
DRAFT

Prioritising COVID-19 vaccination in changing social and epidemiological
landscapes
Peter Jentsch1,2, Madhur Anand1, and Chris T. Bauch2,*

1Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada; 2School of Environmental Sciences, University of Guelph, Guelph, Ontario,
Canada; *cbauch@uwaterloo.ca

Abstract1

During the COVID-19 pandemic, authorities must decide which groups to prioritise for vaccination. These2

decision will occur in a constantly shifting social-epidemiological landscape where the success of large-scale3

non-pharmaceutical interventions (NPIs) like physical distancing requires broad population acceptance. We4

developed a coupled social-epidemiological model of SARS-CoV-2 transmission. Schools and workplaces5

are closed and re-opened based on reported cases. We used evolutionary game theory and mobility data6

to model individual adherence to NPIs. We explored the impact of vaccinating 60+ year-olds first; <207

year-olds first; uniformly by age; and a novel contact-based strategy. The last three strategies interrupt8

transmission while the first targets a vulnerable group. Vaccination rates ranged from 0.5% to 4.5% of9

the population per week, beginning in January or July 2021. Case notifications, NPI adherence, and10

lockdown periods undergo successive waves during the simulated pandemic. Vaccination reduces median11

deaths by 32% − 77% (22% − 63%) for January (July) availability, depending on the scenario. Vaccinating12

60+ year-olds first prevents more deaths (up to 8% more) than transmission-interrupting strategies for13

January vaccine availability across most parameter regimes. In contrast, transmission-interrupting strategies14

prevent up to 33% more deaths than vaccinating 60+ year-olds first for July availability, due to higher15

levels of natural immunity by that time. Sensitivity analysis supports the findings. Further research is16

urgently needed to determine which populations can benefit from using SARS-CoV-2 vaccines to interrupt17

transmission.18

Introduction19

The COVID-19 pandemic has imposed a massive global health burden as waves of infection to move20

through populations around the world (1). Both empirical analyses and mathematical models conclude21

that non-pharmaceutical interventionsn (NPIs) are effective in reducing COVID-19 case incidence (2–4).22

However, pharmaceutical interventions are highly desirable given the socio-economic costs of lockdown23

and physical distancing. Hence, dozens of vaccines are in development (5), and model-based analyses are24

exploring the question of which groups should get the COVID-19 vaccine first (6, 7).25

When vaccines become available, we will face a very different epidemiological landscape from the early26

pandemic. Many populations will already have experienced one or more waves of COVID-19. As a result27

of natural immunity, the effective reproduction number Reff (the average number of secondary infections28

produced per infected person) will be reduced from its original value of approximately R0 = 2.2 in the29

absence of pre-existing immunity (8). Epidemiological theory tells us that as R (or R0) decline toward 1,30

the indirect benefits of transmission-blocking vaccines become stronger. For instance, if Reff ≈ 1.5, such as31

for seasonal influenza, only an estimated 33% percent of the population needs immunity for transmission32

to die out in a homogeneously population (9, 10). This effect was evidenced by the strong suppression of33

influenza incidence in Australia in Spring 2020 due to NPIs targeted against COVID-19 (11).34

This effect has stimulated a literature comparing the effects of vaccinating subpopulations that are35

responsible for most transmission, to vaccinating subpopulations that are vulnerable to serious complications36

from the infection but exhibit weaker immune responses to the vaccine (10, 12, 13). Natural population37

immunity to SARS-CoV-2 will likely continue to rise for many populations on account of further infection38

waves. Given these likely changes to the epidemiological landscape before the vaccine becomes available, we39

suggest this question is worthy of investigation in the context of COVID-19.40
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The social landscape will also look very different when vaccines become available and this aspect is41

crucial to understanding the pandemic. Scalable non-pharmaceutical interventions (NPIs) like physical42

distancing, hand-washing and masks are often one of the few available interventions when a novel pathogen43

