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Abstract

Testing and isolation of cases is an important component of our
strategies to fight SARS-CoV-2. In this work, we consider a compart-
mental model for COVID-19 including a nonlinear term representing
symptom-based testing. We analyze how the considered clinical spec-
trum of symptoms and the testing rate affect the outcome and the
severity of the outbreak.

1 Introduction

Since a cluster of pneumonia cases of unknown origin was discovered in
Wuhan, China in late 2019, COVID-19, the disease caused by the novel
coronavirus SARS-CoV-2, has spread around the world giving rise to a pan-
demic. By early August 2020, around eighteen million cases and seven
hundred thousand deaths have been reported worldwide [1].

One of the key difficulties in controlling COVID-19 is that many in-
fections result in mild symptoms or none at all, making the detection of
infectious COVID-19 cases particularly challenging [2]. Moreover, a con-
siderable portion of secondary infections, generated by those infectors who
later develop symptoms, have been observed to take place before symptom
onset, i.e. pre-symptomatic transmission occurs [3, 4, 5].

COVID-19 is classified as a respiratory disease, accordingly, it mainly af-
fects the respiratory tract (similarly to other coronaviruses) but other classes
of symptoms have been observed as well, e.g. affecting the gastrointestinal
[6] and musculoskeletal systems [7]. In particular, the loss of smell (anos-
mia) and/or taste (ageusia) could be a key indicator symptom of COVID-19
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[8]. We summarize findings of some recent studies regarding COVID-19
symptoms and their prevalence among clinical COVID-19 cases in Table 1.

Table 1: Several key symptoms of COVID-19 and their prevalence among
clinical COVID-19 cases.

Name Prevalence Reference

Cough 67.8% [9]
Fatigue 38.1% [9]
Sputum production 33.7% [9]
Diarrhea 3.8% [9]
Fever 33.7% [10]
Anosmia 70.2% [8]
Ageusia 65% [10]

The primary confirmation of COVID-19 infection, as of now, happens via
real-time reverse transcription polymerase chain reaction (rRT-PCR) based
testing of samples taken from e.g. nasopharyngeal or oropharyngeal swabs,
sputum, lower respiratory tract aspirates, etc [11].

A classical approach for modeling and understanding epidemics is con-
structing a system of ordinary differential equations (ODE) having a com-
partmental structure. Also, such models are widely utilized as an important
tool of assessing the effectiveness of various control strategies [13, 14].

In particular, the transmission dynamics of the spread of COVID-19
has been analyzed via compartmental ODE models in a vast number of
studies. Yang and Wang [15] investigated the outbreak of COVID-19 in
Wuhan, China considering multiple transmission pathways in the infection
dynamics. Non-constant transmission rates were employed, changing with
the epidemiological status and environmental conditions reflecting the im-
pact of the ongoing disease control measures. Boldog et al. [16] developed
a tool comprised of three major components to assess the risk of global
spread of COVID-19 with origin from Wuhan. A time-dependent SEIR
model (Suceptible-Exposed-Infectious-Removed) was used to estimate the
cumulative number of cases in China from which probability distributions
were obtained for the number of potential disease spreaders outside China.
Finally, for a given destination country, the initial spread of COVID-19 was
approximated via a Galton-Watson process. Berger et al. [17] utilized an
extended SEIR model to understand the role of testing and case-dependent
quarantine with fixed rates and compared simple testing and quarantine
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policies. Weitz [18] developed an extended, age-stratified model analyzing
both asymptomatic and severe courses of the disease in order to estimate
the burden on the healthcare system by modeling hospital and intensive
care unit (ICU) bed needs. Röst et al. [19] studied an age-stratified com-
partmental model and presented a comprehensive analysis exploring several
post-lockdown scenarios with age-specific measures, seasonality, and spatial
heterogeneity.

In this work, we consider an extended SEIR-type compartmental model
for the transmission dynamics of COVID-19. We incorporate symptom-
based testing of patients and isolation upon positive result i.e. removal
from the infectious chain. The clinical symptoms that trigger the testing
of individuals is referred to as indicator symptom. The force of testing is
defined as the rate at which infected individuals are tested, see Sect. 2. It
is described by a nonlinear function of the state of the epidemic and of all
individuals displaying the indicator symptom at a given time, with or with-
out COVID-19 infection, hence, it is considerably different from previous
approaches. Our goal is to understand the impact, and especially the lim-
itations of this testing strategy, hence we model neither contact-tracing of
patients with positive tests nor the testing of a fraction of non-symptomatic
contacts, both of which are common and efficient improvements and result
in removal of additional patients from the infectious chain. Moreover, we
assume perfect testing, that is we do not consider false positive or false
negative results.

