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 36 
Abstract  37 
Venous thromboembolism is the third common cardiovascular disease and is composed of 38 
two entities, deep vein thrombosis (DVT) and its fatal form, pulmonary embolism (PE). 39 
While PE is observed in ~40% of patients with documented DVT, there is limited biomarkers 40 
that can help identifying patients at high PE risk.  41 
To fill this need, we implemented a two hidden-layers artificial neural networks (ANN) on 42 
376 antibodies and 19 biological traits measured in the plasma of 1388 DVT patients, with or 43 
without PE, of the MARTHA study. We used the LIME algorithm to obtain a linear 44 
approximate of the resulting ANN prediction model. As MARTHA patients were typed for 45 
genotyping DNA arrays, a genome wide association study (GWAS) was conducted on the 46 
LIME estimate. Detected single nucleotide polymorphisms (SNPs) were tested for association 47 
with PE risk in MARTHA. Main findings were replicated in the EOVT study composed of 48 
143 PE patients and 196 DVT only patients.  49 
The derived ANN model for PE achieved an accuracy of 0.89 and 0.79 in our training and 50 
testing sets, respectively. A GWAS on the LIME approximate identified a strong statistical 51 
association peak (p = 5.3x10-7) at the PLXNA4 locus, with lead SNP rs1424597 at which the 52 
minor A allele was further shown to associate with an increased risk of PE (OR = 1.49 [1.12 – 53 
1.98], p = 6.1x10-3). Further association analysis in EOVT revealed that, in the combined 54 
MARTHA and EOVT samples, the rs1424597-A allele was associated with increased PE risk 55 
(OR = 1.74 [1.27 – 2.38,  p = 5.42x10-4) in patients over 37 years of age but not in younger 56 
patients (OR = 0.96 [0.65 – 1.41], p = 0.848).  57 
Using an original integrated proteomics and genetics strategy, we identified PLXNA4 as a new 58 
susceptibility gene for PE whose exact role now needs to be further elucidated.  59 

 60 
Author Summary  61 

Pulmonary embolism is a severe and potentially fatal condition characterized by the presence 62 
of a blood clot (or thrombus) in the pulmonary artery. Pulmonary embolism is often the 63 
consequence of the migration of a thrombus from a deep vein to the lung. Together with deep 64 
vein thrombosis, pulmonary embolism forms the so-called venous thromboembolism, the 65 
third most common cardiovascular disease, and its prevalence strongly increases with age. 66 
While pulmonary embolism is observed in ~40% of patients with deep vein thrombosis, there 67 
is currenly limited biomarkers that can help predicting which patients with deep vein 68 
thrombosis are at risk of pulmonary embolism. We here deployed an Artificial Intelligence 69 
based methodology integrating both plasma proteomics and genetics data to identify novel 70 
biomarkers for PE. We thus identified the PLXNA4 gene as a novel molecular player involved 71 
in the pathophysiology of pulmonary embolism. In particular, using two independent cohorts 72 
totalling 1,881 patients with venous thromboembolism among which 467 experienced 73 
pulmonary embolism, we identified a genetic polymorphism in the PLXNA4 gene that 74 
associates with ~2 fold increased risk of pulmonary embolism in patients aged more than ~40 75 
years. 76 

 77 
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 80 
Introduction  81 

Deep vein thrombosis (DVT) and Pulmonary Embolism (PE) are often considered as two 82 

sides of the same coin, venous thromboembolism (VTE), the third most common 83 

cardiovascular disease. VTE is a complex disease resulting from the interplay of various 84 

factors including (epi-)genetics and environmental sources. VTE incidence is estimated 85 

at 1 per 1000 patient-years, and its fatal form, PE, is associated with a mortality rate of 86 

6% in the acute phase and 20% after one year [1]. PE generally results from the 87 

migration of a blood clot from a deep vein to the lung and is observed in  ~40% of 88 

patients with documented DVT [2]. However, isolated PE without any trace of DVT can 89 

also be observed either when the clot has completely migrated to the lung or when it is a 90 

pulmonary clot in situ as recently highlighted in COVID-19 patients [3]. Even though 91 

some specific risk factors for PE have been identified in DVT patients such as obesity, 92 

sickle cell disease [4] as well as some genetic variations in F5 [4] and GRK5 [5] genes, the 93 

exact, likely multifactorial, biological mechanisms that lead to PE are still not fully 94 

characterized. Besides, there is still limited biomarkers that can help discriminating 95 

patients that will develop PE from those who won’t, the former being then at higher risk 96 

of death. Thus, there is clearly a need for novel PE-associated molecular markers to be 97 

identified. 98 

Plasma is an ideal potential source for VTE biomarkers; the intravascular 99 

compartment itself is the site of disease manifestation and tests are relatively non-100 

invasive, quick and cheap. Several types of molecular determinants can be assessed in 101 

plasma samples including microRNAs, metabolites and proteins, and all of them have 102 

been investigated in the context of VTE. For example, plasma microRNAs have been 103 

assessed in relation to VTE recurrence [6,7]. Plasma proteomics has been employed to 104 

discover novel proteins associated with VTE risk [8,9] and plasma metabolomics used to 105 

identify novel mechanisms involved in VTE etiology [10,11]. Only one study has so far 106 

adopted an exploratory plasma proteomics strategy to identify novel proteins associated 107 

with high-risk versus low-risk of PE in humans. This study [12] was based on a relatively 108 

small sample size and compared 6 patients with high risk of PE to 6 patients at low PE 109 

risk , risk being classified based on clinical presentations and symptoms, with plasma 110 

samples profiled by matrix-assisted laser desorption/ionization–time-of-flight/time-of-111 

flight mass spectrometry (MALDI-TOF/TOF MS). 112 
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In this work, we aim at identifying novel molecular phenotypes that could help in 113 

better characterizing the biological mechanisms involved in the development of PE in 114 

