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Abstract 
SARS-CoV-2 is a human pathogen that causes infection in both the upper respiratory tract 
(URT) and the lower respiratory tract (LRT). The viral kinetics of SARS-CoV-2 infection and 
how they relate to infectiousness and disease progression are not well understood. Here, we 
develop data-driven viral dynamic models of SARS-CoV-2 infection in both the URT and LRT. 
We fit the models to viral load data from patients with likely infection dates known, we 
estimated that infected individuals with a longer incubation period had lower rates of viral 
growth, took longer to reach peak viremia in the URT, and had higher chances of 
presymptomatic transmission. We then developed a model linking viral load to infectiousness. 
We found that to explain the substantial fraction of transmissions occurring presymptomatically, 
a person’s infectiousness should depend on a saturating function of the viral load, making the 
logarithm of the URT viral load a better surrogate of infectiousness than the viral load itself. 
Comparing the roles of target-cell limitation, the innate immune response, proliferation of target 
cells and spatial infection in the LRT, we found that spatial dissemination in the lungs is likely to 
be an important process in sustaining the prolonged high viral loads. Overall, our models provide 
a quantitative framework for predicting how SARS-CoV-2 within-host dynamics determine 
infectiousness and represent a step towards quantifying how viral load dynamics and the immune 
responses determine disease severity.   
 
Significance 
A quantitative understanding of the kinetics of SARS-CoV-2 infection is key to understanding 
the development of infectiousness and disease symptoms. To address this need, we developed 
data-driven within-host models of SARS-CoV-2 infection and showed that lower rates of viral 
growth lead to longer incubation periods and higher chances of presymptomatic transmission. 
We found that the logarithm of the URT viral load serves an appropriate surrogate for a person’s 
infectiousness. We then developed a mechanistic model for infectiousness and showed that a 
saturation effect in the dependence of transmission on viral load gives rise to this relationship. 
We also provide evidence of spatial dissemination in the lungs as an important process in 
sustaining prolonged high viral loads in the LRT.  
 
Introduction 
SARS-CoV-2 is a new human pathogen that causes COVID-19 (1). It is highly contagious and 
spread rapidly across the globe. It is estimated that the outbreak grew extremely fast and doubled 
every 2.3-3.6 days in the absence of strong control measures (2-4) and it has caused more than 
900,000 deaths worldwide as of September 2020. Extensive efforts to develop effective 
treatments and vaccines are underway.  
 
SARS-CoV-2 infects cells in both the upper respiratory tract (URT) and the lower respiratory 
tract (LRT) (5). It enters host cells via the receptor ACE-2 (angiotensin converting enzyme 2) on 
epithelial cell surfaces (6). Structural analysis suggests that SARS-CoV-2 binds to the 
receptor >10-fold more efficiently than SARS-CoV-1 (7), partially explaining the comparatively 
high contagiousness of the virus. It is likely that the ability of the virus to effectively infect cells 
in the URT allows the virus to be transmitted before symptom onset (8, 9), an important factor 
that makes the virus difficult to control (10). It has been suggested infectiousness is positively 
related to viral load in the URT (11); however, it is not clear how these are quantitatively related. 
For example, both viral load and the logarithm of viral load have been used as surrogates of 
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infectiousness (12). A quantitative understanding of the relationship is lacking. Quantifying it is 
critical because it would allow for more precise predictions of the infectiousness of certain 
groups of infected individuals, such as children and asymptomatic individuals, based on their 
viral load measurements (13, 14). This would in turn help to better inform policy decisions. 
 
The pathogenesis of COVID-19 is not fully understood. Recent data shows that SARS-CoV-2 
viral load in the LRT correlated with lung damage and disease severity (15, 16). SARS-CoV-2 
infection in the LRT can lead to excessive production of proinflammatory molecules and an 
exacerbated inflammatory response (17), which can cause lesions, damage in the lungs and 
severe pneumonia (16, 18-20). A steroid, dexamethasone, that dampens inflammatory responses, 
has shown clinical benefit in ventilated patients in the RECOVERY trial (21). Some reports 
suggested that high viral loads are associated with a higher risk of disease severity and a higher 
rate of mortality in adults (22-24), while others found that viral load is higher in children than in 
adults (25). Quantifying the viral dynamics in the LRT will help to better understand these 
issues.  
 
Mathematical modeling plays a crucial role in understanding the pathogenesis of viral diseases 
and in the development of effective therapeutics and treatment strategies for viruses such as HIV, 
hepatitis C, influenza, Zika and Ebola (26-31). Mathematical modeling has been applied, by us 
and others (32-36), to understand SARS-CoV-2 infection in hospitalized patients and the 
potential impact of therapy. However, these studies modeled a single physiological compartment 
even though SARS-CoV-2 infects both the URT and the LRT and there were large uncertainties 
in the parameter estimates because the patient infection dates were unknown. Here, we develop 
within-host models of SARS-CoV-2 infection in both the URT and the LRT. We fit the models 
to a set of viral load data collected from the first cluster of individuals in Germany, for whom 
infection dates were reported (5, 37). We analyze how the onset of symptoms is affected by viral 
dynamics, and the potential mechanisms for the prolonged period of detectable virus in the LRT 
observed in clinical studies (5, 16). We also analyzed the relationship between viral load and 
potential infectiousness of a person. Using existing epidemiological evidence, we developed and 
constrained a probabilistic model to quantify this relationship. Lastly, we develop several models 
to explain the prolonged period of virus infection in the LRT and explore how treatments may 
impact virus transmissibility and disease outcomes.  
 
Results 
Dynamics of early infection. As in previous work (33, 35), we first constructed a target cell 
limited (TCL) model (see Methods) to quantify the early dynamics of SARS-CoV-2 infection in 
both the URT and the LRT. We used this model to estimate key parameters, such as the time to 
peak viremia and the within-host basic reproductive number (R0) and their relationships with the 
time from infection to symptom onset, i.e. the incubation period, which is known for each patient 
in the dataset we analyzed (37). We fit the model to data collected during the first 14 days of 
infection. Beyond this time, the effect of an adaptive immune response may be important (38), 
and we model that separately (see below). Further, regeneration of target cells by proliferation 
may become significant especially in the LRT (19, 39) and we consider a model later that 
incorporates proliferation in the LRT (see below) as virus in the URT has declined to 
undetectable or almost undetectable levels by this time (Fig. 1). During this early period, the 
dynamics are typical of a target cell limited acute respiratory infection, i.e. viral loads measured 
in both throat swabs and sputum samples increased to a viral peak and declined afterwards, and 
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are relatively homogeneous across patients (Fig. 1). In one patient (Patient 16 as numbered in 
Ref. (37)), the first data point is at day 15 post infection. Therefore, this patient was excluded 
from these initial fits. We used a nonlinear mixed effect modeling approach to fit data collected 
(URT and LRT) from the other 8 patients simultaneously (see Methods and Supplementary 
Material).  
 
