Alzheimer's Disease variant portal (ADVP): a catalog of

Pavel P. Kuksa, PhD^{1,2,*}; Chia-Lun Liu, PhD^{1,2,*}; Wei Fu, PhD^{1,2,*}; Liming Qu, MS^{1,2}; Yi Zhao,

genetic findings for Alzheimer's Disease

5	MS ^{1,2} ; Zivadin Katanic, BS ^{1,2} ; Amanda B Kuzma, MS ^{1,2} ; Pei-Chuan Ho, MS ⁴ ; Kai-Teh Tzeng,
6	MS ⁴ ; Otto Valladares, BS ^{1,2} ; Shin-Yi Chou, PhD ^{1,2,4} ; Adam C Naj, PhD ^{1,3} ; Gerard D
7	Schellenberg, PhD ^{1,2} ; Li-San Wang, PhD ^{1,2,^} ; and Yuk Yee Leung, PhD ^{1,2,A}
8	
9	¹ Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of
10	Pennsylvania, Philadelphia PA, USA
11	² Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University
12	of Pennsylvania, Philadelphia PA, USA
13	³ Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania,
14	Philadelphia PA, USA
15	⁴ Department of Economics, Lehigh University, Bethlehem, PA, USA
16	
17	* co-first author
18	^ co-corresponding author

25 **Corresponding author information:**

- Li-San Wang, PhD.
- 27 Mailing address: Richards Building, D101, 3700 Hamilton Walk, Philadelphia, PA 19104
- 28 Phone: 215-746-7015
- 29 Fax: 215-573-3111
- 30 Email: lswang@pennmedicine.upenn.edu
- 31
- 32 Yuk Yee Leung, PhD.
- 33 Mailing address: Richards Building, D102, 3700 Hamilton Walk, Philadelphia, PA 19104
- 34 Phone: 215-573-3729
- 35 Fax: 215-573-3111
- 36 Email: <u>yyee@pennmedicine.upenn.edu</u>
- 37
- 38
- 39
- 40
- 41
- 42
- ._
- 43
- 44
- 45
- 46
- 40
- 47
- 48

49 **Abstract**

50

- 51 Alzheimer's Disease (AD) genetics has made substantial progress through genome-
- 52 wide association studies (GWASs). An up-to-date resource providing harmonized,
- 53 searchable information on AD genetic variants with linking to genes and supporting
- 54 functional evidence is needed.
- 55
- 56 We developed the Alzheimer's Disease Variant Portal (ADVP), an extensive collection
- 57 of associations curated from >200 GWAS publications from Alzheimer's Disease
- 58 Genetics Consortium (ADGC) and other researchers. Publications are reviewed
- systematically to extract top associations for harmonization and genomic annotation.
- 61 ADVP V1.0 catalogs 6,990 associations with disease-risk, expression quantitative traits,
- 62 endophenotypes and neuropathology across >900 loci, >1,800 variants, >80 cohorts,
- 63 and 8 populations. ADVP integrates with NIAGADS Alzheimer's GenomicsDB where
- 64 investigators can cross-reference other functional evidence.
- 65
- 66 ADVP is a valuable resource for investigators to quickly and systematically explore
- 67 high-confidence AD genetic findings and provides insights into population- and tissue-
- 68 specific AD genetic architecture. ADVP is continually maintained and enhanced by
- 69 NIAGADS and is freely accessible (<u>https://advp.niagads.org</u>).

70

71

73 **1. Introduction**

74 Alzheimer's Disease (AD) is a devastating neurological disorder affecting millions of 75 people worldwide and is the most common cause of dementia [1]. There are no 76 approved drugs that can slow or treat the disease. The disease is complex and highly 77 heritable [2]. The strongest known genetic risk factor for AD is the ε 4 allele of the 78 Apolipoprotein E gene (APOE ε 4) [3,4], but more than one-third of AD cases do not 79 carry any APOE ε4 alleles. Large-scale genome-wide association studies (GWASs) 80 have led to the discovery of additional common genetic loci associated with the late-81 onset AD (LOAD) [5–9]. Yet, the identification of genetic contributors to LOAD remains 82 a challenge as LOAD is likely caused by multiple low penetrance genetic variants [10]. 83 with the small sample sizes further complicating the identification of these causal 84 variants.

85

86 The Alzheimer's Disease Genetics Consortium (ADGC) was founded in 2009 and 87 funded by National Institute on Aging (NIA), to conduct large sample GWAS to identify 88 genes associated with an increased risk of developing LOAD. ADGC co-founded IGAP 89 (International Genomics of Alzheimer's Project) with three other AD genetics consortia: 90 Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) 91 Consortium, the European Alzheimer's Disease Initiative (EADI), and the Genetic and 92 Environmental Risk in Alzheimer's Disease (GERAD) Consortium. IGAP assembled 93 large Caucasian samples for better statistical power and was able to identify 19 94 genome-wide significant loci in 2013 [11], and five more loci using more than 30,000 95 samples in 2019 [12].

96	In addition to GWA studies focused on association with disease risk, recently many
97	genetics studies have focused on related phenotypes including neuroimaging
98	biomarkers [13], circulating biomarkers in [14,15], cognitive decline [16,17]
99	neuropathology [18], family history [19]. GWAS on Hispanic, African-American, Asian,
100	and other minority populations also led to new variants not observed in Caucasians [20-
101	22] In order to help investigators better explore the rich and diverse literature of genetic
102	findings, it is important to have a single resource with harmonized, unified, searchable
103	information on identified genetic variants and genes across a variety of AD studies and
104	populations, along with supporting functional genomic evidence.
105	
106	To meet this need, we have cataloged genetic association results (both genome-wide
107	significant associations [$p \le 5x10^{-8}$ by convention] and all other associations highlighted
108	in the main text from all major GWA studies published by ADGC from 2009 to 2019 and
109	other AD GWAS articles identified from the NHGRI/EBI GWAS Catalog (Buniello et al.,
110	2019). Summaries extracted from each of the articles are made publicly available on a
111	continuously updated and freely accessible Alzheimer's Disease Variant Portal (ADVP)
112	(https://advp.niagads.org). To date, ADVP provides the largest, most updated, and
113	comprehensive collection of systematically curated, harmonized, and annotated AD-
114	specific genetic associations. This first release contains information on 6,990 genetic
115	associations, >900 genomic loci curated from >125 AD publications categorized into
116	nine harmonized phenotype categories. All AD associations in ADVP are annotated with
117	genomic and functional information. Comprehensive biological annotations are available
118	via integration with the NIAGADS Alzheimer's Disease Genomics database [24]. ADVP

- 119 will serve as an invaluable resource for the research community to explore and decipher
- 120 the genetic architecture of AD and other neurodegenerative diseases.

121 **2. Methods**

- 122 An overview of the ADVP study design is shown in **Figure 1**.
- 123

124 **2.1 Collection and curation of AD-related GWAS publications (Data**

- 125 collection)
- 126 This ADVP V1.0 release consists of curated and harmonized genetic associations from
- 127 the genome-wide significant and suggestive loci collected from AD genetic studies

128 conducted primarily by the ADGC. All AD GWAS publications by ADGC (2009-2019,

- 129 <u>http://www.adgenetics.org</u>) and all other AD GWA studies in GWAS catalog [23] (MeSH
- 130 D000544, curation date: Dec 2019) were included. All the publications (total N=205;
- 131 ADGC: N=134; Citations from ADGC: N=20; GWAS catalog: N=51) were first screened
- 132 to identify publications reporting GWAS findings. For each publication, all main genetic
- 133 associations reported in the main text (table format) were systematically extracted. As
- 134 the current ADVP release focuses on the major/main findings in each publication/GWA
- 135 study, we did not extract associations reported in the supplementary tables as they
- 136 often represent supplemental findings not reaching the same kind of statistical
- 137 significance as the main associations. In total, we curated the 125 publications which
- 138 contain GWAS findings in the main text (<u>https://advp.niagads.org/publications</u>).