According to the current understanding of the disease, none of the symp-
toms are specific solely for COVID-19, thus, the chosen indicator symptom
may and will be present amongst other individuals not infected with SARS-
CoV-2. All patients, with or without COVID-19 infection, displaying the
indicator symptom form the so-called primary symptom pool, whilst, those
without COVID-19 infection (but with the same indicator symptom) are
members of the secondary symptom pool, see Sect. 2. Naturally, choosing
the indicator symptom for a testing campaign should be affected by its preva-
lence and by the historical statistics for the size of the associated secondary
symptom pool. We emphasize that the latter might undergo seasonal vari-
ations as is typical with respiratory symptoms peaking in influenza season
[20]. This is a common but not uniform feature of COVID-19 symptoms, e.g.
gastrointestinal symptoms might show no seasonal variations, depending on
age-groups [21].

The chapter is structured as follows. Sect. 2 presents the compartmental
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epidemic model and its parametrization. In addition, the next generation
matrix computations are included that are used to derive formulae for the
reproduction number. Then, Sect. 3 establishes several boundedness and
monotonicity-type results on key characteristics of the epidemic model. The
results of numerical simulations are discussed in Sect. 4. Finally, we present
our conclusions in Sect. 5.

2 The epidemic model of indicator symptom-based
testing

To assess the effectiveness of indicator symptom based testing in controlling
the spread of COVID-19, we developed a compartmental population model
based on the general SEIR formulation without vital dynamics.

We divide the population into five classes: susceptible (S), latent (L),
pre-symptomatic (P ), infected (I), and removed (R). Susceptibles are those
who can get infected by SARS-CoV-2. The members of the latent com-
partment L have already been infected, but are not yet infectious nor do
they display any symptoms. After that, latent individuals move to the pre-
symptomatic class P meaning that, due to the increased viral load, they
are able to infect susceptible individuals, even though, they still not display
any symptoms. The existence of pre-symptomatic transmission is of par-
ticular importance in analyzing COVID-19 as it is one of the key features
of the disease that makes controlling the outbreak difficult. Then, in our
model, after the incubation period, at disease onset, members of P move
to the infected class I. We note that another challenge with COVID-19 is
that many patients will develop mild symptoms or none at all, yet being
infectious. It is thus customary to collect these individuals in a separate
compartment of asymptomatic individuals [18, 19]. Nevertheless, this dis-
tinction is not needed in our model as we will explain later in this section.
Finally, patients transit to the removed compartment R by either recovery
or by isolation after testing positive for COVID-19.

The above considerations are formulated in the following system of or-
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dinary differential equations

S′(t) = −β S(t)

N(t)
(P (t) + I(t)) ,

L′(t) = β
S(t)

N(t)
(P (t) + I(t))− αL(t),

P ′(t) = αL(t)− ρP (t),

I ′(t) = ρP (t)− γI(t)− k pI(t)

pI(t) + σ
,

R′(t) = γI(t) + k
pI(t)

pI(t) + σ
.

(1)

The disease transmission rate is denoted by the parameter β, the incubation
period is α−1+ρ−1, which is the sum of the duration of the latent period and
the pre-symptomatic period, and, finally, γ−1 stands for the symptomatic
infectious period. The transmission diagram of (1) is depicted on Fig. 1.

S L P I R

β
1
N

(P + I)
α ρ γ

k
p

pI + σ

Figure 1: The transmission diagram of the SLPIR model (1). Arrows rep-
resent the transition rates between the compartments.

The force of infection is the rate associated with the outward flow from
S to L, namely,

λ = β
1

N
(P + I).

The indicator symptom-based testing is represented by the term

k
pI

pI + σ
,

where k gives the number of tests done per unit time also referred to as
the testing rate, the probability p describes how likely is that a member
of compartment I displays the chosen indicator symptom. Note that this
probability removes the need for an asymptomatic/mild compartment as it
is straightforward to adjust p to account for all COVID-19 patients. The
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final term σ (possibly time-dependent) represents those individuals who are
not infected by COVID-19, yet they show the very same symptom we base
our testing upon. In this chapter, we refer to σ as the secondary symptom
pool, whereas, the primary symptom pool Σ is composed of all members (with
or without COVID-19 infection) of the population displaying the indicator
symptom at a given time, that is

Σ = pI + σ.