emerges. Flattening the COVID-19 epidemic curve was possible due to a sufficient response by populations44

willing to adhere to public health recommendations. Therefore, pandemic waves are not simply imposed45

on populations, but rather are also a creation of the population response to the pathogen (14? ). Thus,46

pandemics caused by novel pathogens can be characterized as coupled socio-epidemiological systems47

exhibiting two-way feedback between disease dynamics and behavioural dynamics.48

Approaches to modelling coupled social-epidemiological dynamics vary (15–19). Some previous models49

have used evolutionary game theory (EGT) to model this two-way feedback in a variety of coupled human-50

environment systems (14, 20–25). EGT is relevant to population adherence to NPIs since it captures how51

individuals learn social behaviours from one another while weighting personal risks and benefits of different52

choices. In this framework, individuals who do not adopt NPIs can ‘free-ride’ on the benefits of reduced53

transmission generated by individuals who do (15).54

Here, our objective is to compare projected COVID-19 mortality reductions under four strategies for55

the prioritization of COVID-19 vaccines: elderly first, children first, uniform allocation, and a novel56

strategy based on the contact structure of the population. We use an age-structured model of SARS-CoV-257

transmission, including an evolutionary game theory submodel for population adherence to NPIs fitted58

to mobility data. We use extensive scenario and sensitivity analysis to identify how strategy effectiveness59

responds to possible changes in the social-epidemiological landscape that may occur both before and vaccines60

are available.61

Model Overview62

Structure and parameterisation. We developed an age-structured SEAIR model (Susceptible, Exposed,63

Asymptomatic Infectious, Symptomatic Infectious, Removed) with ages in 5-year increments. Upon infection,64

individuals enter an exposed category where they are infected but not yet infectious. After the exposed65

stage, individuals become either symptomatically or asymptomatically infectious, and enter the Removed66

compartment when their infectious period ends. Since our focus was on vaccination, we did not model67

testing or contact tracing. Transmission occurred through an age-specific contact matrix, susceptibility to68

infection was age-specific, and we included seasonality due to changes in the contact patterns throughout69

the year. Details of our model structure, parameterization, and sources appear in the Supplementary70

Appendix (Methods and Table S1). The model was parameterized with data from Ontario, Canada.71

Both schools and workplaces were closed when the proportion of ascertained active cases surpassed72

50%, 100%, 150%, 200%, or 250% of the level that sparked shutdown during the first wave, and were73

re-opened again when cases fell below that threshold. For our evolutionary game model of adherence to74

NPIs like mask use and physical distancing, we assumed that individuals weigh the cost of practicing NPIs75

imposed by reduced socialization, money spent on masks, etc, against the cost of not practicing NPIs and76

thereby experiencing an increased perceived risk of infection according to the prevalence of ascertained cases.77

Individuals sample other individuals and may switch between adherence and non-adherence to NPIs as a78

result, with a probability proportional to the difference in these costs. Both school and workplace closure79

and the proportion of the population practicing NPIs impact transmission according to their respective80

intervention efficacy.81

We used a Bayesian particle filtering approach to fit the model to case notification and mobility data from82

Ontario (see Supplementary Appendix for detailed methods and literature sources). We performed particle83

filtering on all social and epidemiological model parameters that could not be fixed at point estimates from84

the published literature, such as the ascertainment rates for each age group, the basic reproduction number85

R0, and the social submodel parameters. Posterior distributions for fitted parameters appear in Figure86

S1. The temporal curve describing contacts under workplace closing and opening were also fit to mobility87

data. Mobility data specific to school closure does not exist, so we assumed that outside of the normal88
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school breaks (e.g. summer holiday), schools exhibit similar temporal curves describing opening and closing89

as workplace do. We used published COVID-19 case fatality rates to determine number of deaths by age90

group based on the predicted incident cases by age group. Posterior distribution of model fits to age-specific91

cumulative cases appear in Figure S2, and posterior model time series fits appear in Figure 1.92