139 **Supplementary Table S1** provides details on all curated AD publications in ADVP

140 V1.0. Note the ADGC family-based analyses results will be included in the next release.

141

142 2.2 Extraction of genetic variants and associations from publications (Data 143 extraction)

144 We applied the following systematic data extraction and curation procedure for each 145 publication to organize all the extracted variant and association information into a 146 structured tabular format according to the ADVP data schema (see Section "2.3 Meta-147 data design" for details about the columns). In each publication, we identified all the 148 tables in the main text with reported association p-values. All the information for these 149 associations was then saved into a standardized template document using the 150 corresponding meta-data schema and the two predefined worksheets: publication meta-151 data and association meta-data. Lastly, the document is parsed by customized scripts 152 to normalize, validate, annotate, and store the publication, variant, and association data 153 in the relational database [33]. Collected AD variants and association records are 154 further linked (using positional and variant and gene identifier information) with the 155 NIAGADS Alzheimer's Genomics Database [24] which provides the comprehensive 156 annotation and functional genomic information. **Supplementary Note 2** provides details 157 on ADVP architecture and implementation.

158

159 2.3 Meta-data schema for systematic curation and harmonization of genetic 160 associations (Meta-data design)

162 **2.3.1 Publication meta-data**

- 163 Meta-data for all curated publications in ADVP was extracted from PubMed
- 164 (https://pubmed.ncbi.nlm.nih.gov) using the NCBI EDirect service
- 165 (https://www.ncbi.nlm.nih.gov/books/NBK179288) with publication PubMed identifiers
- 166 (PMID) as query keys. For each publication, we record its PMID, PubMed Central
- 167 identifier (PMCID), first and last authors, journal, and year of publications. We also store
- 168 the abstract, article URLs, and information on curated/source tables in the Publication
- 169 meta-data (**Figure 1**).
- 170

171 **2.3.2 Association meta-data**

- 172 ADVP association meta-data consists of 28 data fields, of which 19 are extracted
- 173 directly from the paper contents. The rest are harmonized (based on extracted original
- 174 information) and programmatically generated fields. Altogether, association meta-data
- provide 1) variant information (Section "2.3.2.1 Description of Variants"); 2)
- association information (Section "2.3.2.2 Description of association records"); and 3)
- annotation information (Section "2.4 Annotation of genetic variants and
- 178 **associations**"). For a detailed explanation of these curated and harmonized/derived
- 179 data fields, see **Supplementary Table S2**.
- 180

181 **2.3.2.1 Description of Variants**

- 182 Each genetic variant in ADVP is described using dbSNP rsID, genomic coordinates
- 183 (chromosome:basepair), reference and alternative alleles. Both the information reported
- 184 in the publication (if available) and those derived from the reference databases such as

dbSNP [25] and NIAGADS Alzheimer's Genomics database [24], are included in the
variant description. Genomic location in ADVP is currently stored using GRCh37/hg19
reference genome build as the majority of GWAS publications conducted analyses
using GRCh37/hg19.

189

190 **2.3.2.2 Description of association records**

191 The primary association information was systematically extracted from each source 192 table and recorded as part of the ADVP association record. The extracted information 193 was further recoded and categorized, so that association records are described 194 consistently across publications. For each reported association we first collected a pre-195 defined set of data attributes commonly reported by genetic association studies (See 196 "Extracted" columns under **Supplementary Table S2**). These include *p*-value and 197 statistics related to the effect size (regression beta coefficients and variance, odds 198 ratios, confidence intervals), reported effect allele and its frequency in the studied 199 population.

200

201 In addition to the information directly extracted from publications, each association in

202 ADVP is described with the nine harmonized meta-information data fields (see

203 **Supplementary Note 1** for more details on each of these fields; field names are

204 denoted with the double quotes below):

205 1. "Record type": association record type.

206 2. "Population": normalized study population information.

207 3. "Cohort": normalized cohort names.

208	4. "Sample size": original sample size.
-----	---

- 5. "Subset analyzed": description of the subset of samples used to perform the
- 210 association analysis.
- 211 6. "Phenotype": the outcome variable (phenotype/trait) of the association analysis.
- 212 7. "Association Type": standardized type of association (disease-risk, eQTL,
- 213 endophenotype, and others).
- 8. "Stage": analysis stage (discovery, validation, replication, or meta- or joint-

analysis). Please see (Supplementary Figure 1, Supplementary Note 1) for

- 216 details on how this information was derived.
- 9. "Imputation": imputation panel information.
- Note, "Population", "Cohort", and "Phenotype" information are displayed in ADVP using
- both the original (reported) and the derived, harmonized data fields.
- 220

221 **2.4 Functional genomics evidence for genetic variants and associations**

222 (Annotation)

- 223 All variants and association in ADVP were systematically annotated with genomic
- 224 context (closest upstream/downstream genes), genomic element (promoter, UTR,
- intron, exon, intergenic, repeat), functional impact (variant most severe consequence),
- and cross-referenced to NIAGADS Alzheimer's Genomics database [24].

- ADVP reports the genomic context of each genetic variant via multiple data fields: 1)
- 229 "Locus" records the gene name as reported in the publication; 2) "Nearest gene" -
- 230 contains the name of the gene closest to the variant and the distance to the gene (in

231	base pairs (bps)) in upstream (+) or downstream (-) orientation. The nearest genes are
232	identified using GENCODE v34 [26] protein-coding gene annotations. For each genetic
233	variant co-localized with one or more genes, both EnsembIID [27] and HGNC [28]
234	symbols for the gene(s) are reported. For each ADVP variant, the co-localized genomic
235	element is reported based on the genomic partition information [29,30].
236	
237	2.5 Variant and association data verification (Quality control steps)
238	Quality control for the variant and association information in ADVP is carried out at
239	multiple levels:
240	1. We ensured records are not double-counted/re-reported across studies. Each
241	association record in ADVP is uniquely identified by a combination of reported
242	gene/SNP/interaction name, cohort/analyzed subset, association model used,
243	phenotype, and association <i>p</i> -value and effect size.
244	2. We cross-checked recorded positional information (chromosome:basepair), rsID,
245	and allele information against reference databases including, dbSNP [25],
246	NIAGADS Alzheimer's Genomics database [24], 1000 Genome data [31] to
247	ensure variant information is correct.
248	3. We identified and removed records solely representing associations annotated
249	by publicly available resources such as GTEx [32].
250	
251	2.6 Population-based analysis of AD associations

- 252 To understand the genetic architecture of AD associated loci across populations, we
- 253 compared their reported effect sizes and frequencies for each locus. In this analysis, we