VTE patients. For this, 234 plasma proteins targeted with 376 protein specific 115 

antibodies, with the major part derived from the Human Protein Atlas (HPA) repository 116 

[13] were profiled in 1388 VTE patients selected from the MARTHA study [14,15] and 117 

from whom 283 had experienced a symptomatic PE event. To explore far beyond the 118 

search for linear associations between protein levels and PE risk and to identify more 119 

complex relationships that could serve as integrative markers of upstream/downstream 120 

mechanisms involving molecular determinants that have not necessarily been 121 

measured, we deployed a sequential procedure implementing several methodologies 122 

selected from the deep-learning domain. Briefly, and as summarized in Figure 1 and 123 

more detailled thereafter, the first step consists in applying an under-sampling 124 

algorithm (edited nearest neighbors) [16] to remove individuals with strong data 125 

heterogeneity that would hamper the efficiency of the downstream analyses, leaving to 126 

subsample of 592 VTE patients (497 DVT and 95 PE). This subsample was then used in 127 

an Artifical Neural Network (ANN) learning framework in order to predict PE from 128 

proteomics data. We then used the Local Interpretable Model-agnostic Explanations 129 

(LIME) algorithm [17] to derive a linear approximate of the ANN based predictor for PE 130 

risk which would, in addition, have a more meaningful biological interpretation. As 131 

MARTHA patients have been previously typed for genome-wide genotype data, we then 132 

conducted a genome wide association study of the LIME predictor of PE in order to 133 

detect single nucleotide polymorphisms (SNPs) associated with the predictor with the 134 

hope that the integration of genetic and proteomic data could provide additional insights 135 

into the pathophysiology underlying the identified predictor [18,19]. SNPs with strong 136 

statistical association with the LIME predictor were tested for association with PE risk in 137 

the whole original MARTHA dataset and significant associations were further tested for 138 

replication in an independent study of 339 VTE patients including 143 with PE. 139 

Sequencing data were also scrutinized in some patients with observed VTE outcomes 140 

poorly predicted by our ANN/LIME prediction models in order to identify rare variants 141 

that could be responsible for the observed phenotypes. 142 

 143 

Figure 1 Analysis workflow of the present study 144 
 145 
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Results  146 

Data description - The MARTHA proteomics substudy was composed of 1,388 VTE 147 

patients among which 1,105 were diagnosed for DVT, 95 with isolated PE and 188 with 148 

both DVT and PE (Table 1). Patients were phenotyped for 19 quantitative traits known 149 

to be involved in thrombotic biological processes (Supplementary Table 1) and for 234 150 

different proteins using targeted affinity proteomics with 376 protein specific antibody 151 

reagents using multiplexed suspension bead array technology. These proteins were 152 

selected for 1) their known roles in the coagulation/fibrinolysis cascade and/or 153 

intermediate traits of relevance to thrombosis, 2) their specific expression in endothelial 154 

cells (a key cell type involved in thrombosis physiopathology) or 3) encoded by genes 155 

identified in pangenomic studies as associated with several cardiovascular disease-156 

linked biological pathways (e.g platelet function, renal function, inflammation). The list 157 

of antibody reagents with their target proteins is given in Supplementary Table 2. 158 

 159 

Table 1 Characteristics of the MARTHA proteomics study 160 
 161 
 DVT PE DVT+PE 

N 1105 95 188 

Age at sampling 46.67 (14.90) 48.63 (15.26) 51.57 (16.99) 

Age at first VTE 40.89 (15.28) 41.64 (15.02) 44.22 (17.56) 

Female sex 716 (65%) 78 (82%) 112 (60 %) 

Women under oral 

contraceptives at VTE 

event 

286 (26%) 35 (37%) 45 (24%) 

FV Leiden (rs6025) 

heterozygotes 

255 (23%) 17 (18%) 39 (21%) 

Anticoagulant therapy at 

plasma sampling 

303 (27%) 29 (31%) 76 (40%) 

Smokers 209 (19 %) 18 (19 %) 24 (13 %) 

BMI 25.14 (4.57) 25.20(4.39) 26.43(4.62) 

DVT : Deep Vein Thrombosis ; PE : Pulmonary Embolism ; BMI : Body Mass Index 162 
Data shown correspond to mean (standard deviation) and count (percentage) for 163 
continuous categorical variables, respectively 164 
 165 

Exploration of this dataset using high-dimensional visualization techniques including 166 

principal component analysis, t-SNE [20] and UMAP [21] did not reveal any specific 167 

stratification in the data nor outliers (Figure 2) but rather illustrates that the three class 168 

of patients (DVT, PE, DVT+PE) could not be easily separated.  169 

 170 
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Figure 2 Graphical representation of the HPAs and biological MARTHA data projected 171 
on the first two principal components derived from standard principal components 172 
analysis (a), t-SNE (b) and UMAP (c) techniques. 173 

