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6 Abstract

7 Complex diseases, with many associated genetic and environmental factors, are a challenging target
8 for genomic risk assessment. Genome-wide association studies (GWAS) associate disease status with,
9 and compute risk from, individual common variants, which can be problematic for diseases with many
10 interacting or rare variants. In addition, GWAS typically employ a reference genome which is not built
11 from the subjects of the study, whose genetic background may differ from the reference and whose genetic
12 characterization may be limited. We present a complementary method based on disease association with
13 collections of genotypes, called frequented regions, on a pangenomic graph built from subjects’ genomes.
14 We introduce the pangenomic genotype graph, which is better suited than sequence graphs to human
15 disease studies. Our method draws out collections of features, across multiple genomic segments, which
16 are associated with disease status. We show that the frequented regions method consistently improves
17 machine-learning classification of disease status over GWAS classification, allowing incorporation of rare
18 or interacting variants. Notably, genomic segments that have few or no variants of genome-wide signif-
10 icance (p < 5 x 107%) provide much-improved classification with frequented regions, encouraging their
20 application across the entire genome. Frequented regions may also be utilized for purposes such as choice
21 of treatment in addition to prediction of disease risk.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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» INTRODUCTION

;3 Complex diseases, with many associated genetic and environmental factors, present a challenging diagnostic
2 landscape.[1,2] It is difficult to assess disease risk from genomic data due to the polygenic nature of asso-
s clations.[3] Genome-wide association studies (GWAS) are standard measures of genomic association with
2 disease[4], but they typically treat associated features, often single-nucleotide polymorphisms (SNPs), inde-
27 pendently, and assess only common variants even though rare alleles collectively represent a much larger pool
s of disease risk loci.[5] A whole-genome approach is motivated by the fact that GWAS often find strong associ-
2 ations with variants on genes and intergenic segments on many chromosomes, as well as the observation that
s these features often appear to interact to enhance disease risk.[3,6-8] A method which emphasizes the com-
a1 bined effect of disease-associated genomic features across the entire genome would provide a complementary
3» and illuminating approach.

3 Though methods exist to analyze combinations of features from GWAS, the number of variant interaction
u combinations leads to computational limitations that often require filtering out variant combinations up front
55 based on biological or statistical criteria.[9,10] While computational complexity increases when considering
s interactions among rare as well as common variants, including rare variants and their interactions can increase
s predictive power and identify clinically-relevant variants for common diseases.[10,11] Moving from a pairwise
3 variant analysis to analyses based on genomic segments and application of machine learning techniques have
3 both been proposed to overcome computational challenges in identifying interactions between variants or
w genes and for improving disease prediction.[12-15] Here, we apply a new region-based method and machine
s learning to link common and rare variants to human disease.

» A promising type of genomic feature for this purpose is termed a frequented region, which groups genomic
s segments shared, or partly shared, among sample subsets. First introduced by Cleary et al.[16], frequented
« regions (FRs) are regions of a pangenomic graph that frequently occur within a subset of the population.
s Here we demonstrate the application of FRs to case-control genomic studies of human disease.

a6 Pangenome graphs[17] are powerful ways to represent genomic variation within a cohort of individuals
«  without resorting to variant calls against a reference genome or genotyping chips that cover only a fraction
s of the variation in a population. A graph may be built from individuals’ assembled genomes or even directly
» from whole-genome sequencing (WGS) reads. This is currently an area of active research.[18,19]

50 A pangenome-wide association study (PWAS) using FRs has been presented for 49 traits across 100
su strains of yeast[20]. That study employed machine learning of FRs to predict the traits associated with
52 each of the 100 strain genomes. In this report, we apply FRs to human case-control disease studies, where
53 we have many similar but distinct genomes, labeled “case” or “control” depending on disease status of the
s« individual. We also apply machine learning of FRs, in this case to predict disease status.

55 While FRs provide insight into polygenic associations with disease, our goal is to develop an assay
s which can estimate the risk of disease in undiagnosed individuals as a complement to conventional polygenic
sv risk scores[6]. Another application would be to guide treatment of affected individuals, by predicting the
s  success of medications when multiple choices are available. Frequented regions provide a natural framework
s9 for machine learning (ML)[16,20], in particular for supervised classification[21], so we present results of
o supervised classification using the support vector machine (SVM) method in our example of a complex
&1 disease, schizophrenia.

62 We present three example case-control analyses to illustrate the methodology and demonstrate its poten-
63 tial benefits: of sickle-cell disease (SCD), Huntington disease (HD), and schizophrenia (SCZ). The first two
e examples highlight distinct aspects of the method on Mendelian diseases for explanatory purposes; the third
e example, of a highly complex heritable disease, demonstrates that supervised classification using frequented
s regions performs better than classification using the same variants treated independently (GWAS).

« METHODS

» Frequented regions and application to case-control disease studies

e Frequented regions linked to disease are collections of genomic features which highlight multi-genotypic or
7o polygenic associations with a disease; a frequented region is a portion of a pangenome graph that represents
n  sequence that is approximately conserved in the genomes that support that region. One searches for FRs
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7 of a pangenomic graph, guided by parameters chosen to bring out a desired type of collection: adjacent
7 variants, multi-allelic variants, or non-adjacent variants on distant segments. The conceptual basis of FRs
7 is that complex diseases are associated with a variety of features across the entire genome, while any given
7 individual’s genome contains a subset of those associated features. By enumerating the FRs on a pangenomic
7 graph, one collects relevant combinations of features for all of the individuals. While a GWAS uses a single
77 variant as an input to risk prediction, an FR-based prediction uses a single FR, composed of many variants, as
s an input. As there can be thousands of individual variants associated with a disease, there can be thousands
7 of FRs associated with a disease. The particular combination of variants will vary based on the individual
s genome, and many of the control-labeled genomes will also share some of the causative loci. Therefore, it is
a1 important to consider large sets of genomes. Our application of FRs is therefore a method in pangenome-wide
» association studies (PWAS).