Vaccine scenarios. We considered two different dates for the onset of vaccination: 1 January 2021 and 193

July 2021. These correspond to the dates at which vaccine-derived immunity in the vaccine is achieved,94

hence the actual administration of a two-dose course would start approximately two weeks before these95

dates. We considered that it was possible to vaccinate 0.5%, 1.5%, 2.5%, 3, 5%, or 4.5% of the population96

per week. Our baseline scenario assumed an all-or-none vaccine with 90% efficacy against both infection97

and transmission.98

The “oldest first" strategy administers the vaccine to individuals 60 years of age or older first. Re-99

vaccination is only possible one more time if the vaccine did not “take" the first time. After all individuals100

in this group are vaccinated , the vaccine is administered uniformly to other ages. The “youngest first”101

strategy is similar, except it administers the vaccine to individuals younger than 20 years of age first. The102

“uniform" strategy administers vaccine to all individuals regardless of their age from the very beginning.103

The “contact-based" strategy allocates vaccines according to the leading eigenvector of the next-generation104

matrix (Supplementary Appendix). This tends to prioritise ages 15-19 primarily, 20-59 secondarily, and the105

least in older or younger ages (Figure S3). The “oldest first" strategy targets a vulnerable age group while106

the other three strategies are designed to interrupt transmission. We also explored an optimal strategy that107

seeks to optimize age-specific vaccine coverage to minimize the number of deaths over five years from the108

beginning of the epidemic. This used local optimization from each of the aforementioned strategies (see109

Supplementary Appendix).110

Sensitivity analysis. Sensitivity analysis was conducted for eight scenarios corresponding to: (1) constant111

physical distancing (instead of using evolutionary game theory to describe population behaviour), (2)112

increased efficacy of physical distancing (+0.2) after the first wave on account of more widespread mask113

use, (3) a higher basic reproduction number, R0 = 2.3, compared to our baseline fit (4) 50% vaccine114

efficacy in the elderly and 90% for other ages, (5) 50% vaccine efficacy in everyone, (6) no seasonality in the115

transmission rate, (7) constant susceptibility across all ages, and (8) vaccinating only individuals without116

pre-existing immunity.117

Results118

Temporal dynamics before and after vaccination. The Google mobility data used as a proxy for adherence119

to NPIs closely mirrors the COVID-19 case notification data over the Spring/Summer 2020 time period120

used for fitting (Figure 1, open circles). Since NPIs can significantly reduce SARS-CoV-2 transmission121

(2, 3) and a heightened perception of COVID-19 infection risk simulates the adoption of NPIs (26), this122

exemplifies a social-epidemiological dynamic. Moreover, the fit of the social submodel to the mobility data123

is as good as the fit of the epidemic submodel to the case notification (Figure 1). The social and epidemic124

submodels have a similar number of parameters (Supplementary Appendix), and the social model consists125

of a single equation, in contrast to the dozens of equations used for our age-structured compartmental126

model. This shows how modelling population behaviour during a pandemic can be accomplished with127

relatively simple mechanistic models.128

Extrapolating beyond the fitting time window, the model predicts several pandemic waves from late Fall129

2020 onward, not only with respect to COVID-19 cases (Figure 2A) but also population adherence to NPIs130

(Figure 2B) and periods of school and workplace shutdown (Figure 2C). The unfolding of the pandemic131

if the vaccine becomes available in July 2021 (vertical dashed line) and 4.5% of the population can be132

vaccinated per week depends upon the vaccination strategy. The oldest first strategy (blue) results in a133

large pandemic wave in late December 2021. The youngest first (orange) and uniform (green) strategies134

result in a smaller wave in late March 2022. The contact-based strategy (red) avoids a Fall 2021/Winter135
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2022 wave altogether. In contrast, vaccinating 4.5% of the population per week starting in January hastens136

the end of the Fall 2020/Winter 2021 wave and prevents subsequent pandemic waves (Figure S4).137