 174 

 175 

Artificial Neural Network for PE - As the accuracy/efficiency of any ANN strongly 176 

depend on the quality/homogeneity of the input data, we first applied the edited nearest 177 

neighbors algorithm [16] to perform under sampling of the majority class (DVT) and 178 

obtain a more homogeneous set of DVT patients, and further discarded the DVT+PE 179 

class to avoid adding noise in discriminating between PE and non PE patients. This 180 

strategy led to the selection of a subsample (referred thereafter to as the ANN sample 2) 181 

of 592 patients (497 DVT and 95 PE) whose proteomics/biological entered the ANN 182 

analysis.  183 

A two hidden-layers ANN was then built from the ANN dataset with a training set of 184 

576 patients (487 DVT and 89 PE) and a testing set of 16 patients (10 DVT and 6 PE). 185 

This allocation was chosen so that the number of PE cases used for training was 186 

sufficiently large. Because the training set presented with a strong imbalance with 187 

respect to the DVT/PE classes with ~5 times more DVT than PE patients, the ANN was 188 

trained iteratively as described in the Materials and Methods section. By completion of 189 

the iterative algorithm, the final ANN obtained an area under the operative curve (AUC) 190 

of 0.89. Of more interest are the performances of the ANN in the testing set. Indeed, our 191 

ANN got F1-scores of 0.82 and 0.60 for the DVT and PE classes, respectively, and a global 192 

AUC of 0.79 in the testing set.  193 

We then used the LIME algorithm to obtain a local linear approximate of the ANN 194 

predictions. In the testing set, the LIME prediction achieved an overal AUC of 0.77 195 

instead of 0.79 for ANN. For each of the 16 patients in the testing set, we compared the 196 

individual predictions of their observed VTE event provided by the ANN and LIME 197 

methods (Table 2). In general, ANN and LIME predictions were rather consistent even if 198 

the ANN predictions seem to be more accurate in predicting DVT while LIME appears 199 

slightly more accurate in predicting PE. The average prediction in correctly classifying 200 

DVT patients was 0.872 by ANN compared to 0.748 by LIME. Note that one DVT patient 201 

(individual 10) was wrongly predicted to be PE by the ANN predictor, but not by the 202 

LIME predictor. Conversely, the average prediction in correctly classifying PE patients 203 
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was 0.498 by ANN compared to 0.578 by LIME. Two PE patients (individuals 11 & 12) 204 

presented low predictions of being PE, using both ANN and LIME predictors.  205 

 206 

Table 2 Individual predictions of VT event provided by ANN and LIME in the 16 207 
patients of the testing set 208 
 209 

Individual 
Observed 

clinical class 
ANN prediction 

for class PE 
Local Prediction 

for class PE 

1 DVT 0.04 0.31 
2 DVT 0.00 0.18 
3 DVT 0.03 0.24 
4 DVT 0.02 0.17 
5 DVT 0.00 0.23 
6 DVT 0.02 0.32 
7 DVT 0.00 0.25 
8 DVT 0.04 0.22 
9 DVT 0.25 0.34 

10 DVT 0.88 0.26 
11 PE 0.00 0.30 
12 PE 0.20 0.31 
13 PE 0.98 0.94 
14 PE 1.0 1.0 
15 PE 0.01 0.15 
16 PE 0.80 0.77 

 210 
We then assessed the correlation of the LIME predictor with the available biological 211 

phenotypes. No strong correlation was observed (Supplementary Table 3). However, the 212 

LIME predictor showed marginal positive correlation with fibrinogen (ρ = 0.12, p = 5.7 x 213 

10-3) and factor VIII (ρ = 0.16, p = 0.013) plasma levels, and marginal negative 214 

correlation with prothombin time (ρ = -0.10, p = 0.029) and protein S (ρ =-0.10, p = 215 

0.021) plasma levels. To go further into the biological interpretation of the LIME 216 

predictor, we sought to identify which proteins contribute the most to the definition of 217 

the LIME predictor. Figure 3 display the top 20 most contributing antibodies/proteins. 218 

Of note, 5 proteins tended to have substantial more importance than the remaining ones, 219 

among which three include proteins that had been selected because their gene 220 

expression (COX4I2, VCL, VWF) was found to be specifically enriched in endothelial cells 221 

[22].  222 

 223 

Figure 3 List of the top 20 antibodies contributing the most to the prediction model for 224 
PE  225 
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 226 

Genetics of the LIME predictor To get additional information about the biological 227 

mechanisms that could underly the linear LIME predictor, we conducted a GWAS on this 228 

predictor considered as a quantitative linear trait in a sample of 574 individuals of the 229 

ANN subsample with GWAS data. While no SNP reached genome-wide significance, we 230 

observed a peak of strong suggestive statistical association on chromosome 7 at the 231 

PLXNA4 locus (Supplementary Figure1 – Supplementary Table 4). The sentinel SNP (p = 232 

5.33 x 10-7) was rs1424597 whose minor A allele with frequency of 0.09 was associated 233 

with an increase of +0.169±0.034 in LIME predictor values. In this subsample, the 234 

rs1424597-A allele was slightly more frequent in patients with PE than in patients with 235 

DVT only (0.15 vs 0.08, p = 4.1 x 10-3) (Table 3). The association of rs1424597 with PE 236 

risk was then assessed in the remaining MARTHA samples (738 DVT and 230 PE 237 

(DVT+PE or isolated PE) patients) with available GWAS data and that had not been used 238 

for building our ANN model. In this subsample, we observed a trend for an higher 239 

frequency of the rs1424597-A allele in PE patients compared to non PE patients (0.10 vs 240 