To understand whether the duration of the incubation period is related to parameters governing 
the viral dynamics, we fitted the model allowing for the duration of the incubation period to be a 
covariate for each of the fitted parameters (see Methods and Supplementary Material). This leads 
to 7 model variants (Table S1). Comparing these models using the Akaike Information Criteria 
(AIC), we found that the best ones are those that assume the infectivity of the virus, 𝛽!, or the 
virus production rate, 𝜋!, in the URT vary inversely with the duration of the incubation period 
(Table S1) 
 
The best model, in which 𝛽! varies inversely with the incubation period, fits the data from both 
the URT and the LRT (Fig. 1, and see Table 1 and S2 for the best-fit population parameter values 
and the individual parameter values, respectively). We estimated that the viral load peaks on 
average 5.2 days (standard deviation: ±1.3 days) and 5.4 days (±1 day) post infection in the URT 
and the LRT, respectively, and on average 2 days (±0.2 day) and 2.1 days (±1.2 days) post 
symptom onset (Table 2). The within-host basic reproductive numbers were estimated to be on 
average 8.5 (±7.1) and 27.5 (±8.4) in the URT and LRT, respectively (Table 2). Examining the 
viral dynamic characteristics in the URT and the LRT, we found a significant correlation 
between 𝑅",$%! and 𝑅",&%! (p-value: 0.003; Fig. S1A), i.e., a high within-host reproductive 
number in the URT predicts a high reproductive number in the LRT. On the other hand, we 
found no significant correlation between the URT and the LRT in the time from infection to the 
viral load peak, nor in the time from symptom onset to the viral load peak (Figs. S1B and S1C). 
 
Next, we performed sensitivity analyses to test how robust our estimates are with respect to 
variations in the fixed parameter values of the model (Table 3). We varied each of the fixed 
parameter values in the ranges shown in Table 3 and then re-fit the model to the data. Across the 
scenarios examined, the estimates of the death rate of infected cells in the URT and the LRT are 
robust at approximately 2 d-1 and 0.7 d-1, respectively (Table S3). The within-host reproductive 
number in the URT 𝑅",$%! ranges between 5-15 (Table S4). The estimated within-host 
reproductive number in the LRT, 𝑅",&%! , spans a wider range and it is mostly affected by 
variations in the rate of virus transport from the URT to the LRT, Γ (Table S4). This parameter 
determines how quickly viruses are seeded in the LRT. The lack of knowledge of this parameter 
means that 𝑅",$%! cannot be reliability determined. If seeding occurs quickly (G=0.1/day) then 
R0,LRT is similar to R0,URT; on the other hand if this seeding takes longer to occur (G=0.001/day) 
then R0,LRT will be much larger, since there is less time for the viral load to reach the high levels 
observed. Overall, the estimated parameters and viral dynamic characteristics are robust against 
variations in the fixed parameters, with exception for the infectivity and the reproductive number 
in the LRT,	𝑅",$%!  (Tables S3 and S4). 
 
Determinants of the duration of the incubation period and infectiousness. Since this model 
provides a good description of the viral load dynamics, we next asked how these relate to several 
important epidemiological parameters. Using the best-fit individual parameter values in Table 
S2, we examined the relationship between the incubation period and characteristics of the viral 
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dynamics. We found that the time from infection to peak viral load in the URT strongly 
correlates with the incubation period (r2=0.98); whereas this duration in the LRT does not (Fig. 
S2A and B). The within-host reproductive numbers in both the URT and the LRT negatively 
correlate with the incubation period (Fig. S2C and D). These results suggest that the 
development of initial symptoms may be associated with how quickly the viral load reaches a 
high level in the URT and the rates of viral growth in the URT and the LRT.  
 
We next examined how infectiousness is related to the viral load dynamics, since transmission is 
likely to depend on viral load in the URT (11, 40). Epidemiological studies have shown that 
infectiousness starts several days before symptom onset and a sizable fraction of transmissions 
(>30%) occurs presymptomatically (8, 9). We first examined two commonly used measures to 
summarize the viral load dynamics in the URT (12), the area under the viral load curve (AUC) 
and the area under the log10 of the viral load curve (AUClog). Irrespective of the measure used, 
we found that the longer the incubation period, the larger the fraction of presymptomatic viral 
load (Fig. 2; p-values<0.001 for both measures), and thus the more likely presymptomatic 
transmission occurs.   
 
The fraction of the viral load AUC that occurs during the presymptomatic period, i.e. the 
“presymptomatic %AUC”, ranges between 0.001% and 0.5% across the 8 patients (Fig. 2A). 
This suggests that the viral load AUC is unlikely to be a good measure of infectiousness; 
otherwise, these results would predict that a very small fraction of transmissions occur before 
symptom onset. In contrast, the presymptomatic %AUClog ranges between 3% and 21% (Fig. 
2B), i.e. near the lower bound estimate in Ref. (9). Therefore, the logarithm of viral load, and its 
corresponding AUC, i.e. AUClog, serves as a better surrogate for infectiousness than the viral 
load and its corresponding AUC. Note that it is expected that the presymptomatic fraction we 
calculated for this group of patients is lower than the fraction in the general population, due to 
the relatively short incubation periods of the patients in our analysis (ranging between 1 and 4.5 
days). In the general population, patients with an incubation period longer than 4.5 days are 
likely to have higher probabilities of presymptomatic transmission (Fig. 2B), and thus would 
lead to a higher fraction of presymptomatic transmission than the model predicted for the 8 
patients in this study. 
 
Probability of transmission. Next, we sought to provide a physiological basis for the 
relationship between the logarithm of viral load and infectiousness. We developed a probabilistic 
model that incorporates the various steps from viral shedding to establishment of infection (see 
Methods for details). In this model, we define the infectiousness as the probability that an 
infected person will generate one or more viral particles leading to a successful transmission 
event for a typical contact of a relatively short duration (minutes to a couple of hours). This 
probability is expressed as: 

𝑝(𝑡) = 1 − 𝑒'(
!"($)

!"($)&'(,         [1] 
where 𝑉!(𝑡) is the viral load in a swab taken at time t post-infection. We used a Michaelis-
Menten term to describe the dependence of the number of viruses shed by a host on their URT 
viral load. The mathematical form of Eqn. [1] is similar to previous models describing 
infectiousness of individuals infected by human immunodeficiency virus or influenza as a 
function of their viral loads (12, 41, 42). Moreover, the Michaelis-Menten term in our model is 
motivated by experimental results from seasonal coronavirus showing the amount of exhaled 
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virus stops increasing when viral load becomes very large (11) (see Fig. S3 and Methods). That 
is, exhaled virus is a saturating function of viral load, and 𝐾) is a saturation constant that defines 
the viral load of half-maximal shedding. This functional form also encompasses a linear 
dependence on viral load when 𝐾) is very large. 𝜃 is a constant such that the maximum 
transmission probability, i.e. the maximum infectiousness, is 1 − 𝑒'(. We set 𝜃 = 0.05, leading 
to a maximum transmission probability of approximately 5% for a typical contact of a relatively 
short duration (Fig. 3). This is generally consistent with the low secondary attack rates per 
contact reported in multiple studies analyzing contact tracing data (43-45). Note that because 𝜃 is 
small and *"(,)

*"(,)./(
< 1, 𝑝(𝑡) 	≈ 𝜃 *"(,)

*"(,)./(
. Thus, Km also corresponds approximately to the 

viral load at which the infectiousness of an infected person is 50% of the its maximum 
infectiousness (Fig. 3I).  
 
