Abstract
Background We aimed to define the clinical and mutational spectrum, and to provide novel molecular insights into DHX30-associated neurodevelopmental disorder.
Methods Clinical and genetic data from affected individuals were collected through family support group, GeneMatcher and our network of collaborators. Novel missense variants were investigated by in-vitro and in-vivo assays. These analyses included investigation of stress granule formation, global translation, ATPase and helicase activity, as well as the effect of selected variants on embryonal development in Zebrafish.
Results We identified altogether 25 previously unreported individuals. All 19 individuals harboring heterozygous missense variants within helicase core motifs (HCMs) have global developmental delay, intellectual disability, severe speech impairment and gait abnormalities. These variants impair the ATPase and helicase activity of DHX30 and global translation, trigger stress granule formation, and cause developmental defects in a zebrafish model. Notably, 4 individuals harboring heterozygous variants resulting either in haploinsufficiency or truncated proteins presented a milder clinical course, similar to an individual bearing a de novo mosaic missense variant within HCM. Late-onset severe ataxia was observed in an individual with a de novo missense variant within the ratchet-like domain, and early- onset lethal epileptic encephalopathy in an individual with a homozygous missense variant within the helicase core region but not within a HCM. We report ten novel variants, two of which are recurrent, and provide evidence of gonadal mosaicism in one family. Functional analyses confirmed pathogenicity of all missense variants, and suggest the existence of clinically distinct subtypes that correlate with their location and nature. Moreover, we established here DHX30 as an ATP-dependent RNA helicase.
Conclusions Our study highlights the usefulness of social media in order to define novel Mendelian disorders, and exemplifies how functional analyses accompanied by clinical and genetic findings can define clinically distinct subtypes for ultra-rare disorders. Such approaches require close interdisciplinary collaboration between families/legal representatives of the affected, clinicians, molecular genetics diagnostic laboratories and research laboratories.
Competing Interest Statement
K.M. and J.J. are employees of GeneDx, Inc.
Funding Statement
This work was funded in part by Werner Otto Stiftung (to D.L and H-J.K) and Deutsche Forschungsgemeinschaft (LE4223/1-1 to D.L.; Kr1321/8-2 to H-J.K), by the UCLA Pathology Translational Research Fund (to J.B.M. and F.Q-R.) and by the UCLA California Center for Rare Diseases (to S.F.N).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The study was performed in accordance with protocols approved by the respective ethics committees of the institutions involved in this study (approval number by the Ethics Committee of the Hamburg Chamber of Physicians: PV 3802 and the UCLA IRB: 11-001087).
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The raw whole-exome sequencing data that support the findings in affected individual cannot be made publicly available for reasons of patient confidentiality. Qualified researchers may apply for access to these data, pending institutional review board approval.