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Abstract  

Objective 

Thorough assessment of cerebral dysfunction after acute brain lesions is paramount to optimize 

predicting short- and long-term clinical outcomes. The potential of dynamic resting-state 

connectivity for prognosticating motor recovery has not been explored so far. 

Methods 

We built random forest classifier-based prediction models of acute upper limb motor impairment 

and recovery after stroke. Predictions were based on structural and resting-state fMRI data from 

54 ischemic stroke patients scanned within the first days of symptom onset. Functional 

connectivity was estimated using both a static and dynamic approach. Individual motor 

performance was phenotyped in the acute phase and six months later. 

Results 

A model based on the time spent in specific dynamic connectivity configurations achieved the 

best discrimination between patients with and without motor impairments (out-of-sample area 

under the curve and 95%-confidence interval (AUC±95%-CI): 0.67±0.01). In contrast, patients 

with moderate-to-severe impairments could be differentiated from patients with mild deficits 

using a model based on the variability of dynamic connectivity (AUC±95%-CI: 0.83±0.01). 

Here, the variability of the connectivity between ipsilesional sensorimotor cortex and putamen 

discriminated the most between patients. Finally, motor recovery was best predicted by the time 

spent in specific connectivity configurations (AUC±95%-CI: 0.89±0.01) in combination with the 

initial motor impairment. Here, better recovery was linked to a shorter time spent in a 

functionally integrated network configuration in the acute phase post-stroke.  

Interpretation 

Dynamic connectivity-derived parameters constitute potent predictors of acute motor impairment 

and post-stroke recovery, which in the future might inform personalized therapy regimens to 

promote recovery from acute stroke.  
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Abbreviations 

 

AUC – Area under curve 

dFNC – dynamic functional network connectivity 

FDR – false discovery rate 

MRI – magnetic resonance imaging 

MI-UL – motricity index of the upper limb 

rsfMRI – resting-state functional magnetic resonance imaging  
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Introduction  

Stroke is the leading cause of long-term disability in adults1 and entails the highest 

number of disability-adjusted life years among more than 300 different causes.2 To optimize 

stroke care, it is of great importance to establish prediction models of stroke-related disabilities 

at the single patient level. These predictions may not only inform patients and their proxies about 

individual trajectories after stroke, but may also facilitate the allocation and planning of targeted 

rehabilitative regimens.  

The amount of initial motor impairment has been frequently demonstrated to constitute a 

strong predictor of chronic impairment,3 yet may not guarantee sufficiently accurate predictions 

at the level of single patients.4 This limitation motivates the consideration of further biomarkers 

of stroke recovery.5 Structural and functional neuroimaging-derived information have proven 

viable candidates: For example, we have demonstrated that recovery after stroke could be 

reliably predicted by functional neuroimaging signals obtained during a motor task.6 Task-based 

data, however, depends critically on the patient’s ability to accurately perform a task of interest. 

Given this requirement, patients with severe impairments are frequently excluded a-priori from 

such studies. In contrast, structural and resting-state functional magnetic resonance imaging 

(rsfMRI) data depend much less on the abilities of a patient. Since both modalities do not require 

active participation or specific stimulation equipment, they may be easily implemented into the 

clinical routine, also allowing to consider patients with a wide range of clinical deficits. While 

previous studies relying on either structural7 or resting-state MRI data8 have generated promising 

results for the prediction of motor impairments early after stroke, data are scarce with respect to 

successfully predicting motor recovery as a long-term outcome. One reason might lie in the 

relatively low sensitivity and temporal resolution of conventional rsfMRI analyses assuming 

static connectivity between brain areas. However, novel techniques permit the increase in the 

temporal resolution of resting-state connectivity maps from minutes to seconds.9,10 By these 

means, dynamic functional network connectivity (dFNC) analyses are thought to capture 

moment-to-moment fluctuations in a behaviorally meaningful way11,12 and grant novel insights 

into neurological disease (e.g., epilepsy,13 migraine,14 Parkinson’s disease,15 Huntington’s 

disease16). We have recently shown that dFNC analyses provide new information on cerebral 

alterations post-stroke, thus far hidden in static analyses.17 Several studies suggest that dFNC 

may not only enhance inferences in imaging correlates of brain disease but also lead to 
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substantial increases in predictive capacities for several of these diseases, potentially as the 

dynamic approach may to be closer to the neurobiology underlying brain function.18,19,20  

Therefore, we here sought to explore the potential of dFNC parameters for predicting 

acute motor impairment and recovery after stroke. We hypothesized that dFNC parameters 

obtained in the acute post-stroke phase are superior to static connectivity for predicting motor 

outcome as neural reorganization enabling recovery of function might especially depend on the 

dynamic flexibility of neural network.17 Furthermore, we expected enhanced prediction 

performances for dFNC-informed models compared to those that solely employed clinical 

predictors, such as an initial impairment score, or structural lesion information.  

 

Methods  

 

Participants 

Fifty-four patients admitted to the University Hospital of Cologne, Department of 

Neurology, due to acute first-ever ischemic stroke, participated in this study. These patients 

fulfilled the following inclusion criteria: i) diffusion-weighted imaging (DWI)-verified ischemic 

stroke, ii) symptom onset less than eight days ago, and iii) 30–99 years of age. Exclusion criteria 

were: i) hemorrhagic or bi-hemispheric stroke, ii) contraindications to MRI, iii) carotid artery 

stenosis >50% according to NASCET criteria, or intracranial artery stenosis, iv) cognitive 

impairment or manifest dementia, v) decreased levels of consciousness, and vi) further 

neurological or psychiatric diseases. For n = 30 patients, follow-up visits could be scheduled (on 

average 30 weeks after the ischemic event). All aspects of this study were approved by the ethics 

committee of the University of Cologne (File No. 11–191), and all patients provided informed 

written consent following the Declaration of Helsinki. All patients considered here served as 

replication cohort in Bonkhoff and colleagues 2020.17 Furthermore, subsets of the data were 

previously analyzed with respect to the relationship of acute motor symptoms and 

connectivity.8,42 Importantly, these previous analyses considered data from the acute phase only 

and all analyses presented in this paper are new, hence there is no overlap.  