83 In the original formulation[16], the pangenome graph is built from genomic sequences, and the graph is
e termed a sequence graph. Each vertex, or node on the graph represents a genomic segment, perhaps many
s bases long, that is carried by one or more individuals. The frequented region is designated by a cluster of
s nodes, and the task at hand is to find FRs that are deemed interesting, i.e. which satisfy some desirable
&7 characteristic, such as consensus among individuals or, in the application reported here, association with
e affected versus unaffected individuals in a case-control disease study. Two parameters, a and k, described
s below, further specify FRs.

9 Each individual’s genome presents a path or paths through the graph. On a sequence graph, each
o diploid individual has two paths, which require phased assembly[22]. We introduce an alternative pangenome
e genotype graph, on which nodes represent genotypes, perhaps many bases long, rather than sequence (alleles)
o3 and an individual is represented by a single path through the graph. This typically increases the number of
u nodes (the genotypes A/A, A/T, and T/T are three nodes on a genotype graph, while occupying two nodes,
s A and T, on a sequence graph), while halving the number of paths. Importantly, genotype is associated
o with disease, and we are interested in the analysis of disease. ([23] presents a statistical argument for
o7 using genotypes rather than alleles in disease association studies, as the latter presumes Hardy-Weinberg
¢ equilibrium in the controls, which is often not the case.) Figure 1 compares a sequence graph with a genotype
9 graph for the first 400 bases of the HT'T gene from 37 individuals, 27 cases and 10 controls, in a study of
w0 Huntington disease (dbGaP study accession phs001071.v1.pl), both built from the provided variant calls
w against the GRCh37 human genome reference sequence.

102 Genotype graphs have a useful advantage over sequence graphs: they need not be constructed from
103 contiguous sequence. We are free to construct a genotype graph from disjoint segments, such as exons in
e the case of whole exome sequencing (WES) data. We can exploit this advantage to study selected segments
105 across the genome with limited computing power. We now turn to the definition of frequented regions and
s their associated quantities.

107 A path in a pangenome graph supports an FR if it satisfies two qualifying conditions based on two
ws parameters, which deal with portions of the given path, termed subpaths:

w09« sets the minimum fraction of nodes in the FR’s node cluster that a path’s supporting subpath must

110 traverse; it ranges from € to 1 (where € is an arbitrarily small positive number to ensure that at least
m one node in the cluster is traversed by a supporting subpath). One can alternatively call 1 — o “the
112 maximum fraction of missing FR nodes on a subpath.”

u3 K sets the maximum number of consecutive nodes along a subpath that are not in the FR’s node cluster;
114 it varies from 0 to co. When k = 0, the subpath must traverse its FR nodes consecutively. One can
115 call k “the maximum number of consecutive inserted nodes on a subpath.”

ue In addition, qualifying subpaths must begin and end on FR nodes and be maximal: not part of a larger
w7 qualifying subpath. It is common for a path’s support to be greater than 1 because it contains distinct
us supporting subpaths. With a = 1, k = 0, an FR is supported only by individuals that are genomically
uo identical across the span of the FRs nodes (at the measured loci). For other values of « and &, supporting
2o paths may lack some FR nodes or contain nodes not belonging to the FR.

121 We note that FR analysis is sensitive to presence/absence, such as the case with indels. An insertion
122 results in an extra node traversed by the individual’s path; a deletion results in lack of a node traversed by
123 the individual’s path. These path variations lead to variations in FR support, depending on « and «.
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124 A few other terms: the size of an FR is the number of nodes in its cluster; the total support S of an FR is
s the total number of supporting subpaths. One can require that interesting FRs satisfy minimum size and/or
16 minimum support. Figure 2 demonstrates a path and the variation of its support of an FR with different «
127 and k values.

128 On the graphs studied here, each path is labeled “case” or “control”, corresponding to the individual’s
129 status in a disease study. We separately tally an FR’s case and control subpath support, Seqse and Seirg,
1o and prioritize FRs on case vs. control association using the support-based odds ratio

Scase/Ncase
OR, = 2caselTcase 1
Sctrl/thrl ( )

131 where Nggse and N are the number of case and control paths. The FR’s priority, an integer in our
122 implementation, is defined by
P = floor(1000log;, OR;), (2)

3 setting P = £2000 for Seyp = 0 or Sease = 0. (We use an integer for compatibility with integer-based
1 priorities like total support.) To break ties, we favor larger total support, followed by smaller size. We can
135 prioritize control-enhanced FRs by reversing the sign of P or, as we do here, prioritize case- and control-
s enhanced FRs equally by using | P].

137 The problem of finding FRs is computationally hard: it is #P-complete[24], meaning it is not computa-
s tionally feasible to find all FRs even for small data sets. However, we can identify FRs that are useful for
130 our classification task using, for example, hierarchical clustering[25]. Identifying such clusters on clinical-
1w scale data, however, is an extreme clustering task[26], requiring powerful computational resources. In order
m  to analyze large regions one must implement an FR search algorithm that runs in polynomial rather than
12 exponential time[27]. Cleary et al.[16] describe a heuristic algorithm using bottom-up, agglomerative clus-
us  tering[25]. For the purpose of showing the efficacy of an FR-based approach for disease classification, and
14 to gain insight into the algorithm specialization that will be necessary to perform this task at scale, we used
us a brute-force search for the results presented here, with some computation-reducing additions described in
us the examples. Our implementation! has many optional parameters to control the search. The work was
w7 performed on a 128-CPU, 1-TB machine running Java under Clear Linux.