The testing rate k has a natural upper bound, namely,

k ≤ Σ

as we solely test patients displaying the indicator symptom. By reformulat-
ing the testing term as

k
pI

pI + σ
=
k

Σ
· p · I,

it is interpreted as the removal of the k
Σ fraction of COVID-19 patients

displaying the indicator symptom.
The rate of the testing-induced outward flow from I to R is referred to

as the force of testing given by

τk,p,σ = k
p

pI + σ
. (2)

Finally, we introduce the positivity rate of testing as

θ =
pI

pI + σ
, (3)

that may serve as a real-time indicator of the severity of an ongoing epidemic,
and the adequateness of the testing rate.

Note that (1) is, in part, simpler than many other variants that have
been used to assess the spread of COVID-19 as the infectious and latent
compartments are not split into multiple stages [16, 18, 19, 22, 23]. However,
these additional classes carry little significance for the testing strategies and
to the analysis presented in this chapter. Hence, we chose to use this less
complicated structure so that the emphasis is put on the testing itself.

We have parametrized (1) following [14]. From the infectivity profile of
COVID-19 [3, 4, 5], we can see that most transmissions occur between 3
days prior to and 4 days after symptom onset, with the pre-symptomatic
infection fraction being 43.7%. Thus, it is a reasonable approximation to set
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the pre-symptomatic period ρ−1 as 3 days, and the symptomatic infectious
period γ−1 as 4 days, with the same infectiousness β during this period.
The estimated mean incubation period of COVID-19 is 5.5 days [24], thus,
the latent period α−1 is taken as 2.5 days, see Table 2. The choice of the
transmission rate β is discussed in Sect. 2.1 and the testing parameters k,
p, σ are varied throughout the analysis.

Table 2: Parameters of the SLPIR model

Parameter Notation Value

Transmission rate β Sect. 2.1.
Latent period α−1 2.5 days
Pre-symptomatic (infectious) period ρ−1 3 days
Infectious period γ−1 4 days
Testing rate k varies
Secondary symptom pool σ varies
Probability of symptom amongst COVID-
19 patients

p varies
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2.1 Choosing the transmission rate β

Now, we concentrate on establishing the relationship between the transmis-
sion rate β in (1) and the basic reproduction number R0 of the epidemic.
We shall follow the terminology and techniques of [25] to compute the Next
Generation Matrix (NGM) and the R0 as its spectral radius.

First, let us consider the infectious subsystem of (1), namely, equations
describing L(t), P (t), and I(t). Linearizing this subsystem w.r.t. the disease
free equilibrium yields the linearized infectious subsystem

X ′(t) = (F + V) ·X(t),

where the matrices F and V are referred to as the transmission part and
transitional part, respectively; the state is described by

X(t) =

 L(t)
P (t)
I(t)

 .
The transmission matrix F has the form

F =

0 β β
0 0 0
0 0 0

 ,
and the transitional matrix V is, clearly, written as

V =

−α 0 0
α −ρ 0
0 ρ −γ

 .
The basic reproduction number R0 is then obtained by computing the spec-
tral radius of −FV−1 that is

R0 = ρ(−FV−1).

Therefore, as

−FV−1 =

βγ + β
ρ

β
γ + β

ρ
β
γ

0 0 0
0 0 0

 ,
it follows that

R0 = β

(
1

ρ
+

1

γ

)
,
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Table 3: The basic reproduction number R0 and the corresponding trans-
mission rate β

R0 2.2 1.8 1.3 1.1

β 0.338 0.277 0.2 0.169

providing a scheme for computing β. We list the corresponding transmission
rates for the sample values of R0 used for illustrations in Table 3.