 

Motor performance and recovery 
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Upper limb motor performance was tested twice: at the time of scanning (n=54), i.e., in 

the acute post-stroke phase and at follow-up six months later. Individual motor performance was 

captured via the Motricity Index21 of the affected upper limb (MI-UL). The MI-UL test assigned 

scores up to a maximum of 33 points depending on how well movements of (i) shoulder 

abduction, (ii) elbow flexion, and (iii) pinch grip could be performed (individual scores of the 

three tests were averaged, 0: No movement, 33: Normal power, c.f. supplementary table 1). 

Patients were categorized in three subgroups depending on the level of motor impairment: (i) 

patients with no upper limb impairment (MI-UL=33, n=26), (ii) patients with mild impairments 

(25≤MI-UL≤32, n=16), and (iii) patients with moderate-to-severe upper limb motor impairment 

(MI-UL≤22, n=12). The cut-off between mildly and moderate-to-severely affected patients was 

chosen based on the sample distribution of MI-UL scores of patients with impairments and a 

median score of MI-UL=25.3. As a consequence, patients in the moderate-to-severe group 

featured an average MI-UL of maximal 22, indicating that at least one movement could not be 

performed against resistance, equivalent to a clinically relevant motor deficit. 

Recovery was quantified as change between follow-up and acute motor impairment (MI-

ULFollow-up – MI-ULacute). In particular, we defined three subgroups which differed in the amount 

of experienced motor recovery: (i) no change in motor function (n=16), (ii) more (n=9) and (iii) 

less pronounced recovery (n=5). The cut-off between more and less pronounced recovery was 

based on the median amount of recovery in the sample of all patients with an initial impairment 

(recovery=7.67 MI points). As the difference scores between the different MI categories is on 

average 6.6, the cut-off value represented a clinically relevant amount of recovery.  

 

MRI acquisition 

Resting-state fMRI data were acquired in the framework of a clinical imaging protocol in 

a clinical routine on a 1.5T scanner (Philips, Guildford, UK). Patients were asked to lie 

motionless in the scanner and stay awake. Gradient echo-planar imaging (EPI) parameters were 

as follows: repetition time (TR)=2,100 ms, echo time (TE)=50 ms, field of view (FOV)=250 

mm, 24 axial slices, voxel size: 3.9×3.9×3.9 mm3, 183 volumes, acquisition time: ∼six minutes. 

We, furthermore, obtained the following structural scans: diffusion-weighted imaging (DWI) 

images (TR=3,900ms, TE=95ms, FOV=230mm, 22 axial slices, voxel size=1.8x3x6 mm3) and 

T2-weighted MR-images (TR=5,600ms, TE=110ms, FOV=230mm, 22 axial slices, voxel 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2020. ; https://doi.org/10.1101/2020.09.25.20200881doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.25.20200881
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7

size=0.9x1.1x6.0 mm3) for more detailed analyses of lesion topography. Images of patients with 

right-hemispheric lesions (n=19) were flipped at the midsagittal plane.8,22 As a consequence, no 

conclusions on hemispheric-specific effects can be drawn with respect to motor recovery. 

 

Structural MRI analysis 

Stroke lesion maps were constructed by manually segmenting lesioned tissue on DWI 

images using MRIcron.23 Subsequently, DWI images, as well as corresponding lesion masks, 

were normalized to standard MNI-space by first co-registering images to an MNI-template and 

then employing the unified segmentation algorithm after masking infarcted tissue.24 Lesion maps 

of 53 patients passed quality control (in one subject top slices were missing due to an alignment 

error during DWI volume acquisition). In a subsequent step, we applied principal component 

analysis (PCA) to reduce the high-dimensional lesioned voxel-space (9,900 voxels lesioned in at 

least one subject). We performed this PCA-step twice and retained (i) all components that 

individually explained more than 5% of the variance (5-component structural lesion data, 5 

components, 64% explained variance in total), and (ii) all components that explained more than 

95% of the variance in total (28-component structural lesion data, 28 components).7   

 

Resting-state fMRI analysis: Preprocessing  

Resting-state fMRI data were preprocessed employing Statistical Parametric Mapping 

(SPM8; http://www.fil.ion.ucl.ac.uk/spm/) in a Matlab framework (The Mathworks 2012a, 

Natick, MA, USA). As for one subject, only 182 images were acquired, we shortened all further 

time courses by one volume to harmonize the scan length across subjects. The first three volumes 

of each time-series were discarded to allow for blood-oxygenation level dependent (BOLD)-

signal saturation.  

The 179 remaining images were spatially realigned to the time-series’ mean image and 

co-registered with the structural image and corresponding lesion mask. Subsequently, all images 

were spatially normalized to standard MNI-space using the unified segmentation option after 

masking lesioned brain tissue. In a final step, data were smoothed by a Gaussian kernel with a 

full-width at half maximum (FWHM) of 8 mm. For each patient's time series, framewise 

translation and framewise rotation did not exceed 3 mm and 0.3° maximum, respectively.  
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Intrinsic connectivity networks 

To define spatially separated intrinsic connectivity networks, components were extracted 

employing independent component analysis (ICA)25,26 on the rsfMRI data of 405 healthy 

controls (components available for download: http://trendscenter.org/software/).9,27 Details on 

the applied group information guided ICA (“back-reconstruction”) algorithm can be found in 

Salman et al. (2019).28 

Because of our focus on motor impairments, we centered the analysis on 14 motor network 

components that can be grouped into three functional domains: Eight cortical sensorimotor 

components, three subcortical components, and three cerebellar components. Ancillary 

preprocessing steps comprised time-course de-trending (i.e., accounting for linear, quadratic, and 

cubic trends in the data), de-spiking using 3Ddespike and application of a fifth-order Butterworth 

low-pass filter with a high-frequency cutoff of 0.15 Hz. Finally, time-courses were variance 

normalized.29  

 

Static functional network connectivity 

For each subject, we computed ‘classic’ static functional connectivity maps as Fisher’s Z-

transformed Pearson’s pairwise correlation of time-courses between all 14 motor networks, 

resulting in 91 connectivity pairs. Age, sex, mean framewise translation, and rotation were used 

as independent regressors to correct for demographics and within scanner movement. 