0.08), even if the association did not reach significance (p = 0.20).  241 

 242 

Table 3 Association of rs1424597 with PE risk in the MARTHA and EOVT studies 243 
 MARTHA 

EOVT  Participants included in the 

ANN analysis 

Participants outside the 

ANN analysis 

 DVT 

N = 480 

PE 

N = 94 

DVT 
N=738 

PE 
N=230 

DVT 
N=196 

PE 
N=143 

GG 404 (84%) 71 (75%) 624 (85%) 187 (79%) 149 (76%) 110 (77%) 

GA 74 (15%) 18 (19%) 111 (14%) 41 (20%) 47 (24%) 28 (20%) 

AA 2 (<1%) 5 (5%) 3 (<1%) 2 (~1%) 0 (-) 5 (3%) 

MAF1 0.081 0.149 0.079 0.098 0.119 0.133 

OR2 1.98 [1.24 - 3.14] 

p = 0.0041 

1.26 [0.88 – 1.81] 

p = 0.204 

1.12 [0.71 – 1.78] 

p = 0.613 

MAF : Minor Allele Frequency 244 
OR : Allelic Odds Ratio [95%CI] and p-value of the Cochran-Armitage trend test for 245 
association 246 
 247 

We further investigated the association of rs1424597 with PE in the EOVT study 248 

composed of 143 PE patients 196 DVT patient. In EOVT, the rs1424597-A allele 249 

frequency was similar between EOVT patients with PE  and with DVT (0.13 vs 0.12, p = 250 

0.61) (Table 3). Because by design the EOVT study is enriched with early onset VTE 251 

patients, we assessed whether the discrepancy between MARTHA and EOVT results 252 
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could be due to patient selection criteria (i.e according to age.) We thus split the EOVT 253 

samples according to the median of age of VTE onset, that was 37yrs. As shown in Table 254 

4, the pattern of association of rs1424597 with PE slightly differed according to age. In 255 

EOVT patients younger than 37yrs, its allele frequency tend to be slighty lower in PE 256 

than in DVT patients (0.11s 0.13) while the inverse was observed in patients aged more 257 

than 37 yrs (0.15 vs0.11). Interestingly, the same observations hold in MARTHA when 258 

patients were stratified according to the same age threshold (Table 4). In the combined 259 

MARTHA and EOVT samples, the rs1424597-A allele was associated with an increased 260 

odds ratio (OR) for PE of 1.74 [1.27 – 2.38] (p = 5.42 x 10-4) in patients over 37 years of 261 

age while no association (OR = 0.96 [0.65 – 1.41], p = 0.848) was observed in younger 262 

patients. Similar ORs were obtained, OR = 1.73 [1.22 – 2.45] (p = 1.99 x 10-3) and OR = 263 

1.08 [0.77 – 1.53] (p = 0.628), respectively, if a more standard age threshold of 40 yrs 264 

[23] had been used. 265 

 266 

Table 4 Association of rs1424597 with PE risk according to age of onset of venous 267 
thrombosis 268 
 Age of onset <37 Age of onset ≥37 

 MARTHA EOVT MARTHA EOVT 

 DVT 

N=550 

DVT+PE/PE 

N =147 

DVT 

N=96 

PE 

N=64 

DVT 

N=668 

DVT+PE/PE 

N =177 

DVT 

N=100 

PE 

N=79 

GG 464 123 70 51 564 135 79 59 

GA 83 23 26 12 102 36 21 16 

AA 3 1 0 1 2 6 0 4 

MAF1 0.081 0.085 0.135 0.109 0.079 0.136 0.105 0.152 

OR2 1.056 [0.664 – 1.678] 

p = 0.817 

0.784 [0.392 – 1.566] 

p = 0.470 

1.820 [1.266 – 2.617] 

p = 1.16 10-3 

1.53 [0.82 – 2.86] 

p = 0.196 

MAF : Minor Allele Frequency 269 
OR : Allelic Odds Ratio [95%CI] and p-value of the Cochran-Armitage trend test for 270 
association 271 

 272 

 273 

Genetics of inconsistent LIME predictions 274 

As shown in Table 2, our ANN/LIME models failed to correctly predict the true VTE 275 

outcome in four individuals from the testing set (individuals 10, 11, 12 and 15). First, it 276 

is worthy of note that these 4 individuals were all females. Second, the 3 female PE 277 

patients wrongly predicted to be DVT (individuals 11, 12 and 15) were all under oral 278 

contraceptives (OC) at the time of the PE event (age 45, 35 and 53, respectively), but not 279 

individual 10 incorrectly predicted to be PE. While we cannot rule out the possibility 280 
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that our ANN/LIME models poorly behave in women under OC, we nevertheless sought 281 

to investigate whether discordant predictions could be due to genomic outlier 282 

individuals harboring very rare disease causing mutations that could make the global 283 

ANN/LIME predictions inaccurate, inline with the idea that the discrepancy between 284 

(deep learning derived) predicted and observed phenotypes could be a heritable trait 285 

[24]. Among these 4 individuals, only two (Individuals 11 and 15) have been sequenced 286 

for their whole genome. Sequence data of these two individuals were then scrutinized 287 

for candidate rare variants that could explain the VTE phenotype. 288 

Individual 11 is a woman that experienced PE under oral contraceptives (OC) at age 289 