254	used all association records (from case-control GWAS studies) with complete
255	information on reported allele, effect size (odds ratio), and allele frequency. We then
256	analyzed the four major populations with the most association records (African
257	American, Asian, Caribbean Hispanic, and Caucasian/Non-Hispanic White). Any
258	association records with p >0.01 were excluded from analysis. Then for each AD-
259	associated locus (identified using the nearest gene), we selected the association record
260	with the most significant (smallest) <i>p</i> -value as a representative record for the locus.
261	
262	To perform comparison, we normalized the original (reported) odds ratios to reflect the
263	effect of the minor allele. We further categorized the AD-associated loci as population-
264	specific or shared if they were associated with AD in more than one population under
265	study. We then compared AD-associated loci (both shared and population-specific)
266	across populations based on their normalized effect sizes (odds ratios for minor alleles)
267	and the minor allele frequency.
268	
269	2.7 Functional analysis of AD associations
270	To perform functional analysis of the variants in ADVP, we evaluated the significance of
271	overlaps between ADVP variants and active enhancer elements across tissues and cell

- types. We used Roadmap Epigenomics [33] (ChromHMM-determined [34]) and
- 273 FANTOM5 [35] enhancer sets across 35 tissue/cell type categories. We then ranked
- 274 individual tissue/cell types based on the degree and significance (odds ratio, Fisher's
- exact test) of enhancer overlaps in each of the analyzed tissues/cell types.
- 276

277 **3. Results**

278 In terms of the number of curated AD-related associations and publications, ADVP is 279 more comprehensive than the NHGRI-EBI GWAS catalog [23] (Table 1), the premier 280 general catalog of published GWAS results, and more recent than AlzGene [36]. 281 another major database of published AD genetic association studies. In order to focus 282 on association findings with the highest confidence, we decided to concentrate on largescale association studies at the genomic level, with the majority of studies included in 283 284 ADVP (65%) reporting associations reaching genome-wide significance, a gold 285 standard for human genetic discoveries. Furthermore, ADVP collected extensive meta-286 data, including consortiums and cohorts, which were not available in the other two 287 databases and are important for relating the results reported across publications. 288 Finally, ADVP provides convenient links for investigators to explore biological 289 significance of the reported variants (e.g., their genomic context, available functional 290 genomic data or other known associations, if any) via an annotation in NIAGADS 291 Alzheimer's Genomics database [24] (Figure 1). Following the ADVP curation criteria 292 (see "Data collection", Figure 1), we first identified and screened 205 AD-related 293 publications from 2009-2019. Out of these, we identified 125 publications with genetic 294 associations reported in the main text tables (N=225 tables). Genetic variant and 295 association data were then systematically extracted (Section "2.2 Data extraction"). 296 harmonized ("2.3 Meta-data design") (converted into standard variant/association 297 descriptors), annotated ("2.4 Annotation"), subjected to guality control steps ("2.5 298 Quality control steps") and stored in ADVP (Figure 1).

299

300 3.1 ADVP data summary

301	The A	DVP V1.0 release contains high-quality genome-wide and suggestive AD-related
302	genet	ic associations extracted from GWAS publications. This includes 6,990 genetic
303	assoc	iations for variants, genes, and SNP interactions. Figure 2 shows the distribution
304	of AD	VP genetic associations by harmonized meta-information data fields: a) Nine
305	harmo	onized phenotypes; b) Six harmonized analyses type; c) Population, and d)
306	Coho	rts/Consortiums.
307		
308	aii ae	VP association records are uniquely standardized into different categories:
309	1.	As shown in Figure 2A, ADVP records are associated with nine different
310		phenotype categories, with roughly half of them related to AD diagnosis. 15% of
311		the records are related to fluid biomarkers, 7% with imaging and 6% with
312		cognitive measures.
313	2.	With respect to analysis type categories, ADVP includes 3,199 (45.8%)
314		association records reported in disease-risk analyses, of which 1,342 and 934
315		associations are reported by meta- and joint-analyses, respectively. 1,887
316		(26.9%) of the records are related to AD endophenotype and 924 (13.2%) eQTL
317		AD associations (Figure 2B).
318	3.	ADVP is the first to collect AD genetic associations at SNP level (6,437, 92.1%),
319		gene level (320, 4.5%), as well as SNP and gene interactions (233, 3.3%).
320	4.	ADVP records present analyses results from seven populations as well as those
321		from multi-ethnic analyses. ~88% of the records are for Caucasian (Figure 2C).

Others include African American, Arab, Asian, Caribbean Hispanic, Hispanic and
 Non-Hispanic Caucasian.

324	5. ADVP records span analyses results published by ADGC using over 80 cohorts
325	(Figure 2D), including ADGC, Alzheimer's Disease Neuroimaging Initiative
326	(ADNI), Cohorts for Heart and Aging Research in Genomic Epidemiology
327	(CHARGE) Consortium, European Association of Development Research and
328	Training Institutes (EADI), European Network for Genetic and Genomic
329	Epidemiology (ENGAGE) Consortium, Enhancing NeuroImaging Genetics
330	through Meta-Analysis (ENIGMA) Consortium, The International Genomics of
331	Alzheimer's Project (IGAP) and others. See Supplementary Table S3 for details
332	on cohorts included in ADVP.
333	
334	Furthermore, ADVP provides annotation information for each genetic association
334 335	Furthermore, ADVP provides annotation information for each genetic association (Section " 2.4 Annotation "). In summary, all the genetic association records in ADVP
335	(Section " 2.4 Annotation "). In summary, all the genetic association records in ADVP
335 336	(Section " 2.4 Annotation "). In summary, all the genetic association records in ADVP were represented by >1,800 unique variants (based on genomic position) and >900
335336337	(Section " 2.4 Annotation "). In summary, all the genetic association records in ADVP were represented by >1,800 unique variants (based on genomic position) and >900 genomic loci (based on computed normalization). ADVP associations are mostly located
335336337338	(Section " 2.4 Annotation "). In summary, all the genetic association records in ADVP were represented by >1,800 unique variants (based on genomic position) and >900 genomic loci (based on computed normalization). ADVP associations are mostly located in non-coding regions including intronic (52.9%), intergenic (15.2%), and promoter
 335 336 337 338 339 	(Section " 2.4 Annotation "). In summary, all the genetic association records in ADVP were represented by >1,800 unique variants (based on genomic position) and >900 genomic loci (based on computed normalization). ADVP associations are mostly located in non-coding regions including intronic (52.9%), intergenic (15.2%), and promoter (5.9%) (Figure 3A). ADVP records are also cross-referenced to NIAGADS Alzheimer's
 335 336 337 338 339 340 	(Section "2.4 Annotation"). In summary, all the genetic association records in ADVP were represented by >1,800 unique variants (based on genomic position) and >900 genomic loci (based on computed normalization). ADVP associations are mostly located in non-coding regions including intronic (52.9%), intergenic (15.2%), and promoter (5.9%) (Figure 3A). ADVP records are also cross-referenced to NIAGADS Alzheimer's Genomics database [24]. Figure 3B summaries genetic variants in ADVP by functional

344 **3.2 ADVP features – search, browse and visualize**

345	ADVP aims to provide a simple and unified resource to the scientific community,
346	allowing investigators to search and browse AD genetic association information more
347	easily. This is first done by displaying association records using a pre-selected set of
348	most important data fields (Section "2.3.2.2 Description of association records").
349	Investigators can further select additional data fields via the column selector (Figure
350	4A). All records are integrated with the NIAGADS Alzheimer's Genomics database,
351	allowing investigators to explore various kinds of biological annotations (e.g., CADD
352	score (Rentzsch et al., 2019)) and functional genomics evidence, including overlaps
353	with FANTOM5 [35], ENCODE histone modification [40], and gene ontologies from
354	KEGG [41] and UniProt [42].
355	
356	The ADVP search interface was designed based on focus group use cases. ADVP
357	provides several ways to search for genetic association records:
358	1. By publication – investigators can quickly identify and retrieve all association
359	records curated by ADVP for a particular study using PMID, PMCID, first or last
360	author names, year of publication or article title
361	(https://advp.niagads.org/publications).
362	2. By variant or gene of interest – investigators can search for the variant
363	(https://advp.niagads.org/variants) or gene (https://advp.niagads.org/genes) of
364	interest and browse all the associated ADVP records. Additionally, investigators