The basic reproduction number R0 is descriptive for the epidemic at the
very beginning of an outbreak and in absence of control measures. For sim-
plicity, we use the phrase basic reproduction number even if social distancing
is in place, and by control measure in this chapter we mean the testing, the
absence of which is modeled by k = 0. Similar key characteristics are the
control reproduction number Rc and the effective reproduction number Rt.
The former describes the epidemic incorporating the effect of interventions,
in our case indicator symptom-based testing, but still at the beginning of
the outbreak. In contrast, the latter is suitable to measure the spread of the
disease as the epidemic is progressing. The corresponding formulae may be
obtained via analogous computations to those above as

Rc = β

(
1

ρ
+

1

γ + k pσ

)
= β

(
1

ρ
+

σ

σγ + kp

)
(4)

and

Rt = β
S(t)

N

(
1

ρ
+

1

γ + τk,p,σ

)
= β

S(t)

N

(
1

ρ
+

Σ

Σγ + kp

)
= β

S(t)

N

(
1

ρ
+

1

γ + k
Σp

)
.

As the testing rate k is bound by the size of the primary symptom pool Σ,
it is apparent that both of the above reproduction numbers satisfy

β
S

N

(
1

ρ
+

1

γ + p

)
≤ Rc,Rt ≤ R0. (5)

3 Dependence of key epidemic quantities on the
testing strategy

This section analyzes the symptom-based testing strategy with emphasis
on how the force of testing and the effective reproduction number are af-
fected by the particular choice of strategy. Repeatedly, we shall utilize the
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monotonicity of

f(x) =
a+ x

b+ x
, x1 ≤ x2 ⇒ f(x1) ≤ f(x2),

where 0 < a ≤ b and 0 ≤ x.

First, we summarize trivial monotonicity properties of the force of testing
τk,p,σ.

Proposition 3.1. Given a fixed state of (1), the force of testing τk,p,σ is

a) monotonically increasing in k,

b) monotonically increasing in k
Σ .

In particular, as τk,p,σ = kp
Σ , if k

Σ = const, then τk,p,σ = const, i.e. the
force of testing strongly correlates to what portion of the primary symptom
pool is being tested.

As the epidemic is progressing, we may want to maintain the force of
testing by increasing the testing rate k that is testing the same portion of
individuals displaying the indicator symptom. Clearly, the required adjust-
ment is linear w.r.t. the size of compartment I, thus, the given constant
force of testing may be maintained as long as other logistical constraints
make increasing the testing rate feasible.

The choice of the indicator symptom that serves as a basis for select-
ing patients for testing is clearly of importance. Different indicator symp-
toms typically have different associated probabilities and secondary symp-
tom pools of non-equal sizes. Thus, it is natural to ask what (p, σ) pair is
optimal.

Proposition 3.2. The force of testing τk,p,σ is monotonically decreasing in
σ
p .

Proof. Clearly,

k
p1

p1I + σ1
= τk,p1,σ1 ≤ τk,p2,σ2 = k

p2

p2I + σ2

is equivalent to
1

I + σ1
p1

≤ 1

I + σ2
p2

that, in turn, simplifies to
σ2

p2
≤ σ1

p1

yielding the required result.
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As we have seen, keeping the fraction k
Σ constant results in constant

force of testing τk,p,σ. The authorities might obtain some data on the size of
the primary symptom pool Σ during an outbreak and use this information
for adjusting k on-the-go. When planning for a second wave, historical data
on the size of the secondary symptom pool σ may give information on the
required level of preparedness. Namely, if we know that σ has now a different
size compared to the former outbreak, e.g. due to a seasonal variation, we
may utilize the size difference of the secondary symptom pools as a guidance
for the need for testing capacities as follows.

Proposition 3.3. Given a fixed state of (1), consider two secondary symp-
tom pools, 0 ≤ σ1 ≤ σ2 for the same indicator symptom that appears amongst
members of the compartment I with probability p. Let k1 and k2 be two test-
ing rates corresponding to the testing strategies for σ1 and σ2, respectively.
Then,

k2

k1
=
σ2

σ1

implies
τk1,p,σ1 ≤ τk2,p,σ2 .

Proof. As the state is fixed, the two strategies having equal effect corre-
sponds to the equality

k1
p

pI + σ1
= τk1,p,σ1 = τk2,p,σ2 = k2

p

pI + σ2

that simplifies to
k2

k1
=
pI + σ2

pI + σ1
.

Then, using the aforementioned monotonicity of f(x), we obtain

k2 ≤
σ2

σ1
k1.

Finally, the monotonicity of τk,p,σ in k completes the proof.