45. Of note, her ten closest neighbors inferred from HPA data were all DVT patients 290 

which would likely explain why the derived ANN predicted her a DVT outcome instead 291 

of PE. She was not found to harbour any candidate variation in known VTE genes but 292 

presented in her genome with 61 very rare coding variants with strong predicted 293 

deleteriousness that could be good candidates responsible for the PE event .  294 

Individual 15 is a woman that had experienced PE at age 53 also under OC. Nine out 295 

of 10 of her closest proteomics based neighbors were DVT patients which may also 296 

explain why this PE patient was uncorrectly predicted to be DVT. This patient was found 297 

to carry a very rare nonsynonymous variation (rs121918154; 298 

PROC:NM_000312:exon9:c.C814T:p.R272C) in the VTE-associated PROC gene. This 299 

variation has a minor allele frequency of 0.005% in public database 300 

(https://www.ncbi.nlm.nih.gov/snp/rs121918154), is predicted to be deleterious by 301 

several bioinformatic tools and have been previously reported in VTE patients with 302 

protein C deficiency [25,26]. This variation is located in the last exon of the gene and is 303 

predicted to alter splicing regulatory elements [27–29], which could lead to a deletion of 304 

a part of the peptidase S1 domain that is responsible for the clivage activity of the 305 

protein. Of note, this patient exhibited moderately low plasma Protein C levels, 63%, 306 

slightly lower than the 65% threshold adopted to declare moderate protein C deficiency 307 

[30].  308 

 309 
Discussion 310 
This work is original in at least three main aspects. First, it is the largest plasma 311 

proteomic study with respect to pulmonary embolism in VTE patients. Second, it is to 312 

our knowledge the first attempt to deploy ANN methodologies on proteomic data with 313 
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the aim at identifying new molecular thrombotic players. And finally, the integration of 314 

proteomic and genomics data identified PLXNA4 as a new candidate gene for PE. 315 

This work started with the implementation of an ANN methodology on antibody based 316 

affinity proteomics data in relation to PE risk. This ANN was not developped as a tool to 317 

be used in clinic for predicting PE risk as 1/one is not 100% certain about the identity of 318 

the identified tagged proteins [31] (further experimental validation would be needed to 319 

assess this) and 2/ plasma protein levels determined with the antibody suspension bead 320 

array are not absolute but relative values depending on the current set of studied 321 

antibodies. Rather, our ANN based predictor for PE was aimed at serving as an 322 

intermediate surrogate biomarker that could generate new knowledge about the 323 

(genetics) mechanisms involved in PE. By conducting a GWAS on the derived PE 324 

predictor and capitalizing on two case-control samples totalling 467 patients with PE 325 

and 1414 patients with DVT, we observed that the PLXNA4 rs1424597-A allele was 326 

associated with a ~2-fold increased risk of PE in VTE patients aged more than ~40yrs. 327 

PLXNA4 codes for Plexin A4, which is part of a receptor complex involved in signal 328 

transduction of sempahorin 3A signals linked to cytoskeletal rearrangement, inhibiting 329 

integrin adhesion [32,33]. It has a role in axone guidance in nervous system 330 

development, and genetic variants in PLXN4 have been linked to risk of Alzhemier 331 

disease [34,35]. Based on RNA seq data from HPA, FANTOM and GTEx datasets, PLXNA4 332 

is expressed at medium/high levels in central nervous system, adipose, breast and 333 

female reproductive tract tissues, and low levels in a broad range of other tissues 334 

(https://www.proteinatlas.org/ENSG00000221866-PLXNA4/tissue), indicating roles outside 335 

the nervous system. RNA seq data from blood cell populations show expression in 336 

plasma cytoid dendritic cells, NK cells and some T-cell populations, and research based 337 

on animal studies suggest a role in immunity and immune function. It has been shown to 338 

be a negative regulator of T cell activation [36]. Besides, Wen et al [37] found it to be 339 

highly expressed in myeloid cells, where PLXNA4 had an important function in 340 

stimulating TNF-alpha and IL-6 production in macrophages, where knock out mice were 341 

protected against letal dose LPS induced cytokine storms, suggesting it having a critical 342 

role in mediating pro-inflammatory cytokine production. The ligand of PLXNA4, SEMA3, 343 

has also been described with a role in endothelial cell function in an autocrine loop, 344 

promoting processes involved in vascular remodeling [38], and also in negatively 345 

regulating platelet aggregation [39]. While PLXNA4 thus has been described with a role 346 
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in processes/pathways of relevance for thrombosis, little is known about PLXNA4 in 347 

pulmonary embolism. In addition, we did not identify strong elements supporting a 348 

functional role of the intronic rs1424597 polymorphisms or of any other 349 

polymorphisms in strong linkage disequilibrium with it. Nevertheless, rs1424597 has 350 

recently been observed in the FinnGen study ( http://r3.finngen.fi/) to be marginaly 351 

associated (p = 4.5 10-3) with pleural conditions that are inflammatory disorders of the 352 

lung. Consistent with this observation, we observed a positive correlation between the 353 

rs1424597-associated PE predictor and fibrinogen, a well known inflammatory marker. 354 

Additional PLXNA4 polymorphisms have also been reported to demonstrate strong 355 

statistical evidence for association with various lung function markers [40,41]. Besides, 356 

our group have previously suggested that PLXNA4 polymorphisms could interact with 357 

polymorphisms at UQCC1 to modulate the risk of VTE in the general population [42], 358 