365 can easily discover top variants or a gene with most association records or most

- 366 publications via the summary counts for association records and papers (**Figure**
- **4B, 4C**).
- 368 3. By region of interest investigators can search and retrieve all genetic
- 369 associations within the genomic regions of interest
- 370 (https://advp.niagads.org/search).
- 4. By integrative genome-wide plots investigators can navigate the landscape of
- 372 AD genetics associations using the interactive chromosome ideogram
- 373 (<u>https://advp.niagads.org/ideogram</u>, **Figure 4D**) or interactive
- 374 population/phenotype variant viewer (<u>https://advp.niagads.org/plot</u>, **Figure 4E**).
- 375 Additionally, for each variant or gene, users can view the biological annotations and
- functional evidence (e.g., 1000 Genomes project [31], dnSNP [25], GTEx [32],
- 377 ENCODE [40] and others) via the NIAGADS Alzheimer's Genomics database [24]
- 378 (Figure 4F).
- 379

380 **3.3 ADVP use cases**

381 ADVP is designed for various use cases in mind. First, ADVP can serve as a point of 382 entry for investigators to explore the AD genetics literature. They can browse through 383 variant and gene records, identify top associated loci for particular populations and 384 phenotypes, or inspect top GWAS associations in the gene or genomic region of 385 interest. Second, investigators can use ADVP to check their association analysis 386 findings. They can further restrict the comparison by focusing on results from a specific 387 population, cohort, or by comparing the strength of associations via p-values or 388 phenotypes. Lastly, investigators can use ADVP to check if their findings have

- functional support from eQTL or other functional evidence collected in the NIAGADS
 Alzheimer's genomics database (Figure 4F).
- 391

392 3.4. Genetic architecture of AD-associated loci across populations

- 393 To show the diversity and breadth of ADVP data, we performed population-based
- analysis of AD associations in ADVP (Section "2.6 Population-based analysis of AD
- **associations**"). Across four major populations (African American, Asian, Caribbean
- Hispanic, Caucasian/Non-Hispanic white) with the most association records, 91 loci
- 397 (Section "2.6 Population-based analysis of AD associations") were identified in any
- 398 of these 4 populations, whereas 10 of them were found in two or more populations,
- including BIN1, CD33, PICALM, SORL1, and ABCA7. The majority of AD loci
- 400 (81/91=89%) were population-specific, i.e. found in only one population. This could
- 401 partially be explained by the underlying genetic differences across populations, but
- 402 could also be contributed by variability in GWAS sample sizes across
- 403 studies/populations, which could lead to the observed differences in association
- 404 strength and heterogeneity of loci identified in each population. Across the four
- 405 populations, the corresponding top SNP (Section "**2.6 Population-based analysis of**
- 406 **AD associations**"), effect size and allele frequency on all these 91 loci are available in
- 407 **Supplementary Table S4**.

408

- 409 We next explored the effect size and allele frequency of all AD-associated loci that are
- 410 found in any populations (**Figure 5A**), or those that are found in two or more
- 411 populations (shared AD loci) (**Figure 5B**).

4	12
---	----

413	As can be seen from Figure 5, ADVP captures reported AD-associated loci across
414	many populations (Figure 5A; only non-APOE loci from 4 populations are shown).

- 415 ADVP contains both population-specific AD loci and loci that are shared across
- 416 populations. As shown in **Figure 5B**, the shared loci tend to preserve their risk (e.g.,

417 ABCA7 [43]) and protective roles (e.g., PICALM [44]).

418

419 On the other hand, as shown in **Figure 5A**, common loci tend to exert smaller effects

420 compared to population-specific loci, yet these effects of the common loci vary across

421 populations (**Figure 5B**) (i.e. are population-specific).

422

423 **3.5. Functional analysis of ADVP variants**

We next investigated the functional impact of ADVP variants. To do so, we analyzed all ADVP variants that are associated with AD/ADRD (excluding eQTLs) in the Caucasian or non-Hispanic White populations. A total of 1,675 ADVP variants met these criteria and were analyzed.

428

429 First, to determine the potential causal genes for these variants, we asked if these

430 variants regulate any genes in any AMP-AD [45] eQTL data [46] obtained from three

431 different brain regions (dorsolateral prefrontal cortex, cerebellum and temporal cortex).

432 Please see this publication [46] for details of how these data eQTL was harmonized and

433 processed.

435 31% of the analyzed ADVP variants were identified as significant eQTLs in at least one 436 of the three AMP-AD eQTL datasets (FDR<0.01), and 32% among these were eQTLs in 437 all three brain regions. Altogether, these variants targeted 130 genes (including HLA 438 region), of which 31 were also the nearest genes reported in ADVP. These target genes 439 (e.g., *ACE*, *PVR*) were enriched in cell junction organization [47], and acetyltransferase 440 activity (cholinergic system) [48], which recapitulated some of the molecular and cellular 441 mechanisms underlying the pathogenesis of AD.

442

443 Second, we analyzed and ranked relevant tissue categories implicated by ADVP 444 variants. To do so, we quantified the significance and enrichment of tissue-specific 445 enhancer overlaps with ADVP variants (Section "2.7 Functional analysis of AD 446 associations"). The ADVP variants were enriched in regulatory elements profiled by 447 FANTOM5 and Roadmap Epigenomics (ChromHMM). Top tissues enriched in overlaps 448 between ADVP variants and Roadmap enhancers included AD-relevant blood 449 (OR=3.7), digestive (OR=3.5), brain (OR=2.8), and skeletal (OR=2.6) tissue categories. 450 The overlaps between ADVP variants and enhancers were shown to be enriched in 451 tissues known to be related to AD in various ways [49–55]. For instance, the implicated 452 immunity-related blood category is in line with recent work highlighting the role of 453 neuroinflammation in AD pathogenesis and etiology [49,55]. Digestive is related to the 454 gut microbiome, which can be linked to AD behavior in mice [56]. The implicated 455 skeletal category has also been previously linked with brain atrophy in AD [51]. 456

457 In summary, analyses of genetic associations in ADVP revealed potential functional

458 roles of the AD variants in relevant tissue/cell type context, and recapitulated some of

the known regulatory mechanisms underlying AD pathogenesis.

460

461 **4. Discussion**

462 Here, we present ADVP, a portal to search, browse and visualize the largest collection

463 of systematically curated, harmonized, and annotated AD-specific genetic variants and

464 associations (~7,000 genetic associations in the current V1.0 release, November 2020).

465 Among the main distinctive features of ADVP is the uniqueness of reporting harmonized

466 AD variant and association information (standardized meta-table curation schema),

467 integration with the genomic annotation, and functional information (NIAGADS

Alzheimer's Genomics database [24]), as well as extensive cohort/consortium level

information.

470

ADVP uniquely includes associations at SNP, gene, and interaction levels and contains curated phenotypes not limited to disease risk, but also includes endophenotypes, fluid biomarkers, imaging, neuropathology, and other phenotypes. Moreover, ADVP curates and records AD and ADRD eQTL association findings (**Figure 2B**).