 

Dynamic functional network connectivity 

Subsequently, we estimated dFNC within the framework of the sliding window 

approach.9,30,31,10 As prior studies suggest that sliding window lengths between 30 and 60 

seconds allow for a successful dFNC estimation with an optimal signal-to-noise ratio32, we opted 

for a window length of 42 seconds (20 TRs). This step resulted in 159 individual windows that 

were additionally convolved with a Gaussian of 6.3 seconds (σ=3 TRs). The actual dFNC pairs 

were obtained from the l1-regularized precision matrix.33 The covariates age, sex, mean 

framewise translation, and rotation served as regressors-of-no-interest. Finally, dFNC values 

were normalized by Fisher’s Z-transformation. In the next step, we estimated connectivity states, 

i.e., re-occurring patterns of functional connectivity across time and subject space via k-means 

clustering34 of all patients’ 159 dFNC matrices.9,10 We relied on the l1-distance function given its 
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suitability for high-dimensional data.35 In line with previous work,9,16 we conducted these 

clustering processes twice: In the first run, we decided upon the optimal number of clusters k 

(referred to as states). This optimal number k was determined based on the elbow criterion, 

which considers the cluster validity index, computed as the ratio between the within-cluster 

distance to the between-cluster distance.9 In a second clustering run, each of the 159 windows of 

all 54 patients was assigned to one of k connectivity states. By these means, we obtained the 

following dFNC parameters: fraction times, dwell times, and number of transitions. Furthermore, 

we computed the variability of actual dFNC pairs by estimating the standard deviation of 

pairwise functional connectivity over the 159 windows for each patient.20 The larger this value, 

the more the dynamic connectivity varies over the entire duration of the scan.  

 

Group differences in dynamic connectivity variability 

To further elucidate the nature of the variability in dFNC strength concerning motor 

impairments, we evaluated differences in the variability of each dynamic connectivity pair 

between stroke patients with (i) no motor impairment, (ii) mild motor impairment and (iii) and 

moderate-to-severe motor impairment using a three-level one-way ANOVA (level of 

significance: p<0.05).  

 In case of significant group differences, we conducted post-hoc t-tests to infer 

differences between patient groups: no vs. mild impairment, no vs. moderate-to-severe 

impairment, and mild vs. moderate-to-severe impairment (level of significance: p<0.05, FDR-

corrected for multiple comparisons). Furthermore, we repeated these analyses steps of three-level 

one-way ANOVA and post hoc t-tests for the patient sample with follow-up scores.  

 

Prediction of acute motor impairment and motor recovery 

The main aim of the present study was to build robust prediction models of acute 

individual motor impairment and recovery within the first months based on neuroimaging data 

acquired in the acute post-stroke phase. 

We created two classification scenarios: We aimed at (i) predicting the motor deficits 

from fMRI data acquired in the acute post-stroke phase and (ii) predicting motor recovery. With 

respect to the first scenario, we initially sought to determine whether it is possible to predict 

whether a stroke patient has or doesn't have a motor deficit using the MI-UL score. In addition, 
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we tested whether it is also possible to even predict the severity of motor impairment, i.e. 

whether an individual patient had a mild versus a moderate-to-severe impairment of the upper 

limb. With respect to the second prediction scenario, i.e., predicting motor recovery, the change 

between the follow-up 6 months post-stroke and the acute MI-UL-score. As we considered three 

categories of motor recovery (no motor recovery, minor recovery, substantial recovery), we 

extended previous two-class prediction scenarios to a multi-class prediction one. In an 

exploratory analysis, we also computed a prediction model to differentiate between patients with 

minor to no recovery (n=8) and patients with substantial recovery (n=9) 

A random forest classifier was used as prediction model.36 This meta-estimator machine 

learning algorithm fits several decision tree classifiers on bootstrapped sub-samples of the 

dataset and successively averages individual predictions. In this way, it aims to increase 

prediction accuracy by reducing variance and overfitting. Moreover, random forest classifiers 

can automatically include non-linear and interaction effects of input variables and handle 

correlated input variables favorably.37 Given our moderate sample size, we avoided an additional 

nested cross-validation step by adopting hyperparameter settings that were suggested by Olson 

and colleagues38 (n_estimators=500; criterion="entropy", max_features=0.25). Olson and 

colleagues had extracted these settings as the most advantageous ones after running 

hyperparameter optimizations in 165 biomedical datasets. To obtain a performance estimate for 

unseen patient data, i.e., the model’s generalization capacity, we conducted 100 randomly 

initiated five-fold cross-validations, repeatedly developing and evaluating models in 100 × 5 

training and test sets. In the multi-class recovery prediction analyses, we employed three-fold 

cross-validation given the small subgroup sample size.  

The reported main performance measure denotes the out-of-sample area under the curve 

(AUC) and the respective 95%-confidence interval. AUC values range between 0 and 1, and 

values greater than an AUC=0.5 are considered to be above chance level. Non-overlapping 95%-

confidence intervals between models determined significant differences between AUC outcomes. 

Sensitivity and specificity are given in the supplementary materials. We also examined the 

feature importance estimated by the random forest classifier to increase the interpretability of the 

prediction approach. To further elucidate feature importance, we computed Spearman rank 

correlations between the variables with the highest feature importance and outcomes, i.e., either 

the acute MI-UL or recovery.  
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Concerning input features, we examined the predictive capacity of neuroimaging features 

derived from (i) structural data, (ii) static, and (iii) dynamic functional connectivity data. 