148 The graphs studied here were built from variant calls against the human reference genome provided in
1w VCF files, rather than directly from sequencing reads. This does not affect the purpose of this report, which
150 is to demonstrate the efficacy of the methods described herein. We set our FR search routine to leave no-call
151 genotypes (denoted “./.” in the VCF) out of FRs; paths continue to traverse them and they are included in
12 the support calculation. In the future, we plan to build graphs directly from whole-genome DNA sequencing
153 reads, or reference-guided assemblies, which can reveal novel genomic content in the study population which
14 impacts disease risk.

155 IMachine learning and supervised classification of disease status

156 Frequented regions, on their own, provide an informative way of viewing genomic variation that can be
157 linked to disease. However, of more interest to the clinician is the ability to estimate genomic disease risk of
158 a given individual. For this purpose, FRs provide a natural framework for machine learning, in particular
s supervised classification[16,21].

160 Supervised classification consists of training a classifier from a labeled training set, validating the classifier
11 against a separate set of labeled data not used for training, and testing the classifier on unlabeled data.
12 Classifiers operate on feature vectors which encode each sample’s quantitative association with each feature.
13 In our work, those features are FRs and the associated quantity is path support: the feature vectors are FR
e path support vectors, one for each individual in a study.

165 Table 1 displays ten path support vectors for five FRs of a graph containing only four nodes. Classifying
166 these data is an easy task, since case and control support are quite distinct. For complex diseases, association
17 with disease status is much less clear — our thesis is that FRs provide useful classication results which are
16s complementary to other methods.

1FRFinder available at https://github.com/sammyjava/pangenomics
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160 For comparison with our FR-based supervised classification, we perform a GWAS-type classification on
wo  graph path traversal vectors: vectors of 1’s and 0’s which denote presence/absence of each genotype, i.e.
1 which nodes are/are not traversed by an individual’s path on the graph. This mode of classification is akin
2 to standard GWAS, where each variant is treated independently. To assess the association of individual
i3 loci with the disease, we employ the standard measurement of p-value using the Cochran-Armitage test for
s trend, and use the term “GWAS-significant” for loci which have p < 5 x 1078[28].

175 An important exercise in supervised learning is k-fold cross-validation.[29] One separates the individuals
we into k equally-sized groups and then uses each group to validate the classifier trained on the remaining
177 individuals, until all individuals have been classified, and then summarizes the classification results. We ran
ws  10-fold cross-validation with LIBSVM][30] as well as a number of binary classifiers from the Weka package[31].
o Since LIBSVM outperformed the Weka classifiers in almost every case, we report only the LIBSVM results
10 here. Cross-validations were run 10 times, using a different random number seed each time, to generate the
11 reported mean values and variance of the classification results.

2 Data sources

s The data and analyses presented in this report are based on study data downloaded from dbGaP?, for
e General Research Use under dbGaP accessions phs001071.v1.pl (HD) and phs000473.v2.p2 (SCZ). We used
15 data downloaded from the 1000 Genomes Project Consortium (1kG)[32] for the SCD example.

» RESULTS

17 The research presented here on frequented regions in case-control disease studies demonstrates the efficacy
188 of the method. Our brute-force algorithm allowed us to analyze graphs with up to around 1000 nodes on
180 the available equipment. We now present results for three examples: sickle-cell disease (SCD), Huntington
wo disease (HD), and schizophrenia (SCZ).

«  Example 1: Sickle-cell disease (SCD)

12 Our first example is of a simple Mendelian disease: sickle-cell disease (SCD), an autosomal dominant disease
s associated with a SNP, rs334, on the hemoglobin subunit beta (HBB) gene on Chr 11.[33] Not having access
s to a case-control study of SCD with genomic data, we found that 137 of the 2,504 individuals in the 1kG
105 database carry the deleterious allele. Since phenotype data is not provided, for the sake of demonstration
16 we labeled those 137 individuals as “case” and labeled the other 2,367 individuals as “control”.

197 A pangenome graph provides information similar to, but more extensive than, a GWAS Manhattan plot.
108 Figure 3 compares a GWAS Manhattan plot across the HBB gene with the genotype graph, for the full
19 cohort of 2,504 subjects. One can see the associative genotypes in both cases, while the genotype graph
20 provides a more extensive visualization of the variation amongst individuals. For explanatory purposes, we
20 now discuss the meaning of certain choices of o and x when searching for FRs on this graph.

202 With a = 1 and x = 0, supporting paths must traverse every FR node consecutively, without any inserted
203 nodes; that is, with @ = 1,k = 0 an FR is supported only by individuals that are genomically identical across
2¢  the span of the FR’s nodes (at the measured loci). As a result, path support for « = 1,k = 0 tends to be
25  low for FRs of large size.

206 The two nodes in Figure 3 corresponding to rs334 are 141 (T/T) and 142 (the deleterious T/A). The
wr - single-node FRs {141} and {142} therefore have complementary support and, by design, log;y ORs = +cc.
28 Similarly, the single-node FRs {47}, {48}, and {49}, which correspond to the A/A, G/G, and G/A genotypes of
200 GWAS-significant rs1609812, have case/control support of 125/1212, 0/266, and 12/889, or log;, OR, = 0.25,
a0 —00, and —0.63. These five FRs would all be deemed interesting since they have P = +2000, 250 and —630.
an (It is worth noting that only 266 individuals, or 10.6%, all controls, carry the homozygous reference genotype,
22 reminding us that the human reference genome often represents a minority genotype in a diverse population
a3 like 1kG[34])

2https://www.ncbi.nlm.nih.gov/gap/
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214 We note that with @ = 1,k = 0, single-node FR analysis is similar to GWAS, where each genotype is
a5 treated independently. An aspect of & = 1,k = 0 is that path support decreases when one views larger FRs.
26 For example, the case-associated FR {142,143,145,147} has support 121 rather than 137.