UQCC1 being a locus that have also be shown to be involved in lung function [43]. 359 

Altogether, these observations strongly support for a role of PLXNA4 in lung function 360 

and its precise role in the etiology of pulmonary embolism deserve further investigation. 361 

Which polymorphisms could be truly responsible for the observed association with PE 362 

risk also merits further works as the rs1424597 is likely tagging for functional 363 

variant(s)/haplotypes yet to be characterized. Finally, further studies would be needed 364 

to investigate whether the previously suggested PLXNA4 x UQCC1 interaction on the risk 365 

of VTE (combining both DVT and PE) could be more specific to patients with PE.  366 

In addition to searching for common polymorphisms that could associate with our ANN 367 

based predictor and with PE risk, we also looked for rare variants that could explain the 368 

discrepancy between predicted and observed VTE outcome in our testing set. Two out of 369 

four patients with discordant predictions in the testing set have been sequenced for 370 

their whole genome. Both were females patients that experienced PE under OC. In one of 371 

them, we were able to identify a rare VTE causing mutation in PROC. It is not our 372 

intention to conclude to any general rule about the relevance of searching of rare 373 

variants responsible for any discordancy between ANN predictions and observed 374 

outcomes. Especially as we observed that the three PE patients wrongly predicted to be 375 

DVT were women who developed PE under OC. These observations could suggest that 376 

our plasma proteomics ANN derived predictions may not be valid in such subgroups of 377 

VTE patients and highlight the challenge to identify general prediction models for 378 

complex diseases. Several additional limitations must be addressed. First, no plasma 379 
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antibody targeting PLXNA4 was available when the screening phase of this work was 380 

initiated preventing us from validating further its association with PE. Second, no 381 

proteomic data was available in the EOVT study to formally replicate the association of 382 

our ANN and LIME predictors with PE risk. Third, our GWAS analysis on the ANN 383 

derivedpredictor was performed only in 574 samples which has likely hampered our 384 

power to identify genome-wide significant SNPs. We may have then missed additional 385 

polymorphisms that could be truly associated with the predictor and could have then 386 

help us to better dissentangle its underlying molecular biology. Finally, the moderate 387 

sample size of the EOVT study has also likely hampered our power for statistically 388 

replicating the association of the lead PLXNA4 polymorphism with PE. In addition, no 389 

information was available in the EOVT study to distinguish isolated PE From DVT+PE 390 

which prevented us from further testing whether the association of PLXNA4 with PE risk 391 

was mainly restricted to isolated PE as suggested from the MARTHA results. However, 392 

the very consistent pattern of association observed according to age strata between the 393 

two studies is a strong argument in favor of PLXNA4 as a new candidate in PE biology.  394 

In conclusion, by implementing an original artificial neural network methodology 395 

integrating plasma proteomics and genetic data, we identified PLXNA4 as a new 396 

candidate susceptibility gene for PE in VTE patients whose precise role in PE etiology 397 

deserve further investigations 398 

 399 
Materials and Methods 400 
 401 

Ethical approval 402 

Each individual study on which the work is based was approved by its institutional 403 

ethics committee and informed written consent was obtained in accordance with the 404 

Declaration of Helsinki. Ethics approval were obtained from the “Departement santé de 405 

la direction générale de la recherche et de l’innovation du ministère” (Projects DC: 2008-406 

880 & 09.576) and from the institutional ethics committees of the Kremlin-Bicetre 407 

Hospital. 408 

 409 
MARTHA study 410 

The MARTHA population is composed of VTE patients recruited from the Thrombophilia 411 

center of La Timone hospital (Marseille, France) and free of any chronic conditions and 412 
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of any well characterized genetic risk factors including antithrombin, protein C or 413 

protein S deficiency, homozygosity for FV Leiden or Factor II 20210A, and lupus 414 

anticoagulant. Detailed description of the MARTHA population has been provided 415 

elsewhere [14,44]. 416 

MARTHA proteomics substudy. A sample of 1,388 MARTHA patients with available 417 

plasma samples were profiled for targeted plasma proteomic investigations as described 418 

below.  419 

 MARTHA genetic substudy. From the whole MARTHA population, 1592 patients 420 

with DNA available were genotyped with high-throughput genotyping arrays (see 421 

below). 422 

 423 

Plasma proteomic profiling 424 

Generation of antibody suspension bead array (SBA) 425 

The multiplex antibody suspension bead array (SBA) was created by covalent coupling 426 

of 339 Human Protein Atlas (HPA) antibodies, 13 from commercial providers and 25 427 

monoclonal BSI antibodies (BioSystems International Kft) targeting 234 unique 428 

candidate proteins (Supplemental Table 2). Antibodies were individually coupled to 429 

carboxylated magnetic beads (MagPlex-C, Luminex Corp.) generating up to 384 different 430 

bead identities (IDs), essentially according to methods previously described [45,46]. The 431 

final multiplexed suspension bead array was prepared by combining all 384 antibody 432 

coupled beads into a single SBA stock with a concentration of approximately 25-40 433 

beads of each antibody bead ID/ul. 434 

 435 

Plasma labelling and protein profiling assay 436 

Plasma samples were diluted 1:10 in filtered 1xPBS and labelled with biotin (NHS-PEG4-437 

