
   

Understanding the Los Angeles County Coronavirus Epidemic: The Critical Role of 

Intrahousehold Transmission 

 
Jeffrey E. Harris MD PhD*†   October 12, 2020 
 

Abstract: We tracked the course of the COVID-19 epidemic among the approximately 300 

communities comprising Los Angeles County. The epidemic, we found, had three distinct 

phases. During Phase I, from early March through about April 4, initial seeding of infection in 

relatively affluent areas was followed by radial geographic extension to adjoining communities. 

During Phase II, which continued to about July 11, COVID-19 cases continued to rise at a slower 

rate, and became increasingly concentrated in four geographic foci of infection across the 

county. This