475

476 In addition to the standard *p*-values and effect sizes reported for association records,

477 ADVP puts particular emphasis on harmonizing meta-data curated from the

478 publications. Both the curated and derived columns are stored in the database. These

479 include phenotype, association type, standardized gene names, study information

480 (population, cohort, sample size, subset analyzed), and details of analyses (analyses 481 type, imputation) (**Figure 4A**). All these columns enable the investigators to interpret, 482 compare and view these records at different levels: phenotype (Figure 2A), population 483 (Figure 2C), cohort (Figure 2D), to name a few. 484

485 All ADVP records are annotated with the genomic context (upstream/downstream) 486 genes, and their distances) and their co-localized genomic element (Figure 3). They are 487 also cross-referenced with NIAGADS Alzheimer's Genomics DB [24], providing other 488 genomic annotation and functional genomic information. The standardized, structured 489 design of ADVP association data allows systematic integration with other genetic,

490 genomics, and molecular databases.

491

492 Population-based and functional analyses of AD associations revealed the genetic 493 architecture of AD-associated loci and points to tissue-specific regulatory mechanisms 494 for AD. However, variability in GWAS sample sizes may contribute to the observed 495 differences in associations and loci across different populations. Broadening the ADVP 496 coverage of population groups, as well as expanding functional data types and 497 coverage will provide further insights in complex genetic architecture and biology 498 underlying AD.

499

500 Lastly, we made substantial efforts to ensure high-guality of ADVP data contents. First, 501 guality control at multiple levels is performed (Figure 1, Section "2.5 Quality control 502

steps") to ensure the uniqueness of included genetic associations (no double counting /

503	re-reporting of associations). Besides, variant information in ADVP has been cross-
504	checked against other reference databases such as dbSNP.
505	
506	ADVP will continuously be updated with versioned releases every six months. New
507	publications on AD-related GWASs and corresponding associations will be added in an
508	ongoing manner.
509	
510	In the future, ADVP data collections will consist of a broader range of genetic results:
511	1. AD whole-genome/whole-exome sequencing analyses
512	2. AD xQTL associations, where $x = protein$, methylation, epigenetics marks, or
513	other molecular traits Other genetic variant types, such as insertions/deletions
514	(indel), copy number variations (CNV), or structural variations (SV) as they
515	become available
516	3. AD related dementias (ADRD) and neurodegenerative disorders
517	
518	Future ADVP functionality will include further collection and addition of functional
519	genomic evidence supporting genetic associations.
520	
521	To conclude, ADVP contains the largest collection of systematically curated,
522	harmonized, and annotated literature-derived variants for AD to the best of our
523	knowledge. The extensive and unique features in ADVP allow investigators to easily
524	access, interpret, compare, and visualize the vast collection of AD genetics findings.

525 **5. Availability**

- 526 All AD variant and association information is available through ADVP website
- 527 (<u>https://advp.niagads.org</u>). The code for processing reported variant and association
- 528 data is available upon request.

529 6. Acknowledgement

- 530 The authors thank Laura Cantwell, Lauren Kleidermacher, and Mitchell Tang for their
- 531 contributions at various stages of this work. This work was supported by the National
- 532 Institute on Aging [U24-AG041689, U54-AG052427, U01-AG032984, U01AG058654];
- 533 Biomarkers Across Neurodegenerative Diseases (BAND 3) (award number 18062), co-
- 534 funded by Michael J Fox Foundation, Alzheimer's Association, Alzheimer's Research
- 535 UK and the Weston Brain institute.
- 536
- 537
- 538
- 539
- 540
- 541
- 542
- 543

544 **7. Figures**

545

546 Figure 1. ADVP study design. AD GWAS publications are first collected (Section "2.1

- 547 **Data collection**"), genetic variant and association data are then systematically
- 548 extracted (Section "2.2 Data extraction"), harmonized (Section "2.3 Meta-data
- 549 **design**"), annotated (Section "**2.4 Annotation**"), subjected to quality control steps
- 550 (Section "**2.5 Quality control steps**") and stored into ADVP.

551

- **Figure 2**: Summary of genetic association records in ADVP by **A**) Phenotype, **B**)
- 555 Association type, **C**) Population, and **D**) Cohort/Consortium.

562 Figure 3: Summary of ADVP association records by genome annotation and most-563 significant functional consequence. A) Genomic localization of ADVP variants within 564 mRNA, IncRNA, and repeat elements. Shown are proportion (%) of variants in each 565 genomic element category; B) Most-significant predicted variant impact. Impact for 566 variants is determined using ADSP functional annotation pipeline [38,57] and is 567 provided by NIAGADS Alzheimer's Genomics database [24]. The consequence for a 568 variant is predicted and ranked based on multiple criteria including genomic location of 569 a variant, genes, transcripts and protein sequences, biological type of transcript, 570 transcript support level and other factors.

571

573 A)

Pubmed ID	Record type	SNP	Coordinates	Locus	Population	Cohort	Sample size	Subset Analyzed	Phenoty	 Reported gene Interactions
	~				~					 Interactions Population
30820047	SNP-based	rs75932628	6:41129252	TREM2	Non-Hispanic Caucasian	ADGC, CHARGE, EADI, GERAD	63,926	All	AD	 Population Population (detailed
30820047	SNP-based	rs75932628	6:41129252	TREM2	Non-Hispanic Caucasian	ADGC, CHARGE, EADI, GERAD	82,771	All	AD	 Cohort
23150908	SNP-based	rs75932628	6:41129252	TREM2	Caucasian	Cohort from Europe	113,600	All	AD	 Cohort (detailed)
23150908	SNP-based	rs75932628	6:41129252	TREM2	Caucasian	Cohort from Europe	12,438	All	AD	 Sample size
23150908	SNP-based	rs75932628	6:41129252	TREM2	Caucasian	Cohort from Europe	4,786	All	AD	Disease risk
28714976	SNP-based	rs143332484	6:41129207	TREM2	Caucasian	CHARGE, EADI, GERAD	3,968	All	AD	Disease risk
28714976	SNP-based	rs75932628	6:41129252	TREM2	Caucasian	ADGC	14,884	All	AD	Disease risk
28714976	SNP-based	rs75932628	6:41129252	TREM2	Caucasian	ADGC, CHARGE, EADI, GERAD	30,018	All	AD	Disease risk
28714976	SNP-based	rs143332484	6:41129207	TREM2	Caucasian	ADGC, CHARGE, EADI, GERAD	33,786	All	AD	Disease risk
28714976	SNP-based	rs75932628	6:41129252	TREM2	Caucasian	CHARGE, EADI, GERAD	35,831	All	AD	Disease risk
28714976	SNP-based	rs143332484	6:41129207	TREM2	Caucasian	ADGC, CHARGE, EADI, GERAD	53,042	All	AD	Disease risk
28714976	SNP-based	rs75932628	6:41129252	TREM2	Caucasian	ADGC, CHARGE, EADI, GERAD	80,733	All	AD	Disease risk

575 B)

nowing 1 - 10 of 182	6 records			Sort by freque	ncy
Variant	Reported gene(s)	Location	View in Genomics	Association records	Papers
rs3865444	CD33	chr19:51727962	View	39	16
rs11136000	CLU; CUGBP2; PICALM	chr8:27464519	View	60	15
rs2075650	APOC1, APOC4, APOE, PV	chr19:45395619	View	43	15
rs11218343	PICALM; SORL1	chr11:121435587	View	27	13
rs3851179	CUGBP2; PICALM	chr11:85868640	View	50	13
rs6656401	CR1,CR2; CR1; CR1L; CR2	chr1:207692049	View	76	12
rs3818361	CR1; CUGBP2	chr1:207784968	View	43	11
rs157580	PVRL2, TOMM40; TOMM4	chr19:45395266	View	15	10
rs1476679	PILRA, PILRB; GATS; MSX:	chr7:100004446	View	131	9
rs405509	APOE, TOMM40; APOE	chr19:45408836	View	28	9