The fraction of infections that occur before symptom onset is highly dependent on 𝐾) (Fig. 3 
and S4). With 𝐾) in the range of 100 to 101 RNA copies, the presymptomatic fraction of 
infectiousness in patients whose incubation period is between 4 and 4.5 days (as in our data) is 
13%-22% (panels B, D, E, F and H in Fig. 3), a range similar to the prediction using AUClog 
and close to the lower bound estimated by He et al. (9). Further, the period of higher viral load 
that comprises 95% of the cumulative infectiousness, i.e. which we assume is approximately the 
infectious period, is on average 9.2 days (sd: ±2.5 days) and 7.5 days  (sd: ±2.0 days) across the 
8 patients, for 𝐾) = 100 and 101 RNA copies, respectively (Fig. 3). This is consistent with a 
serial interval of 7-8 days in the absence of active tracing and isolation as estimated from Ref. 
(46), assuming a mean latent period, i.e. from infection to becoming infectious, of 3 days (9). 
The infectious periods last on average 7.9 days (sd: ±2.5 days) and 6.7 days (sd: ±2.0 days) post 
symptom onset, for 𝐾) = 100 and 101 RNA copies, respectively (Fig. 3). Again, this is 
consistent with clinical studies showing that infectious viruses can be isolated from patient 
samples during the first week of symptoms and up to 8-9 days post symptom onset (5, 8, 47). 
Overall, the consistency between this model and epidemiological evidence suggests that 𝐾) in 
the range of 100 to 101 RNA copies represents a reasonable choice (Fig. 3I).  
 
Importantly, we found that the area under the infectiousness curve 𝑝(𝑡) predicted by the 
probabilistic model, strongly correlates with AUClog calculated above (p-value<10-10; 
r2>0.9998), and the fractions of presymptomatic infections predicted by the probability model are 
very close to those predicted using AUClog (Fig. S5).  
 
Higher values of 𝐾), e.g. 105 or 106 RNA copies, lead to very small fractions of presymptomatic 
transmission that are inconsistent with data (Fig. S4). In general, when 𝐾) is larger than the 
maximum viral load, 𝑉!(𝑡) + 𝐾) ≈ 𝐾), and thus 𝑝(𝑡) ≈ (

/(
𝑉!(𝑡). In this case, the 

infectiousness is directly proportional to the viral load and the fractions of presymptomatic 
transmissions with such a large Km are close to those predicted by the %AUC (Fig. 2A), and are 
too small to be consistent with data. In addition, when infectiousness is proportional to AUC, 
most infections are predicted to occur within a few days of the viral load peak, which is 
inconsistent with a relatively long infectious period (5, 8, 46, 47). Therefore, including a 
saturation effect in viral transmission, here modeled by the Michalis-Menten term, is key to 
having the probability model predict a large fraction of presymptomatic transmissions.  
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2020. ; https://doi.org/10.1101/2020.09.25.20201772doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.25.20201772
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

Sensitivity analyses with respect to the value of 𝜃 show changes in the overall probability of 
transmission; however, the proportion of presymptomatic transmission and the duration of 
infectiousness remain largely unchanged (Figs. S6 and S7). Overall, the probabilistic model of 
infectiousness based on the early viral load dynamics in the URT explains our findings and is 
consistent with multiple epidemiological observations. 
 
Long-term dynamics of SARS-CoV-2 indicate continuous infection of new target cells in 
the LRT. Next, we analyzed data collected up to 31 days post infection. One interesting pattern 
we observe in the LRT is that the viral load is maintained at intermediate-to-high levels for a 
prolonged period of time after the first viral peak in most infected individuals. In addition, 
multiple viral peaks were observed in the LRT of several individuals (see Figs. 4A, B, D, E, F 
and G). We hypothesize that these additional peaks could be due to infection of new target cells 
in the LRT. These target cells can come from three potential sources. First, it is possible that 
after the initial viral peak, viral load decreases exponentially, and this decrease leads to decreases 
in the level of interferon and other cytokines and subsequent shut-down of the antiviral response. 
Cells in an antiviral state, which have been called cells refractory to infection or simply 
refractory cells (48), could then become target cells again, fueling the continued infection in the 
LRT. Second, cells in the LRT may proliferate and replace cells killed by the virus. Type II 
alveolar cells, which are the predominant target cells in the LRT, are capable of proliferating and 
can also differentiate into type I alveolar cells, which also can be infected by SARS-CoV-2 (19, 
39). These two cell types make up over 90% of the cells in the LRT (49, 50). Third, it is 
plausible that infection in the LRT is highly spatial as suggested by CT scans (51, 52). Viruses 
may move to new physiological locations in the lungs over time and find new target cells to 
infect, which leads to maintenance or increases in viral load in the LRT (5).  
 
To test these hypotheses, we developed alternative models by extending the TCL model. Since it 
is likely that adaptive immune responses develop after 14 days of infection (38), we incorporated 
the impact of adaptive immune responses, following the framework of Pawelek et al. (53), in all 
the models we develop below to analyze long-term data. Here, we focus on the immune 
responses that increase the rate of infected cell killing (see Supplementary Material), such as 
cytotoxic T lymphocyte responses and antibody responses (54) that lead to infected cell killing 
via mechanisms such as antibody-dependent cellular cytotoxicity, antibody-dependent 
phagocytosis and complement-mediated cell death.  
 
We tested alternative models incorporating the innate immune response (i.e. the innate immunity 
model), proliferation of target cells (i.e. the proliferation model), spatial spread of the virus in the 
lungs (i.e. the extended target cell model) or both the innate immune response and the spatial 
spread in the lungs (i.e. the combined model) as described in Methods. We used these models to 
understand the full viral load dataset encompassing viral loads measured to day 31 in Ref. (5). 
Because of the highly heterogeneous long-term viral load dynamics, we fitted the models to data 
from each individual separately (see Methods and Supplementary Material).  
 
Fitting results (Fig. 4 and S8-S11) and model comparison using AIC scores (Table S5) show that 
the extended target cell model is the best model. It describes the multiple viral load peaks seen in 
the longitudinal sputum samples well (Fig. 4). See Table S6 and S7 for best-fit parameter values 
and their confidence intervals. Although the proliferation model had a higher overall AIC score 
than the extended target cell model, it describes the data from some patients almost as well as the 
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extended target cell model based on the AIC scores for individual patients (e.g. Patients 2, 7, 10, 
14; see Table S5). The models without the appearance of new target cells during infection (i.e. 
the TCL model and the innate immunity model) failed to describe the multiple viral load peaks 
seen in the sputum samples from many individuals (Fig. S9 and S10). Overall, the spatial 
infection hypothesis that viruses find new target cells to infect over the course of infection in the 
lungs can explain the prolonged period of intermediate-to-high levels of virus in the LRT. 
Proliferation of type II alveolar cells may also serve a source for new target cells to sustain viral 
infection in the lungs. 
 
Impact of therapeutics. We next used the extended target cell model to evaluate the impact of 
potential therapy on viral dynamics and infectiousness of each individual. We included in the 
model the effects of therapeutics that reduce virus production and/or therapeutics that inhibit 
virus entry to host cells (see Supplementary Information). Similar results were obtained with 
administration of each of the antivirals alone or combinations of the two (Figs. S12-S14).  
 
For the dynamics in the URT, we focused on the first 14 days of infection, during which time 
infectious virus can be recovered (5). In general, we found that a potential therapeutic can reduce 
infectiousness by greater than 50% only when the antiviral is highly efficacious (>90%) and is 
administered at symptom onset (Figs. 5 and S12A-C). The maximum reduction in infectiousness 
among the 8 patients is predicted to be around 80% (Fig. S12A). We note that when the efficacy 
of the antiviral is less than 60%, the AUClog can slightly increase in some patients (see Fig. 5 
and Fig. S12A-C). This is because although a suboptimal antiviral reduces the peak viral load, it 
may reduce the growth rate of the virus such that the viral load is maintained at intermediate 
levels for a longer period of time (“flattening the curve”), leading to a higher AUClog and a 
longer infectious period (Fig. 5). A similar effect was previously predicted in the case of antiviral 
therapy for Zika virus (27) and in a stochastic model of the action of prophylatic therapy to 
prevent SARS-CoV-2 (32). We caution that further clinical data is needed to know whether this 
predicted increase in AUClog has any clinical or epidemiological significance.  
 