Structural lesion information was considered either in the 5- or 28-component PCA-reduced 

form (c.f. Structural MRI analysis). Static functional connectivity was entered as 91 network-

pair-wise connectivity values. Finally, we constructed two models relying on dFNC. The first 

dFNC model was based on the dynamic parameters fraction and dwell times, as well as the 

number of transitions. The second dFNC model leveraged the variability in the dynamic 

connectivity of all 91 network pairs. Models were built with and without the addition of the acute 

motricity index when predicting the recovery after stroke.  

Data and code availability  

DFNC was computed based on Matlab2019a scripts available in the GIFT toolbox. 

Further statistical analyses were conducted in a jupyter notebook environment (Python 3.7, 

https://github.com/AnnaBonkhoff/to_be_added_upon_acceptance)
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Results 

 

Clinical characteristics  

Fifty-four patients participated in this study (mean age: 71.9 (11.8) years, 46% female, 

days post-stroke: 2.5 (1.5), c.f., Table 1 for a full list of outcomes and covariates and Figure 1 

for a lesion overlap). 

Table 1. Demographics, clinical, and MRI characteristics of all 54 stroke patients (mean and standard deviation, if 

not indicated otherwise). Cortico-spinal tract (CST) affection was computed based on lesion overlap with a CST 

template provided in the SPM Anatomy Toolbox.39  

 Acute phase (n=54) Follow-up phase (n=30) 

Age  71.9 ± 11.8 years 73.3 ± 10.4 years 

Sex (females) 46 % 47 % 

Mean Framewise Translation 0.22 ± 0.13 mm 0.24 ± 0.12 mm 

Mean Framewise Rotation 0.002 ± 0.001 rad 0.002 ± 0.001 rad 

Time since stroke  2.5 ± 1.5 days 210 ± 57 days 

Acute: MI UL affected arm 

(median, interquartile range, 

only patients with an initial 

deficit) 

25.33 (6.67) (n=28) 25.33 (4.33) (n=17) 

Follow-up: MI UL affected arm 

(median, interquartile range, 

only patients with an initial 

deficit) 

- 33.0 (7) (n=17) 

Normalized lesion volume 

(median, interquartile range) 

2,240 mm3 (4,768) 4,048 mm3 (10,020) 

CST overlap  1.7 ± 2.0 % 1.8 ± 2.2 % 

 

Static and dynamic functional network connectivity 

After computing time courses and spatial maps of 14 motor components (Figure 2), we 

first estimated static connectivity (Figure 3A). Subsequently, we obtained dFNC via the sliding 
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window approach. Hereupon, we identified three discrete, re-occurring connectivity states via k-

means clustering, since the cluster validity index suggested three as an optimal cluster number 

solution (Figure 3B).  

 

Group differences in dynamic connectivity variability 

The variability in dynamic connectivity of eight network pairs differed significantly 

between the three patient subgroups with different amounts of initial motor impairment (one-way 

ANOVA: p<0.05, Figure 4A, left plot). These differences particularly pertained to connections 

between the cortical sensorimotor networks and the putamen. Mildly affected patients presented 

with generally lower variability values than both moderately-to-severely and non-affected 

patients (post hoc t-tests: p<0.05, FDR-corrected, Figure 4B, outer plots). Moderately-to-

severely affected patients presented with even higher dynamic connectivity variability than non-

affected patients (post hoc t-tests: p<0.05, FDR-corrected, Figure 4B, middle plot).  

When contrasting the three patients subgroups with different amounts of motor recovery 

over time, we substantiated nine significantly different dynamic connectivity variability pairs, 

(one-way ANOVA: p<0.05, Figure 4A, right plot). Patients in the substantial recovery subgroup 

were particularly characterized by a lower variability in dynamic connectivity between the 

supplementary motor area (SMA) and bilateral posterior putamen (post hoc t-tests: p<0.05, FDR-

corrected, Figure 4C, middle and right plots). 

 

Prediction of acute upper limb impairment 

When aiming to predict acute upper limb impairment in the entire sample of 54 stroke 

subjects, the highest prediction performance yielded the dynamic fraction and dwell times data 

(out-of-sample AUC±95%-confidence interval(CI): 0.67±0.01). Feature importances indicated 

that the total time spent in state 3, i.e., the fraction time in a functionally markedly integrated 

state, was the most relevant variable for predicting the acute impairment status (c.f. 

supplemental materials section “Segregation and Integration”). Dwell times in state 2, 

another functionally integrated state, were assigned the second highest feature importance. Both 

features, however, did not correlate with acute motor impairments (fraction time state 3: ρ=0.22, 

p=0.12; dwell time state 2: ρ=0.03, p=0.87), which may be indicative of more complex 

interaction and non-linear effects that the random forest classifier picked up on. The models 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2020. ; https://doi.org/10.1101/2020.09.25.20200881doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.25.20200881
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14

based on the structural, as well as static functional connectivity data performed second-best (5-

component structural: AUC=0.61±0.02, 28-component structural: AUC=0.59±0.01, static 

connectivity: AUC=0.62±0.02). The model considering the dynamic variability data performed 

significantly worse than the previous models and achieved an AUC at chance level (Table 2, 

Supplementary Table 2).  

However, when refining the prediction scenario to the distinction between patients with 

moderate-to-severe and mild motor impairments (n=28), it was the model based on dynamic 

connectivity variabilities that demonstrated the highest prediction capacity (AUC=0.83±0.02). 

The amount of motor impairment was especially predicted by the variability of dynamic 

connectivity between the ipsilesional sensorimotor network and bilateral posterior putamen, as 

well as ventral precentral cortex and bilateral anterior putamen (Figure 5). Here, more severe 

motor impairments correlated with higher variability in these networks (ipsilesional sensorimotor 

network – posterior putamen: ρ=-0.57, p=0.001, ventral precentral cortex – anterior putamen: 

ρ=-0.40, p=0.035). None of the other models provided a prediction fidelity above the level of 

chance for the distinction between impairment levels (Table 2).  

In summary, the presence of acute motor impairments was best predicted by the fraction 

and dwell times-based dynamic connectivity model. In contrast, the variability of individual 

dynamic connectivity pairs was a powerful predictor of the amount of motor impairment.    