	C)			Genes		
Stowing 1-10 of 952 records View in Genomics DB Association records Papers CL ENS600000136717 View in 139 28 CR ENS600000138213 View in 139 28 CR ENS600000138213 View in 139 28 CR ENS60000138213 View in 139 28 CR ENS60000138214 View in 136 139 APOE ENS6000013204 View in 126 136 139 SORI1 ENS6000013204 View in 28 139 <t< th=""><th></th><th></th><th></th><th>Genes</th><th></th><th></th></t<>				Genes		
b Ensemble ID View in denomice ID Association records Papers CLU ENS00000120885 View 173 29 BIN1 ENS00000120817 View 133 28 PICALM ENS0000013921 View 132 22 APORE ENS00000139203 View 199 23 APORE ENS00000139204 View 136 19 ABCA7 ENS00000137642 View 136 19 ABCA7 ENS00000137642 View 124 17 EPHA1 ENS00000137642 View 124 17 EPHA1 ENS00000137642 View 124 17 EPHA1 ENS00000105383 View 40 16 IT Page 1 of 6 Image: Show 10 Show 10 Chromosome ideogram To browse variants, click on a particular chromosome for enlarged view of the chromosome and associated genomic locia and/or click on genomic locus. When in chromosome view, click on the chromosome again, to go back to the ideogram. O O O					Sort by freque	ency
CLU ENGLOYON 120285 VIEW 179 29 BININ ENGLOYON 1207571 VIEW 179 29 PICALM ENGLOYON 1207571 VIEW 179 29 PICALM ENGLOYON 12023 VIEW 199 22 TOMMADO ENGLOYON 12023 VIEW 199 22 TOMMADO ENGLOYON 12023 VIEW 199 30 SOLI ENGLOYON 12024 VIEW 199 30 SOLI ENGLOYON 1202		Showing 1 - 10 of 952 record	is			
bini bini bini bini bini bini bini bini						
CR1 PEQLIM PEQUATE PAGE PECALM PECALMA PERSONO00073921 View 192 22 PAPE TOMMA0 PERSONO00064687 View 192 193 SOR1 PERSONO00064687 View 164 177 ENSONO0010583 View 40 177 CD33 ENSONO0010583 View 40 156 TO Page 1 of 96 D NO Chromosome ideogram Show 10 C) Chromosome ideogram To browse variants, click on a particular chromosome for enlarged view of the chromosome and associated genomic loci and/or click on the chromosome and associated genomic loci and/or click on genomi						
PICALM ENSCOUCO073921 View 99 22 TOMMADO ENSCOUCO073921 View 99 32 APCE NSCOUCOORD ABCA7 ENSCOUCOORD BACA7 ENSCOUCOORD B						
APOE ENSCOUDD130203 VIEw 99 22 19 ABCA7 ENSCOUDD130204 VIEw 126 17 EPHA1 ENSCOUDD130204 VIEw 40 17 CD ENSCOUDD15383 VIEw 40 17 CD ENSCOUDD15383 VIEw 40 16 Show 10 C Chromosome ideogram Dot not service variants, click on a particular chromosome for enlarged view of the chromosome and associated genomic loci and/or click on genomic locus marker (red rectangle) to display variant table for a particular genomic locus. When in chromosome view, click on the chromosome again, to go back to the ideogram.						
To know a variants, click on a particular chromosome for enlarged view of the chromosome and associated genomic loci and/or click on the chromosome for enlarged view of the chromosome wiew, click on the chromosome again, to go back to the ideogram.						
ABCA7 ENSCOUDDOL64897 Vew 92 194 SOR1 ENSCOUDDOL64897 Vew 92 194 SOR1 ENSCOUDDOL64994 Vew 940 175 Correct Page 1096 ver Show 10 Chromosome ideogram To browse variants, click on a particular chromosome for enlarged view of the chromosome and associated genomic loci and/or click on the ideogram.						_
SUBLI ENSCOUDED 13742 VIEW 40 17 D33 ENSCOUDED 14904 VIEW 40 17 D33 ENSCOUDED 15333 VIEW 40 16 Show 10 Chromosome ideogram To browse variants, click on a particular chromosome for enlarged view of the chromosome and associated genomic loci and/or click on genomic locus. When in chromosome view, click on the chromosome again, to go back to the ideogram.						_
EPHA1 ENSGOUDD146904 View 40 17 16 Solution 10 10 10 10 10 10 10 10 10 10 10 10 10						
C) Chromosome ideogram. C) Or we want the formation of the chromosome of the chromosome and associated genomic loci and/or click on genomic locus marker (red rectangle) to display variant table for a particular genomic locus. When in chromosome view, click on the chromosome again, to go back to the ideogram.						
C) Chromosome ideogram D) Or browse variants, click on a particular chromosome for enlarged view of the chromosome and associated genomic loci and/or click on genomic locus marker (red rectangle) to display variant table for a particular genomic locus. When in chromosome view, click on the chromosome again, to go back to the ideogram.						
locus marker (red rectangle) to display variant table for a particular genomic locus. When in chromosme view, click on the chromosome again, to go back to the ideogram.						
		locus marker (red rectang			-	-
		locus marker (red rectang go back to the ideogram.	le) to display variant table for a particular g	enomic locus. When in chromosm	ne view, click on the chromo	some again, to
		locus marker (red rectang go back to the ideogram.	le) to display variant table for a particular g	enomic locus. When in chromosm	15 19 20 21 22 16 19 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	× ×
Legend		locus marker (red rectang go back to the ideogram.	le) to display variant table for a particular g	enomic locus. When in chromosm	15 19 20 21 22 16 19 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	× ×
Legend		locus marker (red rectang go back to the ideogram.	le) to display variant table for a particular g	enomic locus. When in chromosm	15 19 20 21 22 16 19 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	× ×
Legend		locus marker (red rectang go back to the ideogram.	le) to display variant table for a particular g	enomic locus. When in chromosm	15 19 20 21 22 16 19 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	× ×
		locus marker (red rectang go back to the ideogram.	le) to display variant table for a particular g	enomic locus. When in chromosm	15 19 20 21 22 16 19 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	× ×
		locus marker (red rectang go back to the ideogram.	le) to display variant table for a particular g	enomic locus. When in chromosm	15 19 20 21 22 16 19 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	× ×

606

More information: dbSNP Ensembl GTEx ExAC

625	Figure 4 – ADVP interface. A) Association records table. The displayed information can
626	be customized via column/field selector and filtered using provided text and data filters;
627	B) Top variants curated in ADVP. Variants are displayed according to the number of
628	reporting publications by default; association records for variants and variant-related
629	publications can be quickly accessed; C) Top genes curated in ADVP. Genes are
630	ordered by the number of reporting publications by default; gene-related association
631	records and publications can be quickly accessed; D) Interactive chromosome
632	ideogram-based view of association data; E) Interactive variant viewer by population
633	and phenotype. Variants are arranged by their effect size (odds ratio; Y-axis) and allele
634	frequency (X-axis) and color-coded by population and phenotype; F) Integration with
635	NIAGADS AD Genomics database [24] providing additional biological information and
636	functional evidence (red rectangles).
637	
638	
639	
640	
641	
642	
643	
644	
645	
646	

A)

B)

8. Tables

- **Table 1**: Comparison between ADVP and existing AD genetics database (AlzGene and
- 664 GWAS Catalog).