Recall, that the force of testing τk,p,σ explicitly appears in the formula
for the effective reproduction number Rt as

Rt = β
S

N

(
1

ρ
+

1

γ + τk,p,σ

)
.
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Accordingly, Rt may be kept decreasing by varying k as discussed in the first
half of this section that is by keeping τk,p,σ constant or increasing. However,
in practice, increasing k may eventually become infeasible. At that point, the
force of testing will decrease, hence, Rt may increase temporarily, within the
bounds given in (5), despite the constantly decreasing number of susceptible
individuals S(t).

A reasonable goal for the authorities is to keep Rt close to a designated
value, ideally close to 1 to suppress the epidemic. Running estimates of the
actual Rt might be obtained [19, 27, 28], hence, we investigate if, by an
increase of the testing rate, we can alter Rt as desired.

Proposition 3.4. Let 0 ≤ k1 ≤ k2 be two testing rates. Consider an epi-
demic described by (1) with daily testing rate k1, and the associated effective
reproduction number Rt(k) as a function of k.

Then, the ratio of the effective reproduction numbers corresponding to
altering the testing rate from k1 to k2

r =
Rt(k2)

Rt(k1)

satisfies the following inequality

max

{
k1

k2
,

γ

ρ+ γ

}
≤ r ≤ 1.

Proof. The right bound is trivial as Rt is monotonic in k. Now, observe
that

r =

Σ
k2p+Σγ + 1

ρ

Σ
k1p+Σγ + 1

ρ

.

Then,

r =

Σρ+Σγ+k2p
k2pρ+Σγρ

Σρ+Σγ+k1p
k1pρ+Σγρ

=
Σ(ρ+ γ) + k2p

Σ(ρ+ γ) + k1p
·k1pρ+ Σγρ

k2pρ+ Σγρ
=

Σ(ρ+ γ) + k2p

Σ(ρ+ γ) + k1p
·k1p+ Σγ

k2p+ Σγ
.

The first term is ≥ 1, thus,

r ≥ k1pρ+ Σγρ

k2pρ+ Σγρ
≥ k1p

k2p
=
k1

k2

using the monotonicity of f(x) noted at the beginning of this section.

12

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 14, 2020. ; https://doi.org/10.1101/2020.10.11.20211037doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.11.20211037
http://creativecommons.org/licenses/by-nc-nd/4.0/


Now, consider reordering the product as

r =
Σ(ρ+ γ) + k2p

k2p+ Σγ
· k1p+ Σγ

Σ(ρ+ γ) + k1p
.

Again, the first term is ≥ 1, therefore,

r ≥ k1p+ Σγ

Σ(ρ+ γ) + k1p
≥ Σγ

Σ(ρ+ γ)
=

γ

ρ+ γ

holds using, again, the monotonicity of f(x).
Combining the two inequalities above completes the proof.

The implications of Prop. 3.4 on goals for the testing strategy are rather
important as they point out some hard limitations. Clearly, as

0.43 ∼ γ

ρ+ γ
,

no matter our testing capacity or indicator symptom, we may not suppress
the epidemic any further. As an example, if our current estimates for Rt are
above 2.4, then we cannot expect the pure indicator symptom-based testing
strategy (without contact-tracing) to be able to suppress the epidemic as
2.4 · 0.43 ∼ 1.03. Additionally, as the indicator symptom limits our testing
rate to k ≤ Σ = pI + σ, we obtain another hard constraint, namely,

r ≥ k1

Σ

that is the ratio describing what proportion of the primary symptom pool
is being tested directly limits the factor which the effective reproduction
number may be decreased with via larger testing rates. Finally, we note
that reordering the inequality yields k2 ≥ k1

r as a lower requirement for the
required testing rate – given that the reduction by factor r is achievable.

We have discussed from various aspects that increasing the testing rate
k decreases the effective reproduction number Rt that is it has a positive
effect on the severity of the epidemic. Nevertheless, this positive effect is
gradually decreasing as described by the following Proposition.

Proposition 3.5. Consider the logarithmic derivative of Rt w.r.t. the test-
ing rate k that is

R∗t =
∂

∂k
log(Rt).

Then, R∗t is negative and monotonically increasing in k.
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Proof. Clearly,

R∗t =
∂Rt
∂k

Rt
=

−Σρp

(kp+ Σγ)(kp+ Σ(ρ+ γ)
≤ 0.