 

Table 2. Prediction of acute motor impairment (out-of-sample AUC and 95%-confidence interval). The 

highest prediction performances per scenario are stated in red and marked with an asterisk 

 No. of 

subjects 

5-

component 

structural 

data 

28-

component 

structural 

data 

Static 

connectivity 

data  

Faction and 

dwell times 

data 

Dynamic 

variability 

data 

Acute MI-

UL: No-

motor 

impairment 

vs. motor 

impairment 

Structural: 

53 

(27 vs. 26, 

49% without 

motor 

symptoms) 

 

fMRI: 54 

0.61±0.02 0.59±0.01 0.62±0.02 0.67±0.01* 0.34±0.01 
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(28 vs. 26, 

48% without 

motor 

symptoms) 

Acute MI-

UL: Mild 

motor 

impairment 

vs. 

moderate-

severe 

motor 

impairment 

Structural: 

27 (16 vs. 

11, 59% 

with mild 

motor 

impairments) 

 

fMRI: 28 

(16 vs. 12, 

57% with 

mild motor 

impairments) 

 

0.22±0.02 0.33±0.02 0.32±0.01 0.34±0.02 0.83±0.02* 

 

Prediction of motor recovery 

We next challenged the capacity of acutely acquired structural and rsfMRI data to predict 

motor recovery 6 months after stroke (n=30). The acute motricity index was already a strong 

predictor, when differentiating between more and less pronounced, as well as no changes in 

motor function in the first six months post-stroke (AUC=0.84±0.01, all results: Table 3, 

Supplementary Table 3). The joint model based on the dynamic fraction and dwell times data 

and the acute motricity index accomplished a prediction performance of AUC=0.89±0.01. The 

95%-confidence intervals of this joint model did not overlap with the 95%-confidence interval of 

the model using the MI as the sole predictor variable, highlighting significantly improved 

prediction performance when adding the dynamic connectivity parameters to the behavioral data. 

The two most important features were the number of transitions between states and fraction time 

in state 3, i.e., a functionally integrated state. The acute MI-UL score was ranked as the third 

most important feature only. Both of the most important dynamic connectivity parameters 

correlated negatively with the recovery, i.e., the more a subject recovered, the shorter their time 

spent in state 3 was and the fewer they switched between different states (Fraction time state 3: 

ρ=-0.49, p=0.006; Number of state transitions: ρ=-0.39, p=0.04).  
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Finally, we tested the prediction performance when only considering patients with an 

initial impairment. In this scenario, the amount of recovery (no-minor vs. substantial) was best 

predicted by the dynamic fraction and dwell times data (AUC=0.92±0.02, Table 3, 

Supplementary Table 4 & 5). The most important features were fraction and dwell times in 

state 3, i.e., a functionally integrated state (Fraction time state 3: ρ=-0.56, p=0.02; Dwell time 

state 3: ρ=-0.61, p=0.008). The model relying on the initial MI-score achieved a significantly 

lower AUC of 0.82 (AUC±95%-CI=0.82±0.02). It was paralleled in performance by the models 

considering the variability in dynamic connectivity (with the addition of the MI-score: 

AUC±95%-CI=0.83±0.02 and without the MI-score: AUC±95%-CI=0.82±0.02). The two top 

ranked features were the variability in dynamic connectivity between SMA and bilateral 

posterior putamen, as well as lateral paracentral cortex and bilateral posterior putamen. 

Correlation analyses indicated that subjects showed higher recovery values the smaller 

variability was in these connections (SMA - putamen: ρ=-0.59, p=0.01; lateral paracentral cortex 

- lateral paracentral cortex: ρ=-0.54, p=0.03). While the models relying on 28-component 

structural and static connectivity data did not exceed a chance-level prediction performance, the 

model incorporating 5-component structural data had (i) an AUC of 0.72±0.03 with the addition 

of the MI-score, and (ii) 0.66±0.02 without the MI-score. This finding indicates some relevance 

of the stroke lesion location with respect to the potential to recover. 

 

In conclusion, we found dFNC parameters obtained in the first days post-stroke such as 

the state-specific fraction and dwell times as well as the variability of dynamic connectivity to be 

potent predictors of motor recovery 6 months later. In particular, fraction and dwell times 

significantly enhanced prediction performance beyond the level of traditional and well-known 

clinical predictors, such as the initial motor impairment.        
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Table 3. Prediction of upper limb motor recovery based on structural MRI data, static and dynamic 

connectivity (out-of-sample AUC and 95%-confidence interval). The highest prediction performances per 

scenario are stated in red and marked with an asterisk. 

 No. of 

subjects 

Acute 

MI-UL 

5-

component 

structural 

data & 

acute MI-

UL 

28-

component 

structural 

data & 

acute MI-

UL 

Static 

connectivity 

data & 

acute MI-

UL 

Dynamic 

fraction 

and dwell 

times data 

& acute 

MI-UL 

Dynamic 

variability 

data & acute 

MI-UL 

MI-UL 

Recovery: 

Three-group 

classification 

Structural 

and fMRI: 

30 (16 vs. 5 

vs. 9, with 

no, less and 

more 

pronounced 

motor 

recovery) 

 

 

 

0.84±0.01 0.75±0.02 0.72±0.02 0.67±0.02 0.89±0.01* 0.74±0.01 

MI-UL 

Recovery: 

More and 

less 

pronounced 

recovery 

Structural 

and fMRI: 

17 (9 vs. 8, 

53% with 

more 

pronounced 

motor 

recovery) 

 

0.82±0.02 0.72±0.03 0.52±0.03 0.25±0.01 0.92±0.02* 0.83±0.02 
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Discussion  

We here explored novel predictors of individual acute motor impairment and recovery 

after stroke. These biomarkers were derived from dFNC analyses of rsfMRI data from 54/30 

acute ischemic stroke patients that presented with varying degrees of motor impairment. DFNC 

analyses are special because they allow for the extraction of moment-to-moment fluctuations in 

brain connectivity and the definition of re-occurring dynamic connectivity states.9,10 Thereby, 

this approach increases the time resolution of resting-state fMRI signals to seconds and may be 

particularly capable of capturing stroke-induced short-lasting connectivity alterations and higher 

network flexibility.17,19,40 Fraction times in state 3, i.e., the time spent in a functionally integrated 

connectivity state, and the variability in dynamic connectivity between putamen and various 

cortical sensorimotor areas crystallized as particularly promising biomarkers for individualized 

outcome predictions.   