Features	AlzGene [36]	GWAS Catalog [23]	ADVP
Focus on AD	Yes	No	Yes
Types of genetic associations recorded / included	Variant only	Variant only	Variant, Gene, SNP-SNP and gene-gene interactions
Included associations (<i>p</i> -value cutoff)	Genome-wide significant only (<5*10 ⁻⁸)	Genome-wide significant only (<5*10 ⁻⁸)	Both genome-wide significant and suggestive associations
Number of curated AD GWAS publications (publication years)	41 (1998- 2011)	69 (2007- current)	Initial set: 205; Curated set: 125 (2009-current)
Number of curated records/associations	264 genes	1,532 records (1,155 variants)	6,605 AD, 6,990 total association records (1,825 variants)
Genomic and functional genomic annotations	No	No	NIAGADS Alzheimer's Genomics database [24] annotations
Detailed / extensive meta-data	Population, cohort, sample size, phenotype	Population, sample size, stage, phenotype	Record type (SNP/gene- based), population, cohort, sample size, subset analyzed, phenotype, association type, stage, imputation
Last update date	2011	2021	2021

669 9. References

670	[1]	Association A. 2019 Alzheimer's disease facts and figures. Alzheimer's Dement
671		2019;15:321–87. https://doi.org/doi:10.1016/j.jalz.2019.01.010.
672	[2]	Gatz M, Pedersen NL, Berg S, Johansson B, Johansson K, Mortimer JA, et al.
673		Heritability for Alzheimer's disease: The study of dementia in Swedish twins.
674		Journals Gerontol - Ser A Biol Sci Med Sci 1997;52.
675		https://doi.org/10.1093/gerona/52A.2.M117.
676	[3]	Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small
677		GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's
678		disease in late onset families. Science 1993;261:921–3.
679		https://doi.org/10.1126/science.8346443.
680	[4]	Genin E, Hannequin D, Wallon D, Sleegers K, Hiltunen M, Combarros O, et al.
681		APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol
682		Psychiatry 2011;16:903–7.
683	[5]	Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, et al.
684		Genome-wide association study identifies variants at CLU and CR1 associated
685		with Alzheimer's disease. Nat Genet 2009;41:1094–9.
686	[6]	Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, et al.
687		Genome-wide association study identifies variants at CLU and PICALM
688		associated with Alzheimer's disease. Nat Genet 2009;41:1088–93.

689	[7]	Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M, et
690		al. Genome-wide analysis of genetic loci associated with Alzheimer disease.
691		JAMA 2010;303:1832–40.
692	[8]	Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, et al.
693		Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are
694		associated with Alzheimer's disease. Nat Genet 2011;43:429–35.
695	[9]	Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, et al. Common
696		variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-
697		onset Alzheimer's disease. Nat Genet 2011;43:436–41.
698	[10]	Naj AC, Schellenberg GD. Genomic variants, genes, and pathways of Alzheimer's
699		disease: An overview. Am J Med Genet B Neuropsychiatr Genet 2017;174:5–26.
700	[11]	Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al.
701		Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for
702		Alzheimer's disease. Nat Genet 2013;45:1452–8.
703	[12]	Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, et al. Genetic
704		meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and
705		implicates Ab, tau, immunity and lipid processing. Nat Genet 2019;51:414–30.
706	[13]	Biffi A, Anderson CD, Desikan RS, Sabuncu M, Cortellini L, Schmansky N, et al.
707		Genetic variation and neuroimaging measures in Alzheimer disease. Arch Neurol
708		2010;67:677–85.

709	[14]	Kauwe JS, Bailey MH, Ridge PG, Perry R, Wadsworth ME, Hoyt KL, et al.
710		Genome-wide association study of CSF levels of 59 alzheimer's disease
711		candidate proteins: significant associations with proteins involved in amyloid
712		processing and inflammation. PLoS Genet 2014;10:e1004758.
713	[15]	Cruchaga C, Kauwe JS, Harari O, Jin SC, Cai Y, Karch CM, et al. GWAS of
714		cerebrospinal fluid tau levels identifies risk variants for Alzheimer's disease.
715		Neuron 2013;78:256–68.
716	[16]	Barral S, Bird T, Goate A, Farlow MR, Diaz-Arrastia R, Bennett DA, et al.
717		Genotype patterns at PICALM, CR1, BIN1, CLU, and APOE genes are associated
718		with episodic memory. Neurology 2012;78:1464–71.
719	[17]	Barral S, Cosentino S, Christensen K, Newman AB, Perls TT, Province MA, et al.
720		Common genetic variants on 6q24 associated with exceptional episodic memory
721		performance in the elderly. JAMA Neurol 2014;71:1514–9.
722	[18]	Beecham GW, Hamilton K, Naj AC, Martin ER, Huentelman M, Myers AJ, et al.
723		Genome-wide association meta-analysis of neuropathologic features of
724		Alzheimer's disease and related dementias. PLoS Genet 2014;10:e1004606.
725	[19]	Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, Steinberg S, et al.
726		Genome-wide meta-analysis identifies new loci and functional pathways
727		influencing Alzheimer's disease risk. Nat Genet 2019;51:404–13.
728	[20]	Cukier HN, Kunkle BW, Vardarajan BN, Rolati S, Hamilton-Nelson KL, Kohli MA,
729		et al. ABCA7 frameshift deletion associated with Alzheimer disease in African

730 Americans. Neurol Genet 2016;2:e79.

731	[21]	Mez J, Chung J, Jun G, Kriegel J, Bourlas AP, Sherva R, et al. Two novel loci,
732		COBL and SLC10A2, for Alzheimer's disease in African Americans. Alzheimers
733		Dement 2017;13:119–29.
734	[22]	Hirano A, Ohara T, Takahashi A, Aoki M, Fuyuno Y, Ashikawa K, et al. A
735		genome-wide association study of late-onset Alzheimer's disease in a Japanese
736		population. Psychiatr Genet 2015;25:139–46.
737	[23]	Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, et al.
738		The NHGRI-EBI GWAS Catalog of published genome-wide association studies,
739		targeted arrays and summary statistics 2019. Nucleic Acids Res 2019;47:D1005-
740		12.
741	[24]	Greenfest-Allen E, Klamann C, Gangadharan P, Kuzma A, Leung YY, Valladares
742		O, et al. NIAGADS Alzheimer's GenomicsDB: A resource for exploring
743		Alzheimer's Disease genetic and genomic knowledge 2020.
744		https://doi.org/https://doi.org/10.1101/2020.09.23.310276.
745	[25]	Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP:
746		the NCBI database of genetic variation. Nucleic Acids Res 2001;29:308–11.
747	[26]	Frankish A, Diekhans M, Ferreira AM, Johnson R, Jungreis I, Loveland J, et al.
748		GENCODE reference annotation for the human and mouse genomes. Nucleic
749		Acids Res 2019;47:D766D773.