Biotin, Thermo Scientific) for 2h at 4°C. The labelling process was terminated by the 438 

addition of 12,5ul of 0.5M HCl pH:8.0 to each sample for 20 min and consecutively 439 

storage at -20°C until usage [45]. Labelled plasma samples were diluted 1:50 in PVX 440 

casein buffer + 10% (v/v) rabbit IgG (0.1% casein, 0.5% polyvinyl alcohol, 0.8% 441 

polyvinylpyrrolidone, prepared in 1xPBS). Diluted samples were heat-induced to 442 

achieve epitope retrieval for 30 minutes at 56°C. Five microliters of the SBA were mixed 443 

with 45ul of heat-treated samples for 16-18 hours, at RT and constant shake. Unbound 444 

complexes were removed by 2 consecutive washes with PBS-T and antibody-bound 445 
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complexes were cross-linked by resuspending the beads in 0.4% PFA-PBS for 10 min. R-446 

phycoerythrin-conjugated streptavidin (1:750, PBS-T; Invitrogen) was added to all 447 

samples for 30 min followed by 2 times washes. Relative amount of each protein 448 

complex was expressed as median of fluorescence intensity (MFI) by read out on a 449 

FlexMAP3D.  450 

 451 

The Early Onset Venous Thrombosis (EOVT) study 452 

This study is composed of 339 VTE patients with documented idiopathic isolated PE or 453 

DVT selected according to the same criteria as the MARTHA participants, with the 454 

exception that the age of VTE onset was below 50 yrs. Detailed description can be found 455 

in [44,47] 456 

 457 

Deep-learning framework for identifying a molecular predictor of PE risk.  458 

Step 1 : Normalization 459 

First, all HPA variables were normalized and scaled to have 0 mean et 1 variance to 460 

avoid major artificial influence of variables with large range of variations.  461 

 462 

Step2 : Edited nearest neighbors 463 

As our aim was to identify new molecular markers associated with PE, we 464 

hypothesized that conducting our discovery phase on isolated PE, an expected less 465 

heterogeneous class of VTE patients than the class of patients with both DVT and PE, will 466 

increase our chance to identify novel relevant molecular players. As a consequence, we 467 

decided to built our ANN model only on patients with isolated PE (N = 95) or with DVT 468 

(N = 1105). However, due to the imbalance nature of this dataset with ~10 more 469 

samples in the DVT class than in the PE class, we applied the edited nearest neighbors 470 

(ENN) algorithm, an under sampling method usually used in the field of pattern 471 

recognition or classification in presence of unbalanced samples [16]. This method relies 472 

on under sampling unit of analysis, in our case individuals, from the majority class by 473 

removing the most heteregenous units. It consists in computing the Euclidian distance 474 

between each pair of individuals from their proteomics data and to remove samples 475 

whose clinical phenotype (here DVT) is not consistent with that of his/her k nearest 476 

neighbors (k=3 in this work). This led us to the selection of the so called ANN dataset 477 

composed of N = 497 DVT and N = 95 PE patients for building our ANN model. 478 
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 479 

Step3: Derivation of an ANN model for PE prediction.  480 

To build our ANN model, the ANN dataset was divided into a training set composed of 481 

576 patients (487 DVT and 89 PE) and a testing set of 16 patients (10 DVT and 6 PE), the 482 

latter being used for testing the accuracy of the ANN model derived from the former. 483 

This allocation was chosen so that the number of PE cases used for training was 484 

sufficiently large. 485 

Because the application of a standard ANN methodology to our training set would 486 

lead to instable network for predicting PE due to the imbalance nature of the input data 487 

with ~5 times more DVT than PE patients, an interative ANN framework was adopted:  488 

At each iteration i,  489 

- A random sample of 30 PE patients and 100 DVT patients is selected from the 490 

training set and a sample of 70 synthetic PE samples are generated using the ADASYN 491 

algorithm [48]. ADASYN is an adaptive synthetic data generation method where new 492 

samples are generated based on the weighted distribution for minority class samples 493 

with two main advantages, resolving data imbalance and forcing classifiers to be more 494 

sensitive to the minority class. This strategy led to a balanced dataset Di of 100 PE and 495 

100 DVT (synthetic) patients on which a ANN is built. 496 

- Using the Di dataset further splitted randomly into  90%/10% training/testing 497 

subsamples, a two hidden-layers feed forward neural networks was implemented. The 498 

first hidden layer has 395 neurons corresponding to the number of input (proteomic & 499 

biological) variables, the second layer 128 while the output layer consisted in 2 neurons, 500 

representing the DVT and PE classes respectively. The number of neurons were selected 501 

by trial and error approach under the constraint that the number of neurons shall be 502 

smaller than the number of input variables and higher than the number of output classes 503 