 

Functional segregation and integration 

Stroke patients with or without acute motor impairments were most accurately 

differentiated based on the time spent in specific connectivity states. Feature importance 

highlighted fraction times in state 3, a connectivity state that was characterized by pronounced 

functional integration1. Previous studies of dynamic connectivity in independent acute ischemic 

stroke cohorts have already uncovered links between functional integration and segregation and 

motor performance: lower motor domain integration in case of severe compared to moderate 

hand motor impairments17 and increased whole-brain segregation (i.e., decreased integration) in 

case of a high stroke severity.42 Interestingly, in healthy subjects with cast-induced motor 

inactivity of the upper limb, motor network topology also turned into a more segregated state.43 

We here did not observe a clear correlation between fraction times in integrated state 3 and acute 

motor impairment across all subjects. Rather, our random forest classifier approach may have 

enabled us to differentiate between groups by also capturing non-linear, as well as interaction 

effects between more than one variable.  

While we did not find an association between fraction times in state 3 and acute motor 

impairments, we did, however, identify a high capacity of the fraction and dwell times in state 3 

                                                 
1 Functional integration here describes a synchronized information processing between various functional domains, 
while functional segregation implies more isolated information processing within functional domains.41 
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to predict and correlate with future recovery. Patients that did not show a preference for this 

spatially integrated connectivity state in the first days after stroke recovered more substantially in 

the upcoming weeks. From a pathomechanistic perspective, the possibly most striking 

characteristic of state 3 is the pattern of highly positive intra-domain dynamic connectivity in 

combination with a positive connectivity between cortical and subcortical networks. Hence, the 

association of lower fraction and dwell times in state 3 with motor recovery indicates that a more 

segregated, isolated processing within the cortical and subcortical motor domains may be 

mechanistically critical for a more successful stroke recovery. Interestingly, increased 

segregation, i.e., decreased integration, has been previously linked to expedited regain of 

cognitive function in healthy aging and diffusely damaged brains after mild traumatic brain 

injury.44 Our current findings are, therefore, in line with these reports.  

 

Variability of dynamic connectivity  

By considering the variability in dynamic connectivity, we here amend the previously 

employed toolset to generate insights into the role of motor areas in healthy and pathological 

motor function. In inference- and prediction-focused analyses, we were able to link mild motor 

impairment as well as a more pronounced recovery to lower, i.e., more stable, dynamic 

connectivity variability values in select cortical – subcortical connections. The investigation of 

dynamic connectivity variability profiles was previously motivated by Allen and colleagues,9 

especially as they represented inaccessible information content when conducting static 

connectivity analyses. The authors described distinct “zones of instability”, i.e., regions with 

more variable dynamic connectivity in healthy volunteers: The most variable regions were 

located in the lateral parietal and occipital cortex. Comparable analyses of dFNC variability in 

neurological patients with temporal lobe epilepsy inferred the instability of precuneus dynamic 

connectivity as a signature of the disease.45 In yet another study, the dFNC variability provided 

powerful information for the differentiation between Alzheimer’s patients and healthy controls.20  

In the present study, it was the variability of the dynamic connectivity between the 

ipsilesional sensorimotor cortex and bilateral posterior putamen that predicted a more versus less 

initial impairment especially well. Statistical group comparisons moreover suggested that, both 

moderately-to-severely affected patients, as well as those without any impairments had a higher 

ipsilesional sensorimotor-putamen dFNC variability than mildly affected patients. Both of these 
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brain regions are well known to be implicated in the emergence of acute motor impairments and 

recovery post-stroke: Lesion symptom mapping studies repeatedly reported ischemic lesions in 

the putamen underlying upper limb impairment.46,47 Furthermore, the link between lower (static) 

resting-state connectivity between ipsi- and contralesional motor areas and higher motor 

impairment is one of the most prominently featured findings in stroke neuroimaging research.8,48 

The connectivity between the posterior ipsilesional sensorimotor cortex and putamen, let alone 

their dFNC variability, however, requires further exploration to determine the biological 

meaning.  

In case of predicting motor recovery, the variability of the dynamic connectivity strengths 

between the supplementary motor areas (SMA) and the bilateral posterior parts of the putamen 

was the most predictive feature. This SMA-putamen variability was also found to be 

significantly lower in case of more pronounced recovery compared to less pronounced and no 

change in motor function. The SMA has been consistently identified as critical region for 

physiological motor function as well as for stroke recovery in previous studies.49,50 In particular, 

longitudinal motor-task-based functional imaging studies demonstrated a recovery-related excess 

in activation in these regions early after stroke49 and decreases in activation in sub-acute and 

chronic stages after stroke.50 In addition, dynamic causal modelling (DCM) analyses that 

extracted links between increases in SMA-M1 coupling and motor improvements suggested a 

supportive role of SMA for motor recovery post-stroke.51 Lastly, diffusion-tensor imaging in 

healthy adults indicates structural connections between SMA and especially posterior parts of the 

putamen, highlighting the role of this connection for motor function.52 In line with this 

conclusion, the SMA-putamen connectivity was found to be disturbed in patients suffering from  

motor impairments due to Parkinson’s disease.53,54  

In summary, previous results on dFNC variability and ours combined suggest that these 

dFNC parameters represent biologically meaningful fingerprints of neurological diseases. In the 

case of ischemic stroke, this variability might particularly well capture the effects of brain injury 

and early plasticity mechanism in the first few days post-stroke. 