Then,
∂R∗t
∂k

=
(Σρp)(2kp+ Σp(ρ+ 2γ))

(kp+ Σγ)2(kp+ Σ(ρ+ γ)2
≥ 0

completes the proof.

This logarithmic derivative is a measure of the relative change inRt w.r.t.
the testing rate k. Prop. 3.5 states that the relative change is decreasing in
absolute value as k increases.

4 Numerical simulations

This section presents the results from several numerical simulations demon-
strating the impact of the key parameters of the epidemic model (1). All
simulations were executed with a sample population of size 10, 000, 000 with
initial conditions placing 1000 individuals into the class L and the rest into
S.

First, Sect. 4.1 presents the numerical analysis of the control reproduc-
tion number Rc. Then, we investigate the connection between the progress
of an outbreak and the positivity rate of testing in Sect. 4.2. We study the
implications of maintaining a constant force of testing τp,k,σ in Sect. 4.3. The
significance of the seasonality of the secondary symptom pool σ is analyzed
in Sect. 4.4. Finally, in Sect. 4.5, we assess how an increased testing rate
may delay the progress of COVID-19.
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4.1 The effect of testing on the control reproduction number
Rc

The control reproduction number Rc, given in (4), describes the initial
progress of the epidemic at its very beginning. Fig. 2 demonstrates what
effect of indicator symptom-based testing has on Rc for various values of R0

and σ.
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Figure 2: The effect of indicator symptom-based testing on Rc for p = 0.25.

Clearly, larger maximal testing rate k results in lower Rc. The size of
the secondary symptom pool σ apparently greatly affects the decrease we
may achieve by larger k.

4.2 The progress of an outbreak and the positivity rate θ

Recall that the positivity rate θ, see (3), is a key feature of the testing
strategy that may be readily observed during an outbreak. If the efforts
aimed at suppressing COVID-19 are not successful, the rate θ will increase
as the term pI(t) will eventually dominate the secondary symptom pool σ.
Fig. 3 demonstrates that the changes in θ are in close connection with the
dynamics of I(t). This relationship between θ and I(t) carries a certain
benefit for the authorities as the increase of the positivity rate precedes that
of the epidemic curve, hence, it may serve as a primary indicator for the
progress of an epidemic.
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Figure 3: Evolution of the positivity rate during outbreaks of different mag-
nitudes. The prevalence of the indicator symptom is p = 0.1 with a maximal
testing capacity k = 10,000 and secondary symptom pool σ = 10,000.

4.3 Implications of constant force of testing τp,k,σ

As we have discussed in Sect. 3, a constant force of testing τp,k,σ is achieved
by testing a fixed portion of the primary symptom pool Σ, i.e. k

Σ is constant.
For an ongoing epidemic this results in a constant increase in the required
daily testing rate k. We have analyzed the maximal required testing capacity
w.r.t. COVID-19 patients in Fig. 4.

Note that for constant τp,k,σ, the system (1) is independent of the sec-

16

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 14, 2020. ; https://doi.org/10.1101/2020.10.11.20211037doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.11.20211037
http://creativecommons.org/licenses/by-nc-nd/4.0/


1.0 1.2 1.4 1.6 1.8 2.0

0.2

0.4

0.6

0.8

1.0

12.43

28.79

66.69

154.47

357.81

828.82

1919.85

4447.07

10301.04

23860.99

Figure 4: Required testing capacity to maintain a constant force of testing
τp,k,σ. The vertical axis describes the desired portion for testing the primary
symptom pool and the horizontal axis represents the underlying basic re-
production number R0. The prevalence of the indicator symptom is set to
p = 0.1.

ondary symptom pool σ, thus, this requirement must be adjusted based on
historical data on the size of σ to obtain the total maximal required capacity.

4.4 Seasonality of the secondary symptom pool σ

Now, let us investigate the epidemic curves in case of a periodically vary-
ing secondary symptom pool. To that end, we employ a commonly used
seasonality function

ω(t) = 365 · 10
b cos

(
2π(t−c)

365

)
∫ 365

0 10
b cos

(
2π(t−c)

365

)
dt

,

with b = 0.5 and consider σ = σavg ·ω(t). The parameter c is used to model
shift in the seasonality, i.e. to analyze the differences between an outbreak
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Figure 5: The seasonality function ω(t) with c = 183. This corresponds to
minimal secondary symptom pool at the beginning of an outbreak.

starting at minimal or maximal secondary symptom pools. The function
ω(t) is displayed on Fig. 5 for the case of minimal secondary symptom pool
at time t = 0 that is for a shift c = 183.
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Figure 6: The impact of seasonal σ with minimal size at the beginning
of the outbreak. R0 = 1.9, p = 0.1, k = 10,000, σ = 10,000. The blue
curve corresponds to assuming a constant (average) secondary symptom
pool, whilst, the red curve depicts the effect of seasonality.