During each wave, the percentage of individuals with natural immunity rises (Figure 2D). Once the138

vaccine becomes available, total population immunity from the vaccine or from infection rises most slowly139

under the youngest first strategy. However, we note that strategy effectiveness is also a function of the140

contract structure of the population.141

Relative mortality reductions under the vaccine strategies. We determined the cumulative number of142

deaths over the duration of the pandemic for each strategy across a range of vaccine availability dates143

and vaccination rates. Broadly speaking, if the vaccine becomes available in January 2021, the oldest first144

strategy reduces mortality the most. But if the vaccine becomes available in July 2021, one of the other145

three transmission-interrupting strategies is most effective (Figures 3, 4).146

For our baseline assumption where schools and business close when active cases reach T = 200% of the147

numbers that sparked shutdown during the first wave, and for a January vaccine availability, the oldest148

first strategy prevents the most deaths except for a very low vaccination rate (ψ0 = 0.5% of the population149

vaccinated per week (Figure 3a)). But for July vaccine availability, the contact-based strategy does best,150

except when ψ0 = 0.5%, where oldest first is best (Figure 3B). However, all strategies perform similarly at151

high vaccination rates because population immunization occurs fast enough to prevent a Fall 2021/Winter152

2022 wave. Across a broader range of T values from 50% to 250%, the same patterns generally hold (Figure153

S5,6). The violin plots show a dominant lobe and a smaller secondary lobe, on account of the fact that154

some parameter combinations generate more pandemic waves than others (Figure 3). This effect is more155

apparent when T = 250% (Figure S5,6).156

These results are also confirmed by a higher resolution parameter plane showing the best strategy as157

a function of T and ψ0 (Figure 4; the best strategy in this case is defined as the strategy that reduced158

mortality the most across the largest number of model realizations). For January availability, the oldest159

first strategy is most effective if ψ0 & 1.5%, but for July availability, the contact-based strategy is best for160

low vaccination rates and youngest first is best for medium to high vaccination rates, unless T is also high,161

in which case uniform is best.162

The optimized strategy always does best, by definition (Figure S5,6), but it can be instructive to study163

how the optimized strategy allocates vaccines among the age groups. We observe that for strict shutdown164

thresholds (small T ), the optimal strategy allocates vaccines mostly to the 5-19 age group, secondly to165

35-44, and thirdly to 70+. As the shutdown thresholds become more lenient, more vaccine is allocated to166

70+ (Figure S7).167

We emphasise that we are reporting percent change in mortality compared to the case of no vaccine168

being available. Therefore, the total reduction in number of COVID-19 deaths for January availability is169

much higher than for July availability on account of intervening pandemic waves.170

Role of R0 and herd immunity. Studying the role of the basic reproduction number, R0 (9), and the171

immunity profile of the population helps to explain these results. Our inferred value was R0 ≈ 1.8. As172

R0 is increased from 1.5 to 2.5 we observe that the vaccine becomes less effective in reducing mortality173

across all strategies, as expected (Figure 5). For January availability, oldest first does best across all R0174

values (Figure 5A). For July availability, oldest first does worst when R0 is small, but improves relative175

to the other strategies as R0 increases (Figure 5B). This occurs because the indirect protection (herd176

immunity) offered by transmission-blocking vaccines are strongest when R0 is small. In populations with177

strong age-assortative mixing (27), the indirect benefits of vaccination are therefore “wasted" if vaccination178

is first concentrated in specific age groups before being extended to the rest of the population. When R0 is179

larger, however, the indirect protection of vaccine-generated herd immunity is weaker (9) and so the benefit180

of using vaccines to interrupt transmission is reduced.181

Frequency histograms for each strategy of the percentage of the population with natural immunity182

at the start of the vaccine program, for the simulations where that particular strategy worked best, tell183
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a similar story (Figure 6). In simulations where the oldest first strategy does best, the percentage of184

the population with natural immunity tends to be low. This is expected, since indirect protection from185