 

Limitation and future directions 

A sample of 54 stroke subjects is arguable still extendible if intended for the construction 

of outcome prediction models, especially as the sample size was decreased further in ancillary 
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analyses. However, the present dataset is among the largest acute stroke rsfMRI datasets 

currently available and rendered particularly unique by its comprehensive longitudinal motor 

assessment and acquisition during the clinical routine, i.e., when the patients received their 

diagnostic MR scans. The latter circumstance enabled a very early time point of data acquisition, 

on average 2.5 days after stroke. This underlines the general feasibility of implementing the 

approach presented here with respect to clinical translation. Due to the task-free nature of 

rsfMRI, it was also feasible to recruit stroke patients that are typically excluded from fMRI task 

studies, i.e., patients with severe motor impairment. Lastly, we have focused on classification 

scenarios, i.e., our prediction models discriminated patients with or without motor impairments. 

It could thus be a valuable next step to predict outcomes on continuous scales, i.e., predict the 

precise amount of impairment per patient. 

 

Conclusions 

Here, we demonstrated the feasibility of predicting acute motor impairment and recovery 

after stroke based on dynamic functional connectivity. Individual patients’ preferences for a 

highly integrated connectivity state were particularly pivotal in discriminating between the 

presence or absence of acute motor impairment and recovery over time. We additionally 

uncovered significantly different profiles in the variability of dynamic connectivity between 

patient groups with varying degrees of motor impairment. These differences especially related to 

links between the putamen and cortical motor networks, some of which also emerged as reliable 

predictors of motor impairment and recovery. In conclusion, our study highlights the value of 

dynamic connectivity-derived information to gain insights into the phenotypes of acute ischemic 

brain injury and recovery after stroke. 
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Figures 

Figure 1. Lesion overlap of all patients. Most lesions were located in the middle cerebral artery

territory. The highest lesion load was found subcortically, affecting white matter pathways and

the grey matter of basal ganglia. 
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Figure 2. Spatial maps of 14 included intrinsic connectivity networks. Networks were

organized in three motor-related functional domains: Sensorimotor (SMN, 8 components, dark

blue), subcortical (SC, 3 components, light blue), and cerebellar (CB, 3 components, yellow).

Back-reconstruction of networks was based on components extracted in Allen et al., 2014. SMA:

Supplementary Motor Area. L: Left. R: Right. 

Figure 3. A. Static and B. Dynamic functional network connectivity. A. Darker red color

implies stronger positive, darker blue stronger negative connectivity. Static functional

connectivity was, therefore, characterized by strong positive intra-domain connectivity, neutral

connectivity between cortical and subcortical motor networks as well as neutral to negative

connectivity between either cortical and subcortical motor networks and cerebellar networks. B.

Stated percentages above each state correspond to state-specific fraction times across all

subjects. State 1, the most seldom state (median dwell time: 10 windows), featured highly

positive intra-domain connectivity and highly negative connectivity between the sensorimotor

and subcortical as well as cerebellar domains. In contrast, State 2, which emerged most often

(median dwell time: 22 windows), was characterized by particularly weak intra-domain

connectivity and mostly neutral inter-domain connectivity. Lastly, State 3 presented highly

positive intra-domain connectivity, neutral connectivity between the sensorimotor and

subcortical, and slightly negative connectivity between sensorimotor and cerebellar domains

(median dwell time: 14 windows). We can also notice that visually static functional connectivity

resembled State 3 the most. This observation is supported by obtaining the smallest l1-distance

from the static functional connectivity state to all three connectivity states. 
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Figure 4. Dynamic functional connectivity strength variability in relation to upper limb

motor impairments and recovery post-stroke. A. Mean variability of dynamic connectivity

throughout the entire scan session. The left plot visualizes the variability averaged over all 54

patients initially recruited. The right plot considers all 30 patients that were followed up after six
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months. Darker red color represents higher variability values. Asterisks indicate significant

group effects between patients with no, moderate, or severe upper limb impairments or more,

less or no recovery, respectively (three-level one-way ANOVA: p<0.05). Most of the differences

in variability were found for connections between the bilateral putamen and cortical

sensorimotor networks. B. Subtraction maps of mean variability values between each

subgroup constellation of initial impairment. Red color implies higher variability values, blue

color lower variability values. Post hoc t-tests revealed some overlapping (“posterior putamen –

left sensorimotor cortex”), yet mostly distinct significantly different connectivity pairs between

mildely affected patients and non-affected patients, as well as mildly and moderately-to-severely

affected patient groups (p<0.05, FDR-corrected for multiple comparisons). Mildly affected

patients differed from non-affected patients in more dynamic connectivity variability pairs than

did moderately-to-severely affected patients (four versus two pairs). C. Subtraction maps of

mean variability values between each subgroup constellation of recoverees. The asterisk

indicated a significant group effect between patients with more pronounced versus those with

less pronounced motor recovery post-stroke (t-test: p<0.05, FDR-corrected for multiple

comparisons).  
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Figure 5. Variability of dynamic connectivity and feature importances. Brain renderings 

visualize the most predictive dynamic connectivity variability pairs for the prediction of mild 

versus moderate-severe acute motor impairments (left) and the prediction of more or less 

pronounced recovery in the patients with initial impairment in the first months after stroke 

(right).  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2020. ; https://doi.org/10.1101/2020.09.25.20200881doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.25.20200881
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34

Supplementary materials 
 
 
Supplementary Table 1A. Motricity index: Shoulder abduction and elbow flexion. 

0 No movement 

9 Palpable contraction of the muscle, but no 

movement 

14 Visible movement, but not full range and 

not against gravity 

19 Full range of movement against gravity, 

but not resistance 

25 Full movement against gravity, but 

weaker than on the other side 

33 Normal power 

 

Supplementary Table 1B. Motricity index: Pinch grip. Please note that we took the average 

of all three scores to arrive at our maximum score of 33 for the entire MI-UL. 