750	[27]	Yates AD, Achuthan P, Akanni W, Allen J, Allen J, Alvarez-Jarreta J, et al.
751		Ensembl 2020. Nucleic Acids Res 2020;48:D682D688.
752	[28]	Braschi B, Denny P, Gray K, Jones T, Seal R, Tweedie S, et al. Genenames.org:
753		The HGNC and VGNC resources in 2019. Nucleic Acids Res 2019;47:D786
754		D792. https://doi.org/10.1093/nar/gky930.
755	[29]	Amlie-Wolf A, Tang M, Mlynarski EE, Kuksa PP, Valladares O, Katanic Z, et al.
756		INFERNO: inferring the molecular mechanisms of noncoding genetic variants.
757		Nucleic Acids Res 2018;46:8740–53. https://doi.org/10.1093/nar/gky686.
758	[30]	Kuksa PP, Lee C-Y, Amlie-Wolf A, Gangadharan P, Mlynarski EE, Chou Y-F, et
759		al. SparkINFERNO: A scalable high-throughput pipeline for inferring molecular
760		mechanisms of non-coding genetic variants. Bioinformatics 2020.
761		https://doi.org/10.1093/bioinformatics/btaa246.
762	[31]	Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, et al. A
763		global reference for human genetic variation. Nature 2015;526:68–74.
764	[32]	Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The
765		Genotype-Tissue Expression (GTEx) project. Nat Genet 2013;45:580–5.
766		https://doi.org/10.1038/ng.2653.
767	[33]	Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, et al.
768		Integrative analysis of 111 reference human epigenomes. Nature 2015;518:317-
769		30. https://doi.org/10.1038/nature14248.

770	[34]	Ernst J, Kellis M. ChromHMM: Automating chromatin-state discovery and
771		characterization. Nat Methods 2012;9:215–6. https://doi.org/10.1038/nmeth.1906.
772	[35]	Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, et al.
773		An atlas of active enhancers across human cell types and tissues. Nature
774		2014;507:455–61. https://doi.org/10.1038/nature12787.
775	[36]	Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. Systematic meta-
776		analyses of Alzheimer disease genetic association studies: the AlzGene
777		database. Nat Genet 2007;39:17–23.
778	[37]	Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for
779		annotating and predicting the effects of single nucleotide polymorphisms, SnpEff:
780		SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly
781		(Austin) 2012;6:80–92. https://doi.org/10.4161/fly.19695.
782	[38]	Butkiewicz M, Blue EE, Leung YY, Jian X, Marcora E, Renton AE, et al.
783		Functional annotation of genomic variants in studies of late-onset Alzheimer's
784		disease. Bioinformatics 2018;34:2724–31.
785		https://doi.org/10.1093/bioinformatics/bty177.
786	[39]	Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: Predicting the
787		deleteriousness of variants throughout the human genome. Nucleic Acids Res
788		2019;47:D886D894. https://doi.org/10.1093/nar/gky1016.
789	[40]	Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, et al. An
790		integrated encyclopedia of DNA elements in the human genome. Nature

791 2012;489:57–74. https://doi.org/10.1038/nature11247.

792	[41]	Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a
793		reference resource for gene and protein annotation. Nucleic Acids Res
794		2016;44:D457D462. https://doi.org/10.1093/nar/gkv1070.
795	[42]	Huntley RP, Sawford T, Mutowo-Meullenet P, Shypitsyna A, Bonilla C, Martin MJ,
796		et al. The GOA database: Gene Ontology annotation updates for 2015. Nucleic
797		Acids Res 2015;43:D1057D1063. https://doi.org/10.1093/nar/gku1113.
798	[43]	Reitz C, Jun G, Naj A, Rajbhandary R, Vardarajan BN, Wang L-S, et al. Variants
799		in the ATP-binding cassette transporter (ABCA7), apolipoprotein E ϵ 4,and the risk
800		of late-onset Alzheimer disease in African Americans. JAMA 2013;309:1483–92.
801		https://doi.org/10.1001/jama.2013.2973.
802	[44]	Thomas RS, Henson A, Gerrish A, Jones L, Williams J, Kidd EJ. Decreasing the
803		expression of PICALM reduces endocytosis and the activity of β -secretase:
804		implications for Alzheimer's disease. BMC Neurosci 2016;17:50.
805		https://doi.org/10.1186/s12868-016-0288-1.
806	[45]	Hodes RJ, Buckholtz N. Accelerating Medicines Partnership: Alzheimer's Disease
807		(AMP-AD) Knowledge Portal Aids Alzheimer's Drug Discovery through Open Data
808		Sharing. Expert Opin Ther Targets 2016;20:389–91.
809		https://doi.org/10.1517/14728222.2016.1135132.
810	[46]	Sieberts SK, Perumal TM, Carrasquillo MM, Allen M, Reddy JS, Hoffman GE, et

811 al. Large eQTL meta-analysis reveals differing patterns between cerebral cortical

- and cerebellar brain regions. Sci Data 2020;7:340.
- 813 https://doi.org/10.1038/s41597-020-00642-8.
- [47] Reymond N, Imbert A-M, Devilard E, Fabre S, Chabannon C, Xerri L, et al.
- 815 DNAM-1 and PVR regulate monocyte migration through endothelial junctions. J
- 816 Exp Med 2004;199:1331–41. https://doi.org/10.1084/jem.20032206.
- [48] Kehoe PG. The Coming of Age of the Angiotensin Hypothesis in Alzheimer's
- 818 Disease: Progress Toward Disease Prevention and Treatment? J Alzheimers Dis
- 819 2018;62:1443–66. https://doi.org/10.3233/JAD-171119.
- [49] Heneka MT, Golenbock DT, Latz E. Innate immunity in Alzheimer's disease. Nat
 Immunol 2015;16:229–36. https://doi.org/10.1038/ni.3102.
- [50] Jiang C, Li G, Huang P, Liu Z, Zhao B. The Gut Microbiota and Alzheimer's
- 823 Disease. J Alzheimers Dis 2017;58:1–15. https://doi.org/10.3233/JAD-161141.
- [51] Loskutova N, Honea RA, Vidoni ED, Brooks WM, Burns JM. Bone density and
- brain atrophy in early Alzheimer's disease. J Alzheimers Dis 2009;18:777–85.
- 826 https://doi.org/10.3233/JAD-2009-1185.
- [52] Wan Y-W, Al-Ouran R, Mangleburg CG, Perumal TM, Lee T V, Allison K, et al.
- 828 Meta-Analysis of the Alzheimer's Disease Human Brain Transcriptome and
- Functional Dissection in Mouse Models. Cell Rep 2020;32:107908.
- 830 https://doi.org/10.1016/j.celrep.2020.107908.
- [53] Amlie-Wolf A, Tang M, Way J, Dombroski B, Jiang M, Vrettos N, et al. Inferring

832	the Molecular Mechanisms of Noncoding Alzheimer's Disease-Associated
833	Genetic Variants. J Alzheimers Dis 2019;72:301–18. https://doi.org/10.3233/JAD-
834	190568.

- [54] Kikuchi M, Hara N, Hasegawa M, Miyashita A, Kuwano R, Ikeuchi T, et al.
- 836 Enhancer variants associated with Alzheimer's disease affect gene expression via
- chromatin looping. BMC Med Genomics 2019;12:128.
- 838 https://doi.org/10.1186/s12920-019-0574-8.
- [55] Sims R, van der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N, Jakobsdottir J,
- et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-
- mediated innate immunity in Alzheimer's disease. Nat Genet 2017;49:1373–84.
- 842 https://doi.org/10.1038/ng.3916.
- [56] Kundu P, Torres ERS, Stagaman K, Kasschau K, Okhovat M, Holden S, et al.
- 844 Integrated analysis of behavioral, epigenetic, and gut microbiome analyses in
- AppNL-G-F, AppNL-F, and wild type mice. Sci Rep 2021;11:4678.
- 846 https://doi.org/10.1038/s41598-021-83851-4.
- [57] McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The
- 848 Ensembl Variant Effect Predictor. Genome Biol 2016;17.
- 849 https://doi.org/10.1186/s13059-016-0974-4.