Fig. 6 demonstrates the effect of having seasonality in σ and the COVID-
19 outbreak beginning around the minimal size of the secondary symptom
pool. This comparison shows that we may expect a slight, but notable, delay
in this scenario compared to the non-seasonal setting.

A similar shift in the opposite direction takes place if we consider the
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beginning of the outbreak to coincide with the maximal state of σ, see Fig. 7.
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Figure 7: The impact of seasonal σ with maximal size at the beginning
of the outbreak. R0 = 1.9, p = 0.1, k = 10,000, σ = 10,000. The blue
curve corresponds to assuming a constant (average) secondary symptom
pool, whilst, the red curve depicts the effect of seasonality.

4.5 The effect of varying the testing rate k

Increasing the testing rate k has a beneficial effect. We demonstrate this
via transitional plots on Fig. 8. Note that a larger maximal k both delays
in time and decreases in size the peak of the epidemic.
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Figure 8: The impact of increasing the testing rate from 1,000 (red) to 10,000
(blue) using parameters R0 = 1.6, p = 0.1, 1, 000 ≤ k ≤ 10,000, σ = 10,000.
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5 Conclusions

We have investigated the effects of indicator symptom-based testing on
COVID-19. The benefits of increasing the testing rate k are demonstrated,
suggesting that, as long as other logistical constraints allow, the authori-
ties should aim to keep it as high as possible. The choice of the indicator
symptom is of importance. We have shown that not just its prevalence p
should be taken into account but the size and seasonality of the associated
secondary symptom pool σ as well. Note that the analysis in this chapter
did not directly consider contact/transmission-reducing nonpharmaceutical
interventions (NPIs), i.e. curfew, closures of schools, wearing of masks, etc.
Naturally, these interventions would affect not just the spread of COVID-19,
but of other diseases, hence, potentially decreasing the secondary symptom
pool σ as well. Such NPIs may be fitted into the presented framework by
varying the basic reproduction number R0 and σ, as seen in Sect. 4.1.

The quality of tests was not considered. The false negativity rate could
be easily modeled by a reduction factor in k. Handling the false positivity
rate is more involved as susceptible individuals (susceptible to COVID-19,
but still displaying the indicator symptom, i.e. members of σ) may be tem-
porarily removed from the infectious chain just to reappear later, after a
precautionary quarantine. However, rRT-PCR-tests have very high speci-
ficity, hence, false positives are rare.

We have modeled the transmission of COVID-19 using identical rates
for the presymptomatic P and symptomatic I classes. This choice is influ-
enced by the current understanding that according to the inferred infectivity
profiles, the transmissibility prior to and after the onset of symptoms is of
similar magnitude, and the ratio of presymptomatic transmissions is almost
50% [3, 4, 5]. Nevertheless, using different rates for the two compartments
would not alter the computations heavily.

It is clear from the numerical simulations that indicator symptom-based
testing, alone, cannot prevent an outbreak. It has a modest effect in de-
laying and slowing down the epidemic. Thus, symptom based testing alone
may have clinical importance by providing guidance about how to treat a
given patient, but its impact as epidemic mitigation is negligible. There-
fore, in practice, authorities should opt to perform agile contact-tracing
based on positive COVID-19 tests. The effect of this additional intervention
is not included in our analysis. Nevertheless, it is safe to claim that the
addition of contact-tracing would considerably increase the benefits of any
testing strategy, in particular, some individuals would get removed from the
presymptomatic compartment P and the latent compartment L as well via
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additional testing or general quarantine for contacts of COVID-19 patients
with positive test result.

In summary, testing and isolation of cases is a key tool in combating the
pandemic. However, symptom-based testing alone is not sufficient to control
COVID-19. To significantly ease the disease burden on the society, it must
be used in combination with other measures.
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