217 In order to find FRs which reveal multi-genotypic associations with non-shared intermediate nodes we
28 set k > 0. In fact, setting kK = oo is often desirable, since we are not concerned with the distance on the
a0 graph between nodes but, rather, are interested in discovering polygenic associations, regardless of where
20 the variants are located on the genome. In practical terms, increasing kappa allows for the identification of
21 shared genotypes among samples, even if those genotypes are separated by non-shared genotypes. Capturing
22 these shared but distant genotypes in an FR allows us to test them for phenotype interactions as a group,
»3  thereby uncovering phenotypic effects due to genotype interactions even if the individual genotypes do not
24 have a detectable effect on phenotype.

25 Figure 3 displays three strongly associated loci for our case/control assignment besides rs334 which was
26 used for splitting cases and controls: rs1609812 (nodes 47-49), rs10768683 (nodes 108-110) and rs713040
27 (nodes 147-149). The case-enhanced genotypes form the FR {47,108,147} which, with o = 1,k = oo, has
28 case/control support 124/1205 and log,, OR, = 0.25 or P = 250. All but 13 of the case paths traverse these
29 three nodes and therefore support this FR. 137 case-labeled subjects is too small a number from which to
20 draw conclusions, but this particular FR might motivate study of the collective impact of these three loci on
2 SCD, although it is also possible that their significance comes from their linkage to rs334 rather than from
a2 a biological effect of the variants. (In fact, dbSNP and ClinVar[35] report rs1609812:A, rs10768683:G, and
233 18713040:G as benign or likely benign alleles associated with SCD and/or 8 thalassemia.) With o = 1,k = oo,
2 FRs are supported by paths which traverse all of the FR nodes, revealing polygenic disease associations.

235 In conclusion, for a monogenic single-allele Mendelian disease like SCD, frequented regions of genotype
236 graphs provide an alternative visualization of variation as well as an opportunity to discover multi-genotypic
27 associations. They do not offer a large gain over GWAS in this scenario; their advantages become apparent
28 in the analysis of multi-allelic Mendelian diseases with structural variants like Huntington disease (Example
20 2), and, more importantly, complex polygenic diseases like schizophrenia (Example 3).

«0 Example 2: Huntington disease (HD)

2 Huntington disease, or Huntington’s chorea, is a fully penetrant neurodegenerative monogenic disease caused
22 by a dominantly inherited CAG trinucleotide repeat extension in the huntingtin gene (HTT) on Chr 4 (dbSNP
23 1871180116, ClinVar Variation ID 31916).[36] Unaffected individuals have fewer than 36 CAG repeats at this
a4 locus on both chromosomes; individuals carrying 36-39 repeats may or may not be affected, but pass a 50%
s disease risk to their offspring; individuals carrying 40 or more repeats suffer from the disease. Thus, there
25 are a variety of rs71180116 genotypes which do and do not lead to disease status, as shown in Figure 1(b).

247 We employed the NINDS Family-Based Whole-Genome Sequencing to Find Modifiers of Age of Onset in
us  Huntington’s Disease study, dbGaP accession phs001071.v1.pl, and used the provided variant calls against
29 human reference GRCh37 along with separately assayed CAG repeat lengths provided by the study authors.
0 We labeled 27 case and 10 control subjects based on the reported phenotype and/or the length of the longer
1 CAG repeat. All case individuals were heterozygous for the damaging allele. We limited the span of analysis
s to the first 400 bp of HT'T, which includes rs71180116.

253 GWAS, often based on SNP array data or SNP calls using WGS or WES reads, are not typically designed
s to study structural variations such as this. Genotype graphs, conversely, make no distinction between simple
x5 variants like SNPs and larger variants: a node may contain any size genotype.

256 To enable analysis of a multi-allelic disease like HD, we set a@ < 1 to enable FR support by paths which
»7  traverse different nodes at the same locus. Table 2 displays the highest case- and control-supported FRs on
s the graph in Figure 1(b) as « is decreased. The graph has 6 control and 7 case nodes at the rs71180116
20 locus. When o < 1/6, the FR {4,9,10,12,13,14}, containing all of the non-disease genotypes, is supported
x0 by all of the control paths; when o <1/7, the FR {3,5,6,7,8,11,15}, containing all of the disease-associated
%1 genotypes, is supported by all of the case paths. Decreasing « reveals multi-allelic FRs.

262 We applied 10-fold cross-validation to the path support vectors for 692 FRs generated with a = ¢,k = 0.
%3 LIBSVM consistently delivered perfect cross-validation. This is unsurprising, given the association of the
2 HD genotypes with disease status. The final example, exploring a case-control schizophrenia study, exhibits
x5 imperfect classification which improves when the classifier is trained on FR path support rather than graph
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%6 path traversal.

»» Example 3: Schizophrenia (SCZ)

xs  Schizophrenia is a heritable psychiatric disorder that affects up to 1% of the general population.[37,38]
%0 Large-scale GWAS point to a large number of genes contributing to its pathophysiology, due to both rare
20 and common variants.[39-42] A composite picture of heritability remains elusive.

o In this example, we explore the application of frequented regions to a case-control study of 12,380 Swedish
a2 individuals, Sweden-Schizophrenia Population-Based Case-Control Exome Sequencing, dbGaP study acces-
a3 sion phs000473.v2.p2.[41] We used the variant calls against GRCh37 provided by the study.