The Rectified Linear Unit (ReLU) function [49]was used to activate hidden layers 504 

while the softmax activation function [50]was used to generate class probabilities in the 505 

output layer.  506 

After fixing the number of nodes, layer and activation function, the process of training 507 

the neural network can start. Starting from random weights, forward propagation is 508 

used to generate the output of all nodes at all layers while moving from the input to the 509 

output layers. The generated final output is compared to the observed class phenotype 510 

and an error is calculated using the cross-entropy function [51]. Iteratively, this error 511 
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was then backpropagated using a gradient descent algorithm [52] (with learning of 0.01 512 

and batch size of 32) to update weights according to their contribution to the error. In 513 

order to reduce over-fitting and obtain the best performing model, the callback feature 514 

proposed by the Keras open-source library (https://keras.io/) that was employed for 515 

developping this ANN framework  was used.  516 

 517 

Step4: Local Interpretable Model-Agnostic Explanations (LIME)  518 

As a neural network is often considered as a black box without telling much about 519 

which, and how, input variables contribute the most to the predictive model, the LIME 520 

methodology [17] was applied to the final ANN model obtained at Step 3 in order to 521 

inform about which input variables (i.e plasma proteoin levels) contribute top PE risk 522 

prediction and what are the relative weights using a linear approximation of the ANN 523 

model.  524 

 525 

Genome Wide Genotyping 526 

As previously described [15,44], both MARTHA and EOVT participants have been 527 

genotyped with high-density genotyping Illumina arrays and imputed for single 528 

nucleotide polymorphisms (SNPs) from the 1000G Phase I Integrated Release Version 2 529 

Haplotypes using MACH (v1.0.18.c) and Minimac (release 2011-10-27) imputation 530 

software.  531 

 532 

Genome-Wide Association analysis (GWAS) 533 

Imputed SNPs with imputation quality r2 greater than 0.5 and with minor allele 534 

frequency (MAF) greater than 0.01. were tested for association with the LIME predictor 535 

derived in 574 MARTHA participants. Associations with statistical p-value < 5 x 10-8 536 

were considered as genome-wide significant.  537 

 538 

Genetic Association Analysis with PE risk 539 

The candidate SNP identified from the GWAS on the LIME predictor was tested for its 540 

association with PE risk, both in MARTHA and EOVT participants. For this, we employed 541 

the Cochran-Armitage trend for association applied to the best guessed genotypes 542 

inferred from the imputed allele dosage at the SNP of interest. Meta-analysis of the 543 

association results observed in MARTHA and EOVT was conducted using a fixed-effects 544 
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model based on the inverse-variance weighting and heterogeneity of association 545 

between the two studies was assessed by the Cochran-Mantel-Haenszel test statisticsn-546 

Mantel-Haenszel test statistic [53] 547 

 548 

Whole Genome Sequencing 549 

From the whole MARTHA study, 200 patients had been selected for whole genome 550 

sequencing. These patients were selected to have experienced unprovoked VTE. Besides, 551 

these patients should have family history of VTE or multiple unprovoked VTE events, such 552 

clinical patterns being compatible with the existence of an underlying VTE causing genetic 553 

defect. Genomic DNA was extracted from peripheral blood, using the BioRobot EZ1 554 

workstation. The DNA concentration was determined using the Qubit assay kit 555 

(Thermofisher). Whole genome sequencing was performed at the Centre National de 556 

Recherche en Génomique Humaine (CNRGH, Institut de Biologie François Jacob, Evry, 557 

FRANCE). After a complete quality control, 1µg of genomic DNA was used for each sample 558 

to prepare a library for whole genome sequencing, using the Illumina TruSeq DNA PCR-Free 559 

Library Preparation Kit, according to the manufacturer's instructions. After normalisation and 560 

quality control, qualified libraries were sequenced on a HiSeqX5 instrument from Illumina 561 

(Illumina Inc., CA, USA) using a paired-end 150 bp reads strategy. One lane of HiSeqX5 562 

flow cell was used per sample specific library in order to reach an average sequencing depth 563 

of 30x for each sequenced individual. Sequence quality parameters have been assessed 564 

throughout the sequencing run and standard bioinformatics analysis of sequencing data was 565 

based on the Illumina pipeline to generate FASTQ file for each sample. FastQ sequences were 566 

aligned on human genome hg37 using the BWA-mem program [54]. Variant calling was 567 

performed using the GATK HaplotypeCaller (GenomeAnalysisTK-v3.3-0, 568 

https://software.broadinstitute.org/gatk/documentation/article.php?id=4148). Single-sample 569 

gVCFs files were then aggregated using GATK CombineGVCFs and joint genotyping calling 570 

performed by GATK GenotypeGVCFs. Recalibration was then conducted on the whole gVCF 571 

following GATK guidelines. Following GATK VQSR, we retained single nucleotide variants 572 

in the 99.5% tranche sensitivity threshold and indels in the 99% tranche sensitivity threshold 573 

for further analysis and annotated them using Annovar [55] . 574 

As a strategy to identify candidate variants that could explain the VTE phenotype in 575 

individuals with discordant class prediction, we first prioritized variants that were likely 576 

functional (stop loss/stop gain, frameshift, non-synonymous and splicing variants), located in 577 

known VTE associated genes (ABO, ARID4A, C4BPB, EIF5A, F2, F3, F5, F8, F9, F13A1, 578 
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FGG, GRK5, MPHOSPH9, MAST2, NUGCC, OSMR, PLAT, PLCG2, PLEK1, PROC, 579 

PROS1, SCARA5, SERPINC1, SLC44A2, STAB2, STX10, STXBP5, THBD, TSPAN15, 580 

VWF) [56–58], that have not been reported or at a low frequency (<1‰) in public genomic 581 

data repositories (dbSNP, GnomAD) and that was present in only one of the 200 sequenced 582 

patients. If no candidate variants was identified in known VTE genes, we extended our search 583 

to whole coding genes and also took into account the predicted deleteriousness of selected 584 

candidates using in silico tools such as SIFT, PolyPhen and CADD-v1.2 [59] to further reduce 585 

the number of candidates. 586 

 587 
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