Our results highlight the importance of using the appropriate surrogate measure, i.e. AUClog, for 
predicting infectiousness. If AUC was used to approximate infectiousness (instead of AUClog), 
one would substantially overestimate the efficacy of therapy. For example, the maximum 
reduction in infectiousness among the 8 patients is predicted by the AUC to be ~99.9%, instead 
of 80% predicted by AUClog (Fig. S12D). Further, when the efficacy of the antiviral is 50%, 
using the AUC one would predict substantial reduction in infectiousness, whereas using AUClog 
no reduction in infectiousness is observed (Figs. 5 and S12D). 
 
For the dynamics in the LRT, we found that when administered early (i.e. at symptom onset; Fig. 
S15), a highly efficacious antiviral (e.g. with 90% efficacy) may change the course of infection 
by substantially reducing the viral load. A therapeutic with a moderate efficacy of 50%, can 
reduce and delay the LRT peak viral load in most patients. When administered at 8 days after 
symptom onset (Fig. S16), such as in the remdesivir clinical trial reported in Ref. (55), a 
hypothetical therapy with 50% efficacy reduces the second viral peak in some patients, but not 
others. In our model, the second viral peak is likely because of spread of the virus into new 
physiological locations in the lungs, and thus such therapy may be able to restrict the spread of 
the virus in the lungs in some patients. Further work is needed to quantify how disease severity is 
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related to viral load and spatial spread in the lungs so as to be able to predict how therapeutics 
impact clinical outcomes.  
 
Discussion 
In this study, we constructed mathematical models to describe the viral dynamics of SARS-CoV-
2 in both the URT and the LRT, and fit the models to data collected from human subjects 
reported in Ref. (5). Because we used the known infection dates, we could estimate the initial 
dynamics more carefully than previous studies (32-36). In particular, we found infected 
individuals with a longer incubation period had lower rates of viral growth, and higher potential 
for presymptomatic transmission. We found that the logarithm of viral load in the URT may 
serve as a good surrogate of the infectiousness of an individual, and a physiologically based 
model incorporating viral shedding and establishment of infection is able to explain this 
relationship. Finally, we provided evidence that continuing viral infection of new target cells in 
the lungs may be the reason high LRT viral loads are maintained for a sustained period.  
 
We first used a target cell limited model (26) to understand early viral dynamics (up to day 14 
post infection) in the URT and the LRT. Through a population fitting approach, we estimated 
that the viral load peaks on average around 2 days (±0.2 day) and 2.1 days (±1.2 days) post 
symptom onset, respectively, in the URT and the LRT. The duration of the incubation period, i.e. 
the time from infection to symptom onset, is negatively correlated with the rate of early viral 
load increase, i.e. the quicker the virus load reaches a high level in the URT, the shorter the 
incubation period. This suggests that the initial symptom development may be driven by a high 
level of virus in the URT. These results were only possible because in this dataset the day of 
infection and the day of symptom onset were both available. The incubation periods of the 
patients we analyzed in this study are relatively short (i.e. 1-4.5 days). Studies involving a larger 
number of patients (with known infection dates) with incubation periods spanning longer 
durations (i.e. >5 days) will be useful to further inform the relationship between viral dynamics 
and symptom development. Moreover, longitudinal measurements of viral load at the time of or 
before symptom onset could help refine our estimates, but such data is unlikely to be available. 
 
The quantitative relationship between viral load and infectiousness of an individual is key to 
linking within-host viral load to infectiousness and transmission dynamics (12). For SARS-CoV-
2, infectiousness is likely related to viral loads in the URT (11), and a sizable fraction of 
transmission occurs before symptom onset (9). To explain this epidemiological observation, we 
developed a probabilistic model that considers viral shedding from a donor and the establishment 
of infection in a recipient during a contact, and show that a saturation effect, where 
infectiousness saturates when viral load becomes very high, is key to explain a large fraction of 
presymptomatic transmissions. We note that a saturation effect was also found to be important to 
describe how infectiousness depends on viral load in HIV infected (41) and influenza A infected 
individuals (42). Importantly, because of the saturation effect, we show that the logarithm of 
viral load (rather than absolute viral load) is an appropriate surrogate for infectiousness. Indeed, 
if infectiousness was directly proportional to viral load, i.e. no saturation effect, we would expect 
little presymptomatic transmission and a person would be infectious for only a day or two when 
viral load is near its peak. These predictions are inconsistent with clinical and epidemiological 
observations that infected persons on average are infectious for a week or so (5, 8, 46, 47).  
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The results of our probabilistic model and the finding that logarithm of viral load is a more 
appropriate surrogate measure for infectiousness than the viral load have important implications. 
First, as we have shown, using the viral load instead of its logarithm as a surrogate for 
infectiousness substantially overestimates the effectiveness of therapeutics on infectiousness. 
Second, there is an emerging need to quantify the extent of transmission of asymptomatically 
infected individuals and children (56). Our model provides an important tool for predicting 
infectiousness of these groups of individuals based on their viral load data (13, 14). These 
predictions will be useful for making public health policies, such as school reopening (57).  
 
The probabilistic model we developed represents a first step to link viral load to SARS-CoV-2 
infectiousness, but it has limitations. First, the model used a Michaelis-Menten term to model the 
saturation effect for simplicity. The data we used to support this functional form were limited 
and other functional forms incorporating a saturation effect may also be able to explain the data. 
Second, the model makes several simplifying assumptions including assuming that all contacts 
are of the same duration and the parameter values in the model are the same across patients, 
whereas in reality, there may exist considerable heterogeneity (43, 58). Therefore, further model 
developments incorporating different aspects of heterogeneity in the transmission process (40, 
58), rigorous parameter estimation from clinical and epidemiological data, and testing of 
alternative models are warranted.  
 
The viral load in the LRT is maintained at intermediate-to-high levels for a prolonged period of 
time (5, 16). In Ref. (5), multiple viral peaks in the LRT were observed in several patients. We 
tested different hypotheses to explain this observation by constructing mathematical models that 
include the immune responses, proliferation of target cells or spatial spread of virus in the lungs. 
The best model for explaining the data is the one that implicitly considers spatial spread of virus 
in the lungs. If virus can reach new physiological compartments, e.g. different regions of the 
lungs, then new target cells become available to fuel further infection. This finding is also 
consistent with data from chest CT scans of infected individuals showing that infection spreads 
progressively to larger areas in the lungs (51, 52). More broadly, it has been suggested that 
infection is highly spatial for other viruses such as influenza (59), and thus, the spatial nature of 
within-host virus spread may be a general feature of respiratory viruses. However, more research 
(similar to what has been done in influenza, e.g. Ref. (60)) is needed to investigate how viral 
spread in the lungs, proliferation of target cells and the immune response lead to different levels 
of symptom severity and disease outcome. 
 