0 No movement 

11 Beginning of prehension 

19 Able to grip cube, but not hold it against 

gravity, examiner may need to lift the 

wrist 

22 Able to grip and hold the cube against 

gravity 

26 Able to grip and hold the cube against a 

weak pull, but weaker than on the other 

side 

33 Normal power 
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Segregation and Integration 

 

We computed domain-wide segregation scores for each of the three derived dynamic 

connectivity states utilizing the formula:55 

 

System segregation = 
��������	�����
��

�����
��
 

 

with Mean(Zw): average of all within-domain correlations (measured as Fisher’s Z-transformed 

r) and mean(Zb): average of all between-domain correlations. Negative correlation values to zero 

in accordance with Chan et al. (2014). 

 

State 1 was found to be the most segregated state (State 1: 0.92, averaged over all subjects), 

while state 2 and 3 were similarly integrated (State 2: 0.81, State 3: 0.82; one-way ANOVA 

comparing domain-wide segregation of all three states: F-value=21.8, p<0.001; post hoc t-tests: 

State 1 – State 2: T-value=6.26, p<0.01, State 1 – State 3: T-value=6.39, p<0.001, State 2 – State 

3: T-value=-0.06, p=0.95). 

 

 

Supplementary Table 2. Prediction of acute motor impairment (test-set sensitivity and 

specificity as well as 95%-confidence intervals). 

 No. of 

subjects 

5-component 

structural 

data 

28-component 

structural 

data 

Static 

connectivity 

data 

Dynamic 

fraction and 

dwell times 

data 

Dynamic 

variability 

data 

Acute MI-

UL: No-

motor 

impairme

nt 

vs. motor 

impairme

nt 

Structural: 

53 

(27 vs. 26, 

49% 

without 

motor 

symptoms) 

 

Sens=0.54±0.0

2 

Spec=0.61±0.0

2 

 

Sens=0.56±0.0

2 

Spec=0.60±0.0

2 

 

Sens=0.57±0.0

2 

Spec=0.64±0.0

2 

 

Sens=0.64±0.0

2 

Spec=0.57±0.0

2 

 

Sens=0.33±0.0

2 

Spec=0.44±0.0

2 
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fMRI: 54 

(28 vs. 26, 

48% 

without 

motor 

symptoms) 

Acute MI-

UL: Mild 

motor 

impairme

nt vs. 

moderate-

severe 

motor 

impairme

nt 

Structural: 

27 (16 vs. 

11, 59% 

with mild 

motor 

impairment

s) 

 

fMRI: 28 

(16 vs. 12, 

57% with 

mild motor 

impairment

s) 

 

Sens=0.53±0.0

3 

Spec=0.12±0.0

2 

 

Sens=0.63±0.0

3 

Spec=0.22±0.0

2 

 

Sens=1.00±0.0

0 

Spec=0.50±0.0

0 

 

Sens=0.66±0.0

2 

Spec=0.20±0.0

2 

 

Sens=0.86±0.0

2 

Spec=0.59±0.0

3 

 

 

 

Supplementary table 3. Prediction of motor recovery based on structural MRI data and 

static as well as dynamic connectivity alone (test-set AUC, 95%-confidence intervals). 

 No. of 

subjects 

5-component 

structural data 

28-component 

structural data 

Static 

connectivity 

data 

Dynamic 

fraction and 

dwell times 

data 

Dynamic 

variability data 

MI-UL 

Recovery: 

Three-group 

classification 

Structural 

and fMRI: 

30 (16 vs. 5 

vs. 9, with 

no, less and 

more 

pronounced 

AUC=0.63±0.02 

 

AUC=0.54±0.01 

 

AUC=0.52±0.01 

 

AUC=0.77±0.01 

 

AUC=0.64±0.01 
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motor 

recovery) 

 

 

 

 

Supplementary Table 4. Prediction of motor recovery in the sample of all patients with 

initial motor impairment (test-set sensitivity and specificity as well as 95%-confidence 

intervals). 

 No. of 

subjects 

Acute MI-

UL 

5-

component 

structural 

data & 

acute MI-

UL 

28-

component 

structural 

data & 

acute MI-

UL 

Static 

connectivity 

data & 

acute MI-

UL 

Dynamic 

fraction and 

dwell times 

data & acute 

MI-UL 

Dynamic 

variability 

data & acute 

MI-UL 

MI-UL 

Recover

y: More 

and less 

pronoun

ced 

recovery 

Structural 

and 

fMRI: 17 

(9 vs. 8, 

53% with 

more 

pronounce

d motor 

recovery) 

 

Sens=0.89±

0.02 

Spec=0.53±

0.04 

Sens=0.71±

0.03 

Spec=0.55±

0.04 

Sens=0.54±

0.03 

Spec=0.58±

0.04 

Sens=0.49±

0.04 

Spec=0.25±

0.03 

 

Sens=0.82±0.0

3 

Spec=0.76±0.0

3 

 

Sens=0.77±0.0

3 

Spec=0.61±0.0

3 

 

 

Supplementary Table 5. Prediction of motor recovery in the sample of all patients with 

initial motor impairment based on structural MRI data and static as well as dynamic 

connectivity alone (test-set AUC, sensitivity, specificity and respective 95%-confidence 

intervals). 

 No. of 

subjects 

5-

component 

structural 

data  

28-

component 

structural 

data  

Static 

connectivity 

data  

Fraction and 

dwell times 

data  

Dynamic 

variability 

data  

MI-UL Structural AUC=0.66± AUC=0.52± AUC=0.22± AUC=0.91±0. AUC=0.82±0.
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Recover

y: More 

and less 

pronoun

ced 

recovery 

and 

fMRI: 17 

(9 vs. 8, 

53% with 

more 

pronounce

d motor 

recovery) 

 

0.03 

Sens=0.65±

0.03 

Spec=0.45±

0.04 

 

0.03 

Sens=0.56±

0.03 

Spec=0.47±

0.04 

 

0.03 

Sens=0.40±

0.04 

Spec=0.29±

0.04 

 

02 

Sens=0.79±0.0

3 

Spec=0.76±0.0

3 

 

02 

Sens=0.76±0.0

3 

Spec=0.64±0.0

4 
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