vaccines is weak when few people have immunity (Figure 6A). But in simulations where one of the three186

transmission-interrupting strategies do best, more simulations exhibited a high level of natural population187

immunity at the start of vaccination (Figure 6B-D).188

Sensitivity analysis results. The relative advantage of transmission-interrupting strategies for July vaccine189

availability generally either remained the same or improved across the nine alternative scenarios described190

in the Model Overview section.191

We explored a model variant where population adherence to NPIs is constant over the course of the192

pandemic, although dynamic shutdown of schools and workplaces still occurred. We observed that the193

youngest first strategy did best for both January and July vaccine availability, except for strict shutdown194

thresholds T . 75% in which case the oldest first strategy did best (and also for January availability,195

with high T and ψ0, Figure S8). Youngest first performed even better in a model variant where infection196

susceptibility is constant across ages (Figure S9). In the absence of seasonality, the youngest first strategy197

almost always does best for both January and July availability (Figure S10). Similarly, when vaccine efficacy198

is 50% in older individuals and 90% for everyone else, the transmission-interrupting strategies generally do199

best for both January and July availability (Figure S11).200

Several of the sensitivity analysis scenarios produced similar outcomes to the baseline scenario, with201

oldest first generally doing best for January availability, and one of the transmission-interrupting strategies202

(usually, youngest first) doing best for July availability. These scenarios were: increased efficacy of NPIs in203

the second wave to account for more widespread use of masks (Figure S12); R0 = 2.3 (Figure S13); 50%204

vaccine efficacy for everyone (Figure S14), and when individuals are tested for seropositivity before being205

administered a vaccine (Figure S15).206

Discussion207

Our social-epidemiological model suggests that if a COVID-19 vaccine becomes available later in the208

pandemic, using SARS-CoV-2 vaccines to interrupt transmission might reduce COVID-19 mortality more209

effectively than using the vaccines to target those 60+ years of age, in many populations. This finding210

was robust under structural and univariate sensitivity analyses, including model variants with a more211

conventional structure lacking social dynamics or seasonality.212

These results are driven by the fact that the vaccine may only become available after populations have213

had one or more waves of immunizing infections. As a result, the effective reproduction number could be214

significantly lower than the basic reproduction number R0 ≈ 2.3 which applies in susceptible populations.215

In this regime, vaccines have a disproportionately large effect in terms of generating herd immunity (9).216

This effect has also been observed in influenza, both in theoretical models and in recent experience with217

the Spring wave of COVID-19 in Australia (10, 11). In the later case, NPIs interrupted SARS-CoV-2218

transmission enough to flatten the curve for COVID-19 with R0 ≈ 2.3, but for influenza with R0 ≈ 1.5,219

NPIs strongly suppressed influenza activity country-wide. In a population with several waves of COVID-19,220

Reff may come sufficiently close to 1 that immunizing to interrupt transmission will be the most effective221

strategy to reduce mortality.222

We opted for a coupled social-epidemiological model on account of the importance of feedback between223

population behaviour and disease dynamics for the control of COVID-19 in the absence of preventive224

pharmaceutical interventions. Our model generated significantly different projections in our sensitivity225

analysis where population behaviour was assumed constant, which is similar to conventional approaches to226

transmission modelling. Our social submodel is less complicated than the epidemic submodel and despite227

this, the coupled social-epidemiological model fitted population-level behaviour as readily as it fitted the228

epidemic curve. Predicting behaviour is fraught with uncertainty, but so is predicting an epidemic curve.229