We found that adding a type I interferon response to the model does not improve the fit to the 
data. While it is possible that the resolution of the data does not allow us to detect the impact of 
the interferon response on viral kinetics; it is possible that the interferon response is suppressed 
by SARS-CoV-2 (61-63), at least early on, and thus may play a minor role in regulating viral 
kinetics. A recent single cell analysis of SARS-CoV-2 infection shows that SARS-CoV-2 
induces low levels of type I and III interferons, but an elevated level of inflammatory 
chemokines (64). Whereas other studies with patient samples have indicated that the type I IFN 
response is more overt in severe cases of infection, i.e., later in the course of the disease (65). If 
this is the case in vivo, the lack of a potent interferon response to stop/limit virus spread early 
and the subsequent excessive production of inflammatory molecules as a result of continuous 
viral infection can lead to lung damage and severe clinical outcomes (66).  
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In summary, we developed a mathematical model to describe the dynamics of SARS-CoV-2 
infection in both the URT and the LRT. Using this model, we provided several important 
quantitative estimates of the features of infection dynamics, including the number of target cells, 
the time to peak viral load, and the impact of viral dynamics on the length of the incubation 
period and the infectiousness of a host. We note that the data we used for model inference are 
from infected individuals with relatively mild symptoms (5). The estimated parameter values 
thus may be biased towards mildly symptomatic individuals. Further work is needed to compare 
the viral dynamics in individuals with different levels of symptom severity, e.g. asymptomatic 
individuals (13), individuals with severe symptoms and critically ill patients (67). Overall, this 
model serves as a crucial step towards a framework for better quantitative understanding of 
SARS-CoV-2 dynamics, the host immune response and the impact of therapeutics on 
infectiousness and disease symptoms of an infected individual.  
 
Methods 
Mechanistic models 
Target cell limited (TCL) model 
We first construct a within-host model based on the target cell limited (TCL) model used for 
other respiratory viruses, such as influenza (26) and respiratory syncytial virus (68). The model 
keeps track of the total numbers of target cells (T), cells in the eclipse phase of infection (E), i.e. 
infected cells not yet producing virus, productively infected cells (I) and viruses (V). The 
compartments in the URT and the LRT are subscripted with ‘1’ and ‘2’, respectively. To 
compare the model with data, we keep track of sampled viruses, i.e. virus levels measured in 
pharyngeal throat swabs, 𝑉! , or sputum samples, 𝑉2, and assume that these levels are 
proportional to the number of viruses in the URT and the LRT (𝑉3	 and 𝑉4), respectively. The 
ordinary differential equations (ODEs) describing the model are  

𝑑𝑇3
𝑑𝑡 = −𝛽3𝑉3𝑇3 

𝑑𝐸3
𝑑𝑡 = 𝛽3𝑉3𝑇3 − 𝑘3𝐸3 
𝑑𝐼3
𝑑𝑡 = 𝑘3𝐸3 − 	𝛿3𝐼3 

𝑑𝑉3
𝑑𝑡 = 𝑝3𝐼3 − 𝑐𝑉3	 − 𝑔34𝑉3 + 𝑔43𝑉4 

𝑑𝑇4
𝑑𝑡 = −𝛽4𝑉4𝑇4 

𝑑𝐸4
𝑑𝑡 = 𝛽4𝑉4𝑇4 − 𝑘4𝐸4 
𝑑𝐼4
𝑑𝑡 = 𝑘4𝐸4 − 	𝛿4𝐼4 

𝑑𝑉4
𝑑𝑡 = 𝑝4𝐼4 − 𝑐𝑉4 + 𝑔34𝑉3 − 𝑔43𝑉4 

 
𝑉! = 𝑓3𝑉3	 and 𝑉2 = 𝑓4𝑉4 

 

[2] 

In the URT, target cells are infected by virus with rate constant 𝛽3. Cells in the eclipse phase 
become productively infected cells at per capita rate 𝑘3. Productively infected cells produce virus 
at per capita rate 𝑝3 and die at per capita rate 𝛿3. Viruses are cleared at per capita rate c, and are 
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transported from the URT to the LRT at rate 𝑔34, the opposite movement, from the LRT to the 
URT occurs at rate g21. The equations in the LRT follow the same model structure. 𝑓3 and 𝑓4 are 
the proportions of virus sampled in the two compartments, i.e., 𝑓3 = 𝑉!/𝑉3 and 𝑓4 = 𝑉2/𝑉4. Note 
that because our model keeps track of the total number of viruses and not their concentrations in 
the URT and LRT, the relative volumes of these compartments do not enter in the description of 
the transport processes between these compartments. 
 
Model simplification. 
For practical data fitting and parameter estimation, we make several assumptions to reduce the 
number of parameters in the model. First, we derive ODEs for 𝑉! and 𝑉2, i.e. the measured viral 
load observables, to replace the expressions for 𝑉3 and 𝑉4. Hou et al. provided evidence 
supporting the idea that the URT is the initial site of infection and virus is later seeded to the 
LRT through the oral-lung aspiration axis (69). Thus, the transport of virus from the URT to the 
LRT is likely to occur in random episodes, and here we approximate that by a slow continuous 
transport, which we assume is much slower than viral clearance, i.e.	𝑔34 ≪ 𝑐; thus	𝑐 + 𝑔34 ≈ 𝑐. 
There is no evidence that the viral dynamics in the LRT have strong impact on the viral 
dynamics in the URT. For example, the viral load in the URT typically declines to very low 
levels after initial peak while the viral load in the LRT is sustained at higher levels for a long 
period of time (5). Thus, we assume that 𝑔43 ≈ 0.  (see Supplementary Material for further 
justifications of these assumptions). Under these assumptions, the ODEs for 𝑉! and 𝑉2 in this 
simplified TCL model become:  

5*"
5,

= 𝜋!𝐼3 − 𝑐𝑉! , 
5*)
5,

= 𝜋2𝐼4 − 𝑐𝑉2 + Γ𝑉!, 
[3] 

where 𝜋! = 𝑓3𝑝3, 𝜋2 = 𝑓4𝑝4, 𝛽! =
6*
7*

, 𝛽2 =
6+
7+

 and Γ = 7+
7*
𝑔34. The ODEs for the host-cell 

compartments are unchanged.  
 
From this model, we calculate the within-host reproductive number for the dynamics in the 
URT,	𝑅",$%!, as: 

𝑅",$%! =
6*8*
9:*

𝑇3," =
6";"
9:*

𝑇3,"   [4] 
where 𝑇3," is the initial number of target cells in the URT. 
 
If we assume that the number of viruses transported from the URT to the LRT is small compared 
to the number of viruses produced from infected cells in the LRT after initial seeding of infection 
in the LRT, the within-host reproductive number for the dynamics in the LRT, 𝑅",&%! , can be 
approximated as:  

𝑅",&%! =
6+8+
9:+

𝑇" =
6);)
9:+

𝑇4,"  [5] 
where 𝑇4," is the initial number of target cells in the LRT. 
 
See Supplementary Information for the details for the choice of fixed parameter values and for 
other models (i.e. the innate immunity model, the proliferation model, the extended target cell 
model and the combined model) describing the long-term viral load dynamics. 
 
Probability model linking viral load in the URT to infectiousness of a host 
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We construct a simple model linking within-host viral load in the URT in a donor to the 
probability of transmission to a recipient. We consider a typical contact of length  𝜏 between the 
donor and the recipient at time 𝑡. We assume that 𝜏 is small enough (on the order of minutes or 
hours) that the viral load in the URT of the donor 𝑉3(𝑡), and thus	𝑉!(𝑡) is approximately 
constant during the contact. A recent experiment showed a positive correlation between the 
number of seasonal coronaviruses in a throat swab and the number of viruses in respiratory 
droplets or aerosols (11). However, the number of virus shed in respiratory droplets or aerosols 
appears to saturate when the viral load in a throat swab becomes high, e.g. exceeding 104 copies 
(Fig. S3). Thus, we used a Michaelis-Menten term to model the amount of virus shed from the 
host’s URT:	𝑉)<=

*"(,)
*"(,)./(

τ, where 	𝑉)<= is the maximum viral particles shed from a host per 
unit time, and 𝐾) is the saturation constant. When Km is much greater than the peak viral load, 
saturation will not be observed, so this model incorporates both a linear and saturating 
dependence on viral load. 
 