274 First, we removed subjects diagnosed with bipolar disorder rather than SCZ, leaving 11,209 individuals.
a5 Then, we removed randomly selected control-labeled subjects to stratify the cohort at 4,966 cases and 4,966
z6  controls, since balanced designs are known to provide better supervised classification[43].

277 With our algorithm and computational power, we must explore limited genomic segments. The most
as  strongly disease-associated segment is the HLA region of Chr 6, shown in Figure 4, from which we selected
a0 the HLA-A, HLA-B, and HLA-C genes to build graphs labeled HLAA, HLAB and HLAC, with 1,166,
20 1,291, and 1,091 nodes, respectively. For comparison, we selected two low-association segments: one on Chr
s 6:151627034-151939181 for a graph labeled SCZ6A with 1,093 nodes, and one on Chr 14:31349968-31647448
2 for a graph labeled SCZ14C with 1,084 nodes. GWAS Manhattan plots of these five segements are shown in
23 Figure 5.

284 The goal of this example is to determine whether supervised classification is improved when we train a
25 classifier on FR path support rather than graph path traversal (GWAS). FRs bring out disease association
2 with clusters of loci. For example, no locus in the SCZ14C range has a p-value less than 1 x 102, yet many
27 FRs, supported by a subset of paths, can be found that exhibit strong disease association. The combination
28 of such FRs may provide improved classification. We now make a few points about frequented regions using
20 the HLA-A gene, which contains eight GWAS-significant loci (Figure 4).

200 First, it is worth noting the effect of haplotypes on FR, support. Figure 6(a) shows that two of the eight
2 associating loci are strongly linked based on minimal changes to their support: rs74544126 and rs3098019
22 are on consecutive bases and form haplotype pairs: GT/GT and GT/CG. (With a graph built from assemblies
203 or reads rather than SNP calls, these haplotypes and much larger genotypes will naturally appear.) The FR
20e {784,787}, corresponding to GT/CG, has total support equal to one less than {784} alone. The presence of
25 haplotypes across separate nodes increases an FR'’s size with little effect on its support.

206 However, when o = 1, combination of less strongly-linked nodes reduces support. This is the case with
27 the FR shown in Figure 6(b). While {786} has S = 6016 and {824} has S = 6655, the combined FR
208 {786,824} has S = 5239. When a = 1, combining nodes generally decreases support. When « is small,
20 however, paths traversing {786} or {824} will support {786,824}, resulting in S = 7482. With small «,
0 combining nodes increases support.

301 The eight GWAS-significant variants on HLA-A shown in Figure 4 provide eight case-enhanced nodes
s on the HLAA graph. All are shared by many affected and unaffected individuals: with a = 1, 49.3% of the
303 case paths and 44.5% of the control paths support the full eight-node FR, giving ORs = 1.106. With a =1
su  we emphasize fully shared genotypes, i.e. the intersection of individuals’ genotypes. But complex diseases
s are associated with a wide array of genotypes, of which a subset are carried by any particular individual.
s Therefore, small « is valuable in revealing FRs that represent the union of individuals’ genotypes.

307 Repeating the above with o = € to determine support by paths that contain at least one of the eight
8 genotypes results in support by 79.1% of the case paths and 72.9% of the control paths. Since FRs with small
0« are supported by a larger number of paths, they provide more extensive input to a supervised learning
a0 classifier.

311 For small @ and K = oo, a path will support an FR by either 0 or 1, since the maximal subpath that
a1z contains FR nodes is unique when any number of inserted nodes is allowed. One can think of & = €,k = 00
sz as a binary test of whether a path traverses any of the FR’s nodes. For small o and x = 0, however, a path’s
s support will be nearly equal to the number of FR nodes that it traverses, reduced slightly when the path
a5 traverses two or more FR nodes consecutively. One can think of a = €,k = 0 as providing an approximate
as count of the FR nodes that a path traverses. The same paths will provide support in both cases, but with
a7k = 0 the path support vectors will have a variety of support values, rather than 0 or 1 with k = oo, and
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as  this may impact supervised learning and classification. (A range of @ and k values may be scanned to find
30 an optimal combination for classification; we have done that, and found that extreme values of « and k are
20 sufficient for our purposes here.)

321 To establish a baseline of supervised classification, we ran 10-fold cross-validation on the path traver-
a2 sal of each graph (GWAS), disregarding no-call nodes. Results are presented in Table 3. The best path
23 traversal classification is found on HLAC with 54.5% of individuals called correctly, specificity=0.502, sensi-
a2 tivity=0.588, and Matthew’s Correlation Coefficient MCC=0.091. (A random classifier would call 50% cor-
w5 rectly, with specificity=sensitivity=0.5 and MCC=0.) Our low-association segments, SCZ6A and SCZ14C,
s provide poorer path traversal classification, as one would expect. If frequented regions are to be a useful
w7 alternative to standard GWAS, they must perform better than this baseline.

328 We then searched for FRs on each graph, requiring S > 100 and |P| > 1, which is comparable to GWAS
2o requiring MAF>1% and log;, OR > 0.001. This is too large a problem for our algorithm without further
s reduction. To make the problem feasible, we added three constraints to the FR search routine:

sn (1) Interesting FRs must contain a specified starter node (FRFinder parameter --requirednodes).

33 (2) Interesting FRs must have higher priority than those previously found or be a subset of a previously
333 found FR with the same priority (--keep=subset).

3¢ (3) Interesting FRs in step n must contain the nodes in the FR found in step n—1 (--requirebestnodeset).

135 (1) and (2) do not incur a loss of generality since we run every node as a starter node, and supersets of
16 an FR with the same priority are generally uninteresting. Constraint (3), however, which extends the most
s interesting FR one node at a time, greatly shrinks the available space of FRs. We found that (3) still provides
a8 a useful set for classification. (Note that a node will generally appear in many more FR runs than the one
;0 in which it is the starter.) For each starter node, we keep the best (last and largest) FR found for training
uo  of a supervised classifier.