Given this, we suggest a role for more widespread use of social-epidemiological models in efforts model230
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NPIs during pandemics. We also note that the population-level behaviour and the epidemic curve closely231

mirrored each other (Figure 1). This may reflect convergence of social-environment dynamics, as has been232

predicted for strongly coupled systems (28).233

Our model made simplifying assumptions that could impact its predictions. We did not stratify the234

population by risk factors such as co-morbidities, and we did not consider outcomes such as hospitalizations235

and ICU admissions. The model was parameterised with data from Ontario, Canada. The projected impact236

of the four vaccine strategies may differ in settings with different epidemiological or social characteristics. At237

the same time, we note that many populations around the world experienced a Spring 2020 wave, as Ontario238

did. And, Ontario intensive care bed capacity resembles that of many other European countries (29). We239

did not account for the potential role of outbreaks in long-term care facilities with high concentrations of240

vulnerable individuals. Finally, we used baseline changes to time spent at retail and recreational outlets as241

a proxy for population adherence to NPIs, in the absence of high resolution temporal data specific to NPI242

adherence.243

Future research could further explore the strategy of using the leading eigenvector of the next generation244

matrix to tailor vaccination strategies to specific populations. Data on contact matrices specific to country,245

age and location are increasingly available (27). Digital data sources such as from bluetooth-enabled devices246

also show promise to enhance our understanding of population contact patterns (30). We should take247

advantage of these data sources to optimize vaccination policies, for COVID-19 as well as other infectious248

diseases.249

To apply these results to COVID-19 pandemic mitigation, large-scale seroprevalence surveys before the250

onset of vaccination could ascertain the level of a population’s natural immunity. In populations where251

SARS-CoV-2 seropositivity is high due to a Fall 2020 wave, vaccinating to interrupt transmission may252

reduce COVID-19 mortality more effectively than targeting vulnerable groups. We also conclude that more253

research with different types of models is urgently needed to evaluate how best to prioritise COVID-19254

vaccination.255
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Fig. 1. A proxy for adherence to NPIs mirrors COVID-19 case reports in both data and model. (a) COVID-19 cases by date of report in Ontario (circles) and ascertained
cases from best fitting model (lines). (b) Percentage change from baseline in time spent at retail and recreation destinations (orange circles) and at workplaces (green circles)
from Google mobility data, and proportion of the population x practicing social distancing (orange line) and workplace shutdown curve (green line) from fitted model. See
Supplementary Appendix for details on methods and data.
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Fig. 2. Social and epidemic dynamics interact to determine pandemic waves and vaccine strategy effectiveness. (a) Active ascertained COVID-19 cases, (b)
proportion x of the population practicing NPIs, (c) intensity of school and workplace closure (note that curves for different vaccination strategies overlap), and (d) percentage
of population with natural or vaccine-derived immunity versus time. T = 2.0, ψ0 = 1.5% per week, July 2021 vaccine availability, other parameters in Table S1.
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DRAFTFig. 3. A later start to vaccination favours transmission-interrupting vaccine strategies. Violin plots of the percent reduction in mortality under the four vaccine strategies,
relative to no vaccination, as a function of the vaccination rate ψ0, for (a) January and (b) July 2021 availability. Horizontal lines represent median values of posterior model
projections. Shutdown threshold T = 2.0 and other parameter values in Table S1.
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Fig. 4. Parameter planes showing best strategy as a function of shutdown threshold T and vaccination rate ψ0. Each parameter combination on the plane is colour-
coded according to which of the four strategies reduced mortality most effectively in the largest number of model realizations, for (a) January and (b) July 2021 availability.
Other parameter values in Table S1.
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Fig. 5. A higher R0 diminishes the relative advantage of transmission-interrupting vaccination strategies. Median and standard deviation of the percent reduction
in mortality under the four vaccine strategies, relative to no vaccination, as a function of the basic reproduction number R0, for (a) January and (b) July 2021 availability.
Shutdown threshold T = 2.0, vaccination rate ψ0 = 1.5% per week, and other parameter values in Table S1.
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Fig. 6. Higher rates of pre-existing natural immunity make transmission-interrupting strategies more effective. Frequency histogram of the percentage of the
population with natural immunity for each strategy, taken from simulations where that strategy reduced mortality most effectively, for (a) oldest first, (b) youngest first, (c)
uniform, and (d) contact-based strategies. Parameter values in Table S1.
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