Next, we assume that a fraction of the shed virus, 𝜑, reaches the URT of the recipient and that a 
virus that reaches the recipient’s URT has a probability 𝜈 to successfully establish infection. 
Then, the number of viruses that successfully establish an infection is given by a binomial 
distribution Bin(𝑛; 𝜈), where 𝑛 = 𝜑	𝑉)<=

*"(,)
*"(,)./(

τ. For large n and small 𝜈, Bin(𝑛; 𝜈) is well-

approximated by a Poisson distribution with parameter 𝜆 = 𝑛𝜈 = 𝜃 *"(,)
*"(,)./(

, where 𝜃 = 
𝜈𝜑τ	𝑉)<=. The probability of one or more virions generating a successful transmission event for 
a typical contact at time 𝑡 is p(t)=1-exp(-l) as shown in Results.  
 
Data, parameter fitting, analysis and model selection 
We digitalized longitudinal viral load data from throat swabs and sputum samples of the 9 
infected individuals reported in Wolfel et al. (5). The infected individuals are young to middle-
aged professionals, without underlying disease, who were identified because of known close 
contact with an index case.  All patients were hospitalized, but had a comparatively mild clinical 
course of disease.  
 
We took two approaches for model fitting. First, when fitting models to data collected up to day 
14 post-infection, we use a population approach, based on non-linear mixed effect modeling, to 
fit the model simultaneously to viral load data from the URT and LRT of 8 patients. Second, 
when fitting models to long-term time series involving all data collected up to day 31 post 
infection, we fit the model to data from each patient separately. This approach is taken due to the 
substantial variability in the long-term viral dynamics among individuals, which precludes us 
from assuming they are a sample from a homogeneous population. See supplementary text for 
details of these two parameter fitting procedures, including parameters estimated and parameters 
kept fixed with sensitivity analyses. We calculated correlations between viral characteristics 
parameters and the incubation periods using Pearson correlation. 
 
To compare the different models tested, we calculate Akaike Information Criteria (AIC) scores 
from the residual sum of squares (RSS) as  

𝐴𝐼𝐶 = 2𝑛8 	+ 	𝑛5log(𝑅𝑆𝑆/𝑛5), [6] 
where 𝑛8 is the number of fitted parameters and 𝑛5 is the number of data points used in 
estimation (70). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2020. ; https://doi.org/10.1101/2020.09.25.20201772doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.25.20201772
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

 
Acknowledgements. Portions of this work were done under the auspices of the U.S. Department 
of Energy through Los Alamos National Laboratory, which is operated by Triad National 
Security, LLC, for the National Nuclear Security Administration of the U.S. Department of 
Energy (contract No. 89233218CNA000001). The work was supported by the Laboratory 
Directed Research and Development program of Los Alamos National Laboratory (project No. 
20200743ER and 20200695ER), and by the Defense Advanced Research Projects Agency 
(contract No. HR0011938513). Part of this research was supported by the DOE Office of Science 
through the National Virtual Biotechnology Laboratory, a consortium of DOE national 
laboratories focused on response to COVID-19, with funding provided by the Coronavirus 
CARES Act.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2020. ; https://doi.org/10.1101/2020.09.25.20201772doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.25.20201772
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

References: 
1. Zhu N, et al. (2020) A novel coronavirus from patients with pneumonia in China, 2019. 

N Engl J Med 382(8):727-733. 
2. Flaxman S, et al. (2020) Estimating the effects of non-pharmaceutical interventions on 

COVID-19 in Europe. Nature:DOI: 10.1038/s41586-41020-42405-41587. 
3. Ke R, Romero-Severson EO, Sanche S, & Hengartner N (2020) Estimating the 

reproductive number R0 of SARS-CoV-2 in the United States and eight European 
countries and implications for vaccination. medRxiv:2020.2007.2031.20166298. 

4. Sanche S, et al. (2020) High contagiousness and rapid spread of severe acute respiratory 
syndrome coronavirus 2. Emerg Infect Dis 26(7):1470-1477. 

5. Wolfel R, et al. (2020) Virological assessment of hospitalized patients with COVID-
2019. Nature 581(7809):465-469. 

6. Hoffmann M, et al. (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and 
is blocked by a clinically proven protease inhibitor. Cell 181(2):271-280 e278. 

7. Wrapp D, et al. (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion 
conformation. Science 367(6483):1260-1263. 

8. Arons MM, et al. (2020) Presymptomatic SARS-CoV-2 Infections and Transmission in a 
Skilled Nursing Facility. N Engl J Med 382(22):2081-2090. 

9. He X, et al. (2020) Temporal dynamics in viral shedding and transmissibility of COVID-
19. Nat Med 26(5):672-675. 

10. Fraser C, Riley S, Anderson RM, & Ferguson NM (2004) Factors that make an infectious 
disease outbreak controllable. Proc Natl Acad Sci U S A 101(16):6146-6151. 

11. Leung NHL, et al. (2020) Respiratory virus shedding in exhaled breath and efficacy of 
face masks. Nat Med 26(5):676-680. 

12. Handel A & Rohani P (2015) Crossing the scale from within-host infection dynamics to 
between-host transmission fitness: a discussion of current assumptions and knowledge. 
Philos Trans R Soc Lond B Biol Sci 370(1675). 

13. Sakurai A, et al. (2020) Natural history of asymptomatic SARS-CoV-2 infection. N Engl 
J Med:DOI: 10.1056/NEJMc2013020. 

14. Yonker LM, et al. (2020) Pediatric SARS-CoV-2: clinical presentation, infectivity, and 
immune responses. J Pediatr. 

15. Williamson BN, et al. (2020) Clinical benefit of remdesivir in rhesus macaques infected 
with SARS-CoV-2. Nature:DOI: 10.1038/s41586-41020-42423-41585. 

16. Zheng S, et al. (2020) Viral load dynamics and disease severity in patients infected with 
SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort 
study. BMJ 369:m1443. 

17. Fehr AR & Perlman S (2015) Coronaviruses: an overview of their replication and 
pathogenesis. Methods Mol Biol 1282:1-23. 

18. Liu Y, et al. (2020) Clinical and biochemical indexes from 2019-nCoV infected patients 
linked to viral loads and lung injury. Sci China Life Sci 63(3):364-374. 

19. Rockx B, et al. (2020) Comparative pathogenesis of COVID-19, MERS, and SARS in a 
nonhuman primate model. Science 368(6494):1012-1015. 

20. Xu Z, et al. (2020) Pathological findings of COVID-19 associated with acute respiratory 
distress syndrome. Lancet Respir Med 8(4):420-422. 

21. Horby P, et al. (2020) Effect of dexamethasone in hospitalized patients with COVID-19: 
preliminary report. medRxiv:DOI: 10.1101/2020.1106.1122.20137273. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2020. ; https://doi.org/10.1101/2020.09.25.20201772doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.25.20201772
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

22. Pujadas E, et al. (2020) SARS-CoV-2 viral load predicts COVID-19 mortality. Lancet 
Respir Med. 

23. Rao SN, Manissero D, Steele VR, & Pareja J (2020) A narrative systematic review of the 
clinical utility of cycle threshold values in the context of COVID-19. Infect Dis Ther 
9(3):573-586. 

24. Westblade LF, et al. (2020) SARS-CoV-2 viral load predicts mortality in patients with 
and without cancer who are hospitalized with COVID-19. Cancer Cell. 

25. Heald-Sargent T, et al. (2020) Age-related differences in nasopharyngeal severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) levels in patients with mild to 
moderate coronavirus disease 2019 (COVID-19). JAMA Pediatr. 

26. Baccam P, Beauchemin C, Macken CA, Hayden FG, & Perelson AS (2006) Kinetics of 
influenza A virus infection in humans. J Virol 80(15):7590-7599. 

27. Best K & Perelson AS (2018) Mathematical modeling of within-host Zika virus 
dynamics. Immunol Rev 285(1):81-96. 

28. Madelain V, et al. (2018) Ebola viral dynamics in nonhuman primates provides insights 
into virus immuno-pathogenesis and antiviral strategies. Nat Commun 9(1):4013. 

29. Neumann AU, et al. (1998) Hepatitis C viral dynamics in vivo and the antiviral efficacy 
of interferon-alpha therapy. Science 282(5386):103-107. 

30. Perelson AS, Neumann AU, Markowitz M, Leonard JM, & Ho DD (1996) HIV-1 
dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. 
Science 271(5255):1582-1586. 

31. Zitzmann C & Kaderali L (2018) Mathematical analysis of viral replication dynamics and 
antiviral treatment strategies: from basic models to age-based multi-scale modeling. 
Front Microbiol 9:1546. 

32. Czuppon P, et al. (2020) Predicted success of prophylactic antiviral therapy to block or 
delay SARS-CoV-2 infection depends on the drug's mechanism of action. 
medRxiv:10.1101/2020.1105.1107.20092965. 

33. Gonçalves A, et al. (2020) Timing of antiviral treatment initiation is critical to reduce 
SARS-CoV-2 viral load. CPT: Pharmacometrics & Systems Pharmacology 9(9):509-514. 

34. Goyal A, Cardozo-Ojeda EF, & Schiffer JT (2020) Potency and timing of antiviral 
therapy as determinants of duration of SARS CoV-2 shedding and intensity of 
inflammatory response. medRxiv:DOI: 10.1101/2020.1104.1110.20061325. 

35. Kim KS, et al. (2020) Modelling SARS-CoV-2 dynamics: implications for therapy. 
medRxiv:DOI: 10.1101/2020.1103.1123.20040493. 

36. Wang S, et al. (2020) Modeling the viral dynamics of SARS-CoV-2 infection. Math 
Biosci 328:108438. 

37. Bohmer MM, et al. (2020) Investigation of a COVID-19 outbreak in Germany resulting 
from a single travel-associated primary case: a case series. Lancet Infect Dis:DOI: 
10.1016/S1473-3099(1020)30314-30315. 

38. Weiskopf D, et al. (2020) Phenotype and kinetics of SARS-CoV-2-specific T cells in 
COVID-19 patients with acute respiratory distress syndrome. Sci Immunol 5(48). 

39. Barkauskas CE, et al. (2013) Type 2 alveolar cells are stem cells in adult lung. J Clin 
Invest 123(7):3025-3036. 

40. Stadnytskyi V, Bax CE, Bax A, & Anfinrud P (2020) The airborne lifetime of small 
speech droplets and their potential importance in SARS-CoV-2 transmission. Proc Natl 
Acad Sci U S A 117(22):11875-11877. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2020. ; https://doi.org/10.1101/2020.09.25.20201772doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.25.20201772
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

41. Fraser C, Hollingsworth TD, Chapman R, de Wolf F, & Hanage WP (2007) Variation in 
HIV-1 set-point viral load: epidemiological analysis and an evolutionary hypothesis. 
Proc Natl Acad Sci U S A 104(44):17441-17446. 

42. Handel A, Longini IM, Jr., & Antia R (2007) Neuraminidase inhibitor resistance in 
influenza: assessing the danger of its generation and spread. PLoS Comput Biol 
3(12):e240. 

43. Cheng HY, et al. (2020) Contact tracing assessment of COVID-19 transmission 
dynamics in Taiwan and risk at different exposure periods before and after symptom 
onset. JAMA Intern Med. 

44. Luo L, et al. (2020) Contact Settings and Risk for Transmission in 3410 Close Contacts 
of Patients With COVID-19 in Guangzhou, China : A Prospective Cohort Study. Ann 
Intern Med. 

45. Zhang W, et al. (2020) Secondary Transmission of Coronavirus Disease from 
Presymptomatic Persons, China. Emerg Infect Dis 26(8):1924-1926. 

46. Ali ST, et al. (2020) Serial interval of SARS-CoV-2 was shortened over time by 
nonpharmaceutical interventions. Science. 

47. Bullard J, et al. (2020) Predicting infectious SARS-CoV-2 from diagnostic samples. Clin 
Infect Dis. 

48. Ciupe SM, Ribeiro RM, Nelson PW, Dusheiko G, & Perelson AS (2007) The role of cells 
refractory to productive infection in acute hepatitis B viral dynamics. Proc Natl Acad Sci 
U S A 104(12):5050-5055. 

49. Bianconi E, et al. (2013) An estimation of the number of cells in the human body. Ann 
Hum Biol 40(6):463-471. 

50. Crapo JD, Barry BE, Gehr P, Bachofen M, & Weibel ER (1982) Cell number and cell 
characteristics of the normal human lung. Am Rev Respir Dis 126(2):332-337. 

51. Pan F, et al. (2020) Time course of lung changes at chest CT during recovery from 
coronavirus disease 2019 (COVID-19). Radiology 295(3):715-721. 

52. Wang Y, et al. (2020) Temporal changes of CT findings in 90 patients with COVID-19 
pneumonia: a longitudinal study. Radiology 296(2):E55-E64. 

53. Pawelek KA, et al. (2012) Modeling within-host dynamics of influenza virus infection 
including immune responses. PLoS Comput Biol 8(6):e1002588. 

54. To KK, et al. (2020) Temporal profiles of viral load in posterior oropharyngeal saliva 
samples and serum antibody responses during infection by SARS-CoV-2: an 
observational cohort study. Lancet Infect Dis 20(5):565-574. 

55. Spinner CD, et al. (2020) Effect of Remdesivir vs Standard Care on Clinical Status at 11 
Days in Patients With Moderate COVID-19: A Randomized Clinical Trial. JAMA. 

56. Edmunds WJ (2020) Finding a path to reopen schools during the COVID-19 pandemic. 
Lancet Child Adolesc Health. 

57. Gandhi M, Yokoe DS, & Havlir DV (2020) Asymptomatic Transmission, the Achilles' 
Heel of Current Strategies to Control Covid-19. N Engl J Med 382(22):2158-2160. 

58. Klompas M, Baker MA, & Rhee C (2020) Airborne transmission of SARS-CoV-2: 
theoretical considerations and available evidence. JAMA 324(5):441-442. 

59. Gallagher ME, Brooke CB, Ke R, & Koelle K (2018) Causes and consequences of spatial 
within-host viral spread. Viruses 10(11):627. 

60. Myers MA, et al. (2019) Dynamically linking influenza virus infection with lung injury 
to predict disease severity. bioRxiv:DOI: 10.1101/555276. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2020. ; https://doi.org/10.1101/2020.09.25.20201772doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.25.20201772
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

61. Hadjadj J, et al. (2020) Impaired type I interferon activity and exacerbated inflammatory 
responses in severe Covid-19 patients. medRxiv:2020.2004.2019.20068015. 

62. Israelow B, et al. (2020) Mouse model of SARS-CoV-2 reveals inflammatory role of 
type I interferon signaling. J Exp Med 217(12). 

63. Konno Y, et al. (2020) SARS-CoV-2 ORF3b is a potent interferon antagonist whose 
activity is further increased by a naturally occurring elongation variant. 
bioRxiv:2020.2005.2011.088179. 

64. Blanco-Melo D, et al. (2020) Imbalanced host response to SARS-CoV-2 drives 
development of COVID-19. Cell 181(5):1036-1045 e1039. 

65. Lee JS, et al. (2020) Immunophenotyping of COVID-19 and influenza highlights the role 
of type I interferons in development of severe COVID-19. Sci Immunol 5(49). 

66. Jamilloux Y, et al. (2020) Should we stimulate or suppress immune responses in COVID-
19? Cytokine and anti-cytokine interventions. Autoimmun Rev 19(7):102567. 

67. Zou L, et al. (2020) SARS-CoV-2 viral load in upper respiratory specimens of infected 
patients. N Engl J Med 382(12):1177-1179. 

68. Gonzalez-Parra G & Dobrovolny HM (2019) The rate of viral transfer between upper and 
lower respiratory tracts determines RSV illness duration. J Math Biol 79(2):467-483. 

69. Hou YJ, et al. (2020) SARS-CoV-2 reverse genetics reveals a variable infection gradient 
in the respiratory tract. Cell 182(2):429-446 e414. 

70. Burnham KP & Anderson DR (2002) Model Selection and Multimodel Inference: A 
Practical Information-Theoretic Approach (Springer) 2nd Ed p 514. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2020. ; https://doi.org/10.1101/2020.09.25.20201772doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.25.20201772
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

Figures  
 

 
Figure 1. The fit of the target cell limited model (Eqns. 2 and 3) to the early viral kinetics 
from the URT and the LRT. The model (lines) was simulated using the best-fit individual 
parameter values estimated by a non-linear mixed effect modeling approach (Table S2). Red and 
blue denote viral load kinetics in the URT and the LRT, respectively. Symbols show the data 
from throat swabs (red circles) and the sputum samples (blue ’x’s) as reported in Ref. (5). 
Vertical dashed black lines denote the time of symptom onset for each individual as reported in 
Ref. (37). Horizontal dashed black lines show the limit of detection, and filled circles indicate 
data points below the limit of detection. 
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Figure 2. Regression analyses of the relationship between the duration of the incubation 
period and estimated presymptomatic area under the curve (AUC) percentages for (A) the 
viral load and (B) the log10 viral load in the URT. 
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Figure 3. The infectiousness profile predicted by the probability model. (A-H) The 
probability of transmission for a typical contact, i.e. infectiousness, over time predicted for each 
individual using the model linking viral load to infectiousness. We set 𝜃 = 0.05 and 𝐾) = 100 
(dark blue) or 101 (green) RNA copies. Vertical black lines show the day of symptom onset, 
whereas the horizontal dotted lines show the threshold probability where the cumulative 
probability of infectiousness above the threshold is 95% of the overall cumulative probability. 
Colored values show the percentage presymptomatic transmission and the infectious period, i.e. 
the period when the viral load is above the threshold, predicted by the corresponding model. The 
mean durations of the infectious period across all individuals are 9.2 days and 7.5 days for 𝐾) =
100 and 101 RNA copies, respectively. The infectious periods last on average 7.8 and 6.7 days 
post symptom onset for 𝐾) = 100 and 101 RNA copies, respectively.  (I) The relationship 
between the infectiousness (y-axis) and log10 viral load (x-axis) predicted by the probability 
model assuming 𝐾) = 100 (dark blue) or 101 (green) RNA copies.  
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Figure 4. The extended target cell model describes the long-term viral load data from the 
URT and the LRT well. Red and blue denote viral load kinetics in the URT and the LRT, 
respectively. Lines denote simulations using best-fit parameter values for each individual (Table 
S6). Symbols show the data from throat swabs (red squares) and the sputum samples (blue ’x’s) 
as reported in Ref. (5). The dashed black lines show the limit of detection, and closed dots show 
data below the limit of detection. 
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Figure 5. The impact of therapy on (A) the log viral load curve, (B) the viral load curve and 
(C) the predicted infectiousness. Solid lines show the time course simulation of the extended 
target cell model using best-fit parameters for Patient 2 (red) and the predicted infectiousness for 
the patient (blue) without therapy. Dashed lines and dotted lines show the predicted impact of a 
therapeutic with 50% efficacy (𝜖 = 0.5) and a therapeutic with 90% efficacy (𝜖 = 0.9), 
respectively. Both are assumed to be administered at the day of symptom onset, i.e. 4 days post 
infection (vertical black line). The value of 𝛼 is the AUC of the curve of interest normalized by 
the AUC of the baseline curve without therapy in each panel. Thus, the value of	𝛼 denotes the 
relative change of AUC compared to no treatment.        
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2020. ; https://doi.org/10.1101/2020.09.25.20201772doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.25.20201772
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

Tables 
 
 
Table 1. Estimated population parameter values obtained by fitting the TCL model to the 
early viral kinetic data collected up to 14 days post infection. 
Parameter Description Estimated value 

(population estimate) 
𝛽! Infectivity parameter (URT) 1.9 x 10-6 swab/day 
𝜎6 Covariate coefficient of time to symptom onset on 𝛽! -0.33 
𝛿 Death rate of infected cells (URT) 1.9 /day 
𝜋! Composite parameter for virus production and sampling 

(URT) 
51.4 /swab/day 

𝛽2 Infectivity parameter (LRT) 6.6 x 10-7 mL/day 
𝛿4 Death rate of infected cells (LRT) 0.63 /day 
𝜋2 Composite parameter for virus production and sampling 

(LRT) 
0.35 /mL/day 
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Table 2. Early viral dynamic characteristics in each infected individual. The characteristics 
are summarized from simulations using the best-fit individual parameter values of the target cell 
limited model to the early viral kinetic data (i.e. data collected up to 14 days post infection). SD 
– standard deviation. 

Panel 
(ID)* 

Incubation 
period* 

Time from infection to 
VL peak (days) 

Time from symptom 
onset to VL peak (days) 𝑹𝟎,𝑼𝑹𝑻 𝑹𝟎,𝑳𝑹𝑻 

URT LRT URT LRT 
A (1) 2.5 4.4 5.7 1.9 3.2 7 24.6 
B (2) 4 6.1 6.5 2.1 2.5 4.6 21.2 
C (3) 1 3.2 3.9 2.2 2.9 11.9 38.9 
D (4) 4 5.9 5.4 1.9 1.4 4.6 24.3 
E (7) 4 6 6.5 2 2.5 5.2 21.5 
F (8) 4 6 6 2 2 5.1 27.4 
G (10) 2 3.6 4.9 1.6 2.9 25 42.1 
H (14) 4.5 6.7 4.1 2.2 -0.4 4.3 19.8 
Mean 3.2 5.2 5.4 2 2.1 8.5 27.5 
SD 1.3 1.3 1.0 0.2 1.2 7.1 8.4 
* Panels correspond to the panels shown in Fig. 1. The ID and the incubation period for each 
individual are taken from Ref. (37). Viral load is abbreviated as VL. 
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Table 3. The fixed parameters in the model and their values. 

 
 
 
 

Parameter Description Values Values tested in 
sensitivity analyses 

𝑇3," Total number of (infection free) target 
cells in the URT 

4×106  cells NA 

𝑇",4 Total number of (infection free) target 
cells in the LRT 

4.8×108 cells NA 

𝐼" Initial number of infected cells in the 
URT 

1 cell 10 cells 

c Virus clearance rate 10/day 5 and 20/day 
k 1/k is the eclipse period 4/day 3 and 6/day 
Γ Virus transport rate from the URT to 

the LRT in the simplified model 
0.01 
swab/mL/day 

0.001, 0.1/day 
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