341 With those constraints in place, we set @ = €, K = co and searched for FRs of each graph. The resulting 10-
a2 fold cross-validations are shown in Table 3 and Figure 7. Supervised learning of FR path support consistently
a3 provided better classification than that of path traversal. Of particular note is the improvement on SCZ6A,
s from 51.7% to 55.2% correct calls. A segment with no significantly associated loci provided better classification
us  using frequented regions than even highly-associated segments did using path traversal.

346 Finally, in order to explore the improvement that occurs when combining low-association segments, we
a7 built a graph from SCZ6A and SCZ14C. This graph has 2,168 nodes and led to 1,173 interesting FRs. The
us  classification results were surprising: while path traversal classification resulted in 52.4% correct calls (only
s slightly better than SCZ6A and SCZ14C individually), classification with frequented regions resulted in
w0 59.5% correct calls and MCC=0.190, both higher than any of the other runs. Figure 7 shows how sensitivity
1 and specificity improved equally, leading to a large increase in total correct calls. This particular result
2 encourages the pursuit of frequented regions composed of intervals across the entire genome.

353 Although, overall, the classification gains are not huge, it is clear that, on this SCZ dataset, frequented
s regions provide a better basis for supervised learning than do individual genotypes.
355 Twin studies provide us with an estimate of the maximum achievable classification of SCZ. Since there are

s many identical twins for which one sibling is affected and the other is not, we know that perfect classification
7 is impossible even if we were to use the entire genome as input, since environmental and other non-genomic
s factors affect disease status. The probandwise concordance rates for several studies of identical twins are
30 reported in [44] and cluster around 45%. If one had a cohort of 100 twins, for which one or both siblings is
w0 affected by SCZ, along with a cohort of 200 control individuals and a perfect classifier that classifies all SCZ
s genomes correctly, one would incorrectly classify 55 individuals as SCZ-positive, for a FPR=55/255=0.22,
w2 with 86% total correct calls and specificity=0.78.

363 We conducted a graph path traversal (GWAS) analysis of the 307 GWAS-significant loci on autosomal
s« chromosomes in the Swedish SCZ study (891 total nodes). LIBSVM classified 60.1 £+ 0.2% of a 4969/4969
s cohort correctly, with sensitivity=0.493 + 0.002, specificity=0.708 £+ 0.002, and MCC=0.206 £ 0.004. Given
s the results presented here, we expect that a genome-wide analysis of frequented regions would add at least
w7 2-5% to this 60% correct classification, and perhaps much more.
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w» DISCUSSION

0 This report presents a proof of principle for using frequented regions of genotype graphs in the study of
s complex diseases. The sickle-cell disease and Huntington disease examples help to explain the methodology
sn  in a simplified setting, while the Swedish schizophrenia study demonstrates improvement in genomic classi-
sz fication of a complex disease. The SCZ example employed small graphs built from exonic variants, mostly
ss SNPs, which are thought to capture only 23% of SCZ susceptibility[40]. We believe that larger graphs, built
s directly from whole genome sequencing reads, without reliance on the human reference genome, will provide
s much better classification. In any case, our preliminary results suggest that frequented regions are worthy
sre - of further study.

377 We are not the first to apply machine learning to SCZ: a recent study[45] applied ML to feature vectors
sz composed of SNP calls from the same Swedish study as used here, on 50 genes chosen a priori based on bioin-
s formatic criteria. In particular, the authors focused on rare (predicted functional) variants, with MAF<1%.
0 They obtained remarkably good classification results from a selected 2545/2545 cohort. Our approach differs
s greatly from theirs: our method emphasizes the discovery of associated collections of genotypes, without
2 regard to rate of their occurrence in the general population, including both common and rare alleles. In
33 fact, ours is a standalone analysis which uses as input solely the pangenomic graph of the study individuals’
4 genotypes.

385 It is important to emphasize that our classification and cross-validation operated on individuals that were
s members of a relatively non-diverse population: ethnic Swedes. It is unlikely to perform well, as trained, on
7 genomes from other populations. In fact, we believe that this is a fundamental aspect of genomic diagnosis of
s complex diseases: in order to find signatures that associate with disease status, one must have a sufficiently
s uniform genomic background. If FR analysis is to result in a clinical diagnostic, that diagnostic will have to
30 be tuned for the population of the individuals being tested, based on ethnicity or perhaps a distinguishing set
s1  of markers. This is not a statistical problem for schizophrenia, which is common in all human populations. It
2 becomes a problem, however, for rare diseases, when statistical power may be insufficient within a particular
33 population.

304 Another challenge with classification based on FRs is the task of applying the classifier to an individual
35 that is not in the cohort that was used to build the graph. In principle, if the graph is comprehensive
s enough, such an individual will have a fully-defined path for which the FR support vectors may be computed.
7 However, there is no guarantee that an individual being tested does not have a relevant genotype that is
s missing from the training cohort.

399 We hope to find FRs on much larger graphs built from WGS reads, without involvement of a reference
wo  genome, and to measure their effectiveness in disease classification and other tasks. We have the long-term
w1 goal of building an FR-based disease classification appliance, which would be trained for a particular disease
w2 and population, and then used to test unlabeled genomes from that population. This sort of device could
w3 be useful in applications such as treatment, where, say, the successful medications for affected individuals
ws  would be used to label training data in order to suggest a medication to try with new patients. Case-control
w5 studies are only one of many types of study that can be analyzed with frequented regions.

406 That pursuit will likely find new and important disease-associated genotypes that are not present in the
w7 human reference genome. We believe that new pangenomic analyses like frequented regions of genotype
ws graphs are an extremely important path for genomic disease research.
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Figure 1: Pangenome graphs of the first 400 bases of the HTT gene from variant calls on 27 case and 10 control
subjects in a study of Huntington disease (HD) (dbGaP Study Accession phs001071.v1.p1): (a) sequence graph, in
which each (diploid) individual has two paths; (b) genotype graph, in which each individual has one path. Nodes
are numbered consecutively as the graphs are built for identification in analysis; nodes at the same locus are shown
vertically. The red line displays the path(s) of an HD-affected individual. In (a), that individual’s paths traverse
nodes 9 (CAGx41) and 17 (CAGXx19), with node 9 representing a disease-associated CAG-repeat allele. In (b), that
individual’s path traverses node 3, corresponding to the CAGx19/CAGx41 disease-associated genotype. (The software

used to generate graph (a) assigns the reference allele to non-calls.)
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Figure 2: Dependence of one path’s support of a frequented region (FR) on parameters o and . Nodes aligned
vertically represent variants at the same genomic location. This graph contains eight non-variant nodes (1, 2, 5,
8, 9, 12, 13, 16) and four bi-allelic variants (3/4, 6/7, 10/11, 14/15). The FR is designated by its node cluster
{2,5,7,9,11,12,16}, shown with green rectangles; it has size 7. Supporting subpaths must begin and end on FR
nodes, and must be mazimal — not part of a larger supporting subpath. a = 1: all FR nodes must be traversed
by a supporting subpath; the path contains only 5 of the 7 FR nodes, so support=0. a = €,k = 0: any single or
consecutive FR nodes on the path support the FR; support=5. @ = €,k = oo: all FR nodes on the path span
a single supporting subpath; support=1. @ = 5/7,k = 1: a supporting subpath must traverse 5 or more of the
FR nodes; but x = 1 requires that there be no more than one non-FR node inserted between traversed FR nodes;
support=0. & = 5/7,k = 2: a supporting subpath may have up to two nodes inserted between traversed FR nodes,
so support=1. @ = 2/7,k = 1: a supporting subpath must traverse 2 or more FR nodes with up to one node
inserted between FR nodes; support=2. a« = 1/7,k = 1: a supporting subpath must traverse 1 or more FR nodes
with up to one node inserted between FR nodes, giving support=3.
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Figure 3: Comparison of GWAS and genotype graph analysis of the HBB gene for the 2504 individuals in the 1000
Genomes Consortium Project (Auton et al., Nature 526, 68-74 (2015)). (a) GWAS Manhattan plot of the variants
called against reference genome GRCh37, limited in the assay to the downstream half of this gene; (b) genotype
graph constructed from those variants. p-values were calculated using the Cochran-Armitage test for trend. 137
individuals carry the A allele of the rs334 variant and have been labeled “case” for demonstration purposes. (The
rs334 genotype, by design, has p = 0 in the GWAS analysis, and is placed for visibility at the top of the GWAS
plot.) Both the GWAS Manhattan plot and pangenome graph display additional variants associated with these
individuals: rs1609812, rs10768683, and rs713040. (Note that nodes on the right side of (b) are repeated below on
the left side for clarity.)
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Figure 4: Manhattan plots of the variants called against reference genome GRCh37 Chr 6 in an exome sequencing
study of schizophrenia amongst Swedes (dbGaP accession phs000473.v2.p2). (a) Chromosome 6; (b) a span of high
case vs. control association on Chr 6, slighly larger than the HLA region; (¢) the HLA-A gene, which carries eight
significant (p < 5 X 1078) variants (two of which form a two-base haplotype). p-values were calculated using the
Cochran-Armitage test for trend.
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Figure 5: Manhattan plots of the five segments used for frequented region analysis, from variants called against
reference genome GRCh37 in an exome sequencing study of schizophrenia amongst Swedes (dbGaP accession
phs000473.v2.p2). (a) the HLA-A gene; (b) the HLA-C gene; (c) the HLA-B gene; (d) a segment on Chr 6 labeled
SCZ6A; (e) asegment on Chr 14 labeled SCZ14C. p-values were calculated using the Cochran-Armitage test for trend.
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Figure 6: Portions of a graph of the HLA-A gene on Chr 6 built from variant calls for 9,932 individuals in an
exome sequencing study of schizophrenia amongst Swedes (dbGaP accession phs000473.v2.p2). (a) Two pairs of
tightly-linked neighboring nodes: 783,786 and 784,787. All but four paths that traverse 783 or 784 also traverse 786 or
787, respectively. The pairs represent two-base haplotypes. (b) The frequented region {786,824}. Two case-labeled
paths demonstrate how support diminishes when nodes are added to an FR with a = 1. The single-node FR {786}
has case+control support of 3,144+2,872=6,016; {824} has 3,468+3,147=6,615; while {786,824}, supported by paths
which traverse nodes 786 and 824, has 2,737+42,502=>5,239. If « is small, paths traversing nodes 786 or 824 support
{786,824}, giving 3,87543,557="7,432.
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Figure 7: Supervised classification results for feature vectors built from graph path traversal (GWAS) (blue)
and frequented region path support (green). Six graphs were studied: three from the highly disease-associated
genes HLA-A, HLA-B, and HLA-C, two from low-association segments 6:151627034-151939181 (SCZ6A) and
14:31349968-31647448 (SCZ14C), and the combination of SCZ6A and SCZ14C. LIBSVM 10-fold cross-validation
was run 10 times for each dataset, varying the random number seed for each run. Arrows start and end on mean
values; dashed gray lines indicate total correct classification.
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frequented region
sample label {1,4} {4} {1,3} {3} {1}

HG03559 “case” 1 1 0 0 1
HG03558 “case” 1 1 0 0 1
HGO03571 “case” 1 1 0 0 1
HGO03578 “case” 1 1 0 0 1
HGO03577 “case” 1 1 0 0 1
NA21128  “control” 0 0 0 1 0
HGO03965  “control” 0 0 0 1 0
NA20845  “control” 0 0 1 1 1
NA20846  “control” 0 0 1 1 1
NA18523  “control” 0 0 1 1 1
Secase 137 137 0 0 137
Secontrol 0 0 2365 2367 2365
OR;, +00 +00 —00 —0o0 1.001

P 42000 42000 —2000 —2000 0

Table 1: Ten support vectors from a four-node graph built from two neighboring variants, rs63750783
and rs334 on the HBB gene, taken from the 1000 Genomes Project Consortium (Nature 526, 68-74 (2015);
doi:10.1038 /nature15393), along with frequented region support quantities: case support Secqse, control support
Scontrol, support-based odds ratio ORs, and priority P. For demonstration purposes, we have assigned “case”
status to the 137 individuals (5.5%) carrying the rs334 sickle cell disease allele. Nodes 1-4 represent, in order:
rs63750783[C/C], rs63750783[C/T], rs334[T/T], and the disease-associated genotype rs334[T/A]. (Node 2 is a rare
genotype carried by only two individuals.)
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« frequented region size  Scase  Setri
7/7 {3} 1 8 0
6/7 {1,3,8,16,19,22,25} 7 10 0

{8,6,16,19,22,25,28} 7 10 0
5/7 {3,6,7,16,19,22,25} 7 15 0
{3,6,8,16,19,22,25} 7 15 0
{8,7,8,16,19,22,25} 7 15 0
4/7  {3,6,7,8,16,19,22} 7 19 0
3/7 {3,5,6,7,8,15,16,19,22} 9 22 0
2/7 {3,5,6,7,8,11,15,16,19,22} 10 23 0
1/7  {1,3,5,6,7,8,11,15,16,26,29} 11 29 0
{1,2,3,5,6,7,8,11,15,26,29} 11 29 0
{3,5,6,7,8,11,15} 7 27 0
6/6 {4} 1 0 3
5/6 {4,10,16,19,22,25} 6 0 5
{1,4,10,16,19,22} 6 0 5
4/6  {1,4,10,12,16,19} 6 0 6
{1,4,10,13,16,19} 6 0 6
{1,4,10,14,16,19} 6 0 6
{4,10,13,16,19,22} 6 0 6
{4,10,14,16,19,22} 6 0 6
3/6 {1,4,10,12,13,14,16,19} 8 0 8
2/6  {1,4,9,10,12} 5 0 8
1/6 {1,4,9,10,12,13,14,25,26,31,32} 11 0 12
{4,9,10,12,13,14} 6 0 10

Table 2: Fregented Regions (FRs) with the largest case support Secqse and control support Seir; as « is varied
with £ = 0 throughout. The graph, shown in Figure 1(b), was built from the first 400 bases of the HTT gene,
using variant calls against GRCh37 for 27 case and 10 control subjects in a Huntington disease study (dbGaP
accession phs000473.v2.p2). Ties are broken by smaller size. Bold nodes represent genotypes of the disease-associated
rs71180116 locus, and FRs composed of only those nodes appear when o < 1/7 for cases and « < 1/6 for controls.
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graph feature vectors # correct sensitivity specificity MCC
HLAA path traversal (GWAS) 978 53.0£0.3% 0.653+0.005 0.408+0.003  0.0631-0.006
FR path support 820 55.5£0.2%  0.649+0.005 0.461£0.003 0.11240.003
HLAB path traversal (GWAS) 1038 53.94+0.3% 0.544+0.004 0.5344+0.003  0.079+0.005
FR path support 975 57.24£0.2%  0.559+0.003  0.586+0.003  0.145+0.005
HLAC path traversal (GWAS) 896 54.5+£0.4% 0.502+0.004 0.588+0.005 0.091+0.007
FR path support 810 56.1£0.1% 0.550+0.002 0.572+0.002 0.1224+0.003
SCZ6A path traversal (GWAS) 1031 51.7+0.3%  0.468+0.003 0.5674+0.002  0.035+0.005
FR path support 629 55.240.2% 0.541+0.003 0.564+0.005 0.10540.003
SCZ14C path traversal (GWAS) 986 51.9+0.2% 0.418+0.004 0.6194+0.004 0.038+0.005
FR path support 551 54.3£0.3%  0.464+0.004 0.622£0.003  0.087+0.006
SCZ6A+SCZ14C  path traversal (GWAS) 2168 52.44+0.1% 0.4854+0.002 0.56440.003  0.04940.003
FR path support 1173 59.540.2%  0.570£0.002  0.620+0.003  0.190+0.003

Table 3: Results from 10-fold LIBSVM cross-validation of path traversal vectors (GWAS) and FR path support
vectors from six graphs. Each cross-validation was run 10 times, varying random number seeds, to generate the shown
mean and standard deviation. Graphs were built using variant calls from an exome sequencing study of schizophrenia
amongst Swedes (dbGaP accession phs000473.v2.p2). The graphs labeled HLAA, HLAB, and HLAC were built from
the genes HLA-A, HLA-B, and HLA-C; SCZ6A and SCZ14C are from weakly disease-associated segments on Chr
6 and 14; SCZ6A+SCZ14C is their combined graph. MCC is Matthew’s Correlation Coefficient. # indicates the
number of analyzed graph nodes for path traversal classification and the number of analyzed frequented regions for
FR path support classification.
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