
Results (%)

DSC SEN PPV VA RLP RLR

MAE [47] 85.74 84.97 83.52 91.78 82.49 84.77
IOU [48] 88.10 86.36 90.47 94.69 92.28 88.17
BCE 88.53 86.85 91.43 94.70 92.47 89.93
Dice [44] 86.79 89.24 85.38 90.78 86.77 92.30
Focal [49] 87.73 87.28 87.93 93.86 88.18 88.96
BCE-Dice (α = 0.5) 89.48 88.74 90.64 95.26 93.66 91.94

B. Results on Lung Opacification Segmentation

The aim of this experiment was to evaluate the performance
of our proposed SCOAT-Net with different loss functions for
lung opacification segmentation. We used six different loss
functions, namely MAE [47], IOU [48], BCE, Dice [44],
Focal [49], and BCE-Dice, to train the proposed network with
the same strategy and hyper-parameters, and the quantitative
comparison is listed in Table I. It is evident that IOU, BCE,
and Focal had excellent segmentation performance, and their
DSCs were the highest. Among them, Focal was superior to
IOU and BCE in terms of SEN but slightly inferior in terms
of PPV and RLP. It is worth noting that Dice had a more
significant performance in terms of SEN and RLR. Dice can

predict the entire opacity area better, but it also causes the
PPV and RLP performance to decline because it yields more
false-positive predictions. The hybrid loss function combining
BCE and Dice with parameter α (we set α = 0.5 in the
experiments) produced the best results. Except for SEN and
RLR, which were slightly lower than Dice, the other indicators
were the best. The box plot shown in Fig. 3 demonstrates
the performance of our proposed network with the BCE-Dice
loss function. In 19 cases, the model we proposed exhibited
excellent performance. The medians of DSC, SEN, and PPV
were all higher than 0.9, and the medians of VA, RLP, and
PLR were higher than 0.95, even though one or two cases did
not achieve excellent results.

DSC SEN PPV VA PLP PLR
0.5

0.6

0.7

0.8

0.9

1

Fig. 3. The segmentation performances of SCOAT-Net with BCE-Dice
loss function.

TABLE II
QUANTITATIVE EVALUATION OF DEFFERENT NETWORKS FOR LUNG

OPACIFICATION SEGMENTATION. THE BCE-DICE LOSS WAS USED FOR

TRAINING.

Methods
Results (%)

DSC SEN PPV VA RLP RLR

PSPNet [27] 85.08 84.95 85.84 92.32 90.71 86.06
ESPNetv2 [50] 86.06 83.38 89.67 91.03 75.45 90.45
DenseASPP [51] 85.46 83.80 89.09 91.48 87.81 88.23
DeepLabV3+ [28] 87.43 86.23 89.46 94.72 91.95 90.58
U-Net [13] 84.72 82.23 87.90 91.13 92.00 87.68
CE-Net [52] 78.77 78.62 81.04 80.39 79.24 82.08
Attention U-Net [21] 85.64 84.87 86.69 94.94 91.44 86.30
UNet++ [30] 84.82 83.55 86.35 94.23 89.51 85.19
Proposed 89.48 88.74 90.64 95.26 93.66 91.94

C. Comparison of Different Networks
We compared our proposed SCOAT-Net with other popular

segmentation algorithms for lung opacification segmentation.
The BCE-Dice loss function was used to train these networks.
The quantitative evaluation of these networks was calculated
by cross-validation, as shown in Table II. ESPNetv2 had good
PPV and RLR, but RLP was extremely low, which shows that
the lightweight models could not achieve excellent region-level
segmentation results on complex medical image segmentation
tasks. DeepLabV3+ achieved an excellent result in Table
II, which perhaps results from the good adaptability of its
atrous spatial pyramid pooling module designed for semantic
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ESPNetv3

DeepLabV3+

Fig. 4. Visual comparison of segmentation performance of different models trained with BCE-Dice loss function. The red curves represent the
ground truth, and the cyan curves represent the results of the model.

segmentation. U-Net, which has an excellent performance in
many medical image segmentation tasks, had excellent RLP
but the lowest SEN. Although most of the predicted regions
were correct, the voxel prediction could not capture all opacity
regions. Compared with U-Net, which has a more complex
structure and more connections, UNet++ had slightly improved
performance in DSC, SEN, and VA, but it had a significant
drop in RLP and RLR, which shows that its dense connection
improved the model’s generality. However, it did not achieve
excellent results on the relatively small dataset used in this

work.
Our proposed SCOAT-Net achieved the best performance

among the compared networks. It more effectively identified
and segmented the pulmonary opacities by using spatial-
and channel-wise attention modules. Fig. 4 shows a visual
comparison of the results of each network. In the case #1 to the
case #4, SCOAT-Net had the best segmentation performance,
not only effectively hitting the target opacity region but also
producing the least difference between the segmentation area
and the ground truth. However, SCOAT-Net also returned some
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Fig. 5. Visualization of the segmentation results and attention maps of our methods on three COVID-19 cases. The red area is the lung
opacification segmentation of the ground truth and the models of UNet++ and our SCOAT-Net, and yellow arrows highlight the local differences of
the segmentation results.

unsatisfactory segmentation results, as shown in the case #5
of Fig. 4. Most of the models, including our model, failed
to predict this tiny opacity region. Although PSPNet makes a
valid prediction, it also makes false-positive predictions (e.g.,
case #1) and false-negative predictions (e.g., case #3), which
lead to a decline in the overall performance.

D. Effectiveness of the Attention Module
In this experiment, we verified the performance of the

attention module on the lung opacification segmentation task.
Our SCOAT-Net uses a total of six spatial-wise attention
modules, as shown in the green circle in Fig. 1. These modules
can adaptively generate attention maps with the focused area
information of the network. The early stage of our network
is defined as the position that closes to the input and passes
fewer convolution layers. The later stage is defined as the
position that closes to the output and passes more convolution
layers. We selected three different stages of attention maps for
display, and the order from the early stage to the late stage
is x1,1M , x2,2M , and x1,3M , as shown in Fig. 5. For better display,
we only show the lung area. We can see that our SCOAT-
Net had better performance in lung opacification recognition
than UNet++. For example, in the first case, UNet++ identified
the interlobular fissure (the yellow arrow area in the lower-left
corner) with a specific shape and structure as an opacity region,
but SCOAT-Net did not misidentify it. From the attention
map of this case, we can see that x1,1M focuses on all the
salient areas of the lungs, basically covering all the structures
of the lung. Furthermore, x2,2M greatly reduces the significant
areas, and the attention of the network is more concentrated
on restricted regions. By x1,3M , the interlobular fissure area
misidentified in the early stage has no longer received the core
attention. Additionally, for the opacity region that UNet++
did not recognize (the region indicated by the yellow arrow),
SCOAT-Net adequately identified the target area, and on all
the attention maps, much attention focused on the target area.
As the training phase progressed, the attention regions of
SCOAT-Net gradually became smaller. The attention module

we designed not only effectively weights the feature map but
also further helps us understand the training process of the
neural network, which improves its interpretability.

Furthermore, we also introduced the attention module from
other studies into UNet++ and compared the results with that
of our SCOAT-Net, as shown in Table III. AttentionV1 uses
the attention module of residual attention network [39], At-
tentionV2 imitates the connection structure of Attention UNet
[21], and AttentionV3 uses the pyramid attention module of
Wang et al. [40]. Compared with the baseline UNet++, all the
networks obtained the significantly improved DSC and RLR.
SCOAT-Net and AttentionV2 had outstanding performance
in SEN, and SCOAT-Net, AttentionV2, and AttentionV3 had
significantly improved RLP. The results show that the attention
module can improve the segmentation performance while only
increasing a few parameters of the network, especially for the
recognition of the target area.

TABLE III
QUANTITATIVE EVALUATION OF DEFFERENT ATTENTION MODULE FOR

SEGMENTATION. THE BASELINE NETWORK IS UNET++.

Methods Params
Results (%)

DSC SEN PPV VA RLP RLR

UNet++ 35.02M 84.82 83.55 86.35 94.23 89.51 85.19
AttentionV1 53.43M 86.22 85.56 87.44 93.12 90.60 87.67
AttentionV2 37.63M 88.01 87.14 89.28 94.88 93.79 90.96
AttentionV3 35.05M 86.91 84.76 89.55 92.77 92.61 89.13
Proposed 38.73M 89.48 88.74 90.64 95.26 93.66 91.94

E. Validation on Other Data
We prepared a total of eight lung CT scans of two patients

scanned at different times using the CT device SOMATOM
go.Top. These scans, which were different from the scans used
in training, were used to test the robustness and compatibility
of the proposed SCOAT-Net. Fig. 6 presents the lung CT scans
of two cases under treatment. COVID-19 is clinically divided
into four stages [53]: early stage, progressive stage, peak stage,
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and absorption stage. The clinical report of the first case shows
that it was in the absorption stage at all four time points.
From the result of our model, we can see that on both the
axial unenhanced and coronal reconstruction CT images, the
opacity regions were significantly reduced, which was further
verified by the lung opacification volumes (LOVs) displayed
on the lower-right corners of the coronal images. The clinical
report of the second case shows that the patient was in the
early stage at the first time point, the progressive stage at
the second time point, and the absorption stage at the third
and fourth time points. Our calculated LOV was highest at
the second time point, and there was a significant decrease in
the third time point, which matched the diagnosis report of the
patient. In summary, our proposed SCOAT-Net on cross-modal
CT scans was verified, proving that it has better robustness
and compatibility. It can provide an objective assessment of
pulmonary involvement and therapy response in COVID-19.

LOV: 428cm3

2020.1.30 2020.2.4 2020.2.14 2020.2.22

LOV: 192cm3 LOV: 34cm3 LOV: 24cm3

LOV: 369cm3 LOV: 503cm3 LOV: 122cm3 LOV: 110cm3

2020.2.1 2020.2.9 2020.2.17 2020.2.21

A

B

C

D

C
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e 
#1

C
as

e 
#2

Fig. 6. Qualitative evaluation of the results of SCOAT-Net on two
cases from other type of CT scan. A and B show the evolution of one
COVID-19 case during the 24-day treatment period. C and D show the
evolution of another case during the 21-day treatment period. A and C
are axial unenhanced chest CT images at four time points (dates are
annotated in the lower-right corner of each panel); B and D are the
coronal reconstructions at the same time points. The segmentation of
pulmonary opacities derived from SCOAT-Net is displayed in red, and
the volumetric assessment of our results (i.e., lung opacification volume
(LOV)) is annotated in the lower-right corners of the images of B and C.

V. DISCUSSION AND CONCLUSION

CNNs have been widely used in various medical image
segmentation tasks due to their excellent performance [13],
[21], [30], [48]. Some networks have been improved from
the perspective of connection structure (e.g., U-Net), and
others have been improved from the perspective of combining
multi-scale features (e.g., PSPNet). These improvements have
enhanced the expression ability of the models to a certain
extent. However, due to the particularity of medical image-
related tasks, only a small amount of data can be obtained,

making it impossible to converge when training conventional
DNNs, which is a common problem. In addition to augmenting
the data [54], some studies show that attention mechanisms can
be more effective in enhancing the generalization capacity of
models.

The difference between SCOAT-Net and the traditional
segmentation network introduces the attention module we
designed, which can continuously suppress irrelevant features
and enhance useful features in the image space and channel
domain during the training process. We applied this network
to the task of lung opacification segmentation in COVID-19
cases and achieved better image segmentation performance
than state-of-the-art CNNs, as shown in Table 2. It shows
that our method has great application potential in complex
medical scenarios. Furthermore, we compared the influences
of three attention modules in other models and the proposed
attention modules in our network on this task. The network
incorporating the attention modules has improved performance
to varying degrees compared to the baseline network. It is
worth mentioning that the attention modules we propose gen-
erate a series of attention maps. We can observe the changes
of the focused regions at different stages, which contributes to
the interpretability of the neural network.

Furthermore, we verified the robustness and compatibility of
our network on different types of CT equipment and confirmed
that it has excellent data migration capability. Our network
can accurately segment lung opacity regions in CT images
at different time-points during the treatment. It provides a
quantitative assessment of pulmonary involvement, which is
a difficult task for radiologists but is essential to the clini-
cal follow-up of patient disease development and treatment
response.

However, our network still has shortcomings, as shown in
case #5 of Fig. 4. This suggests that we can continue to
enhance our network’s recognition of targets of different scales
by using multi-scale feature fusion or cascading convolution
in different receptive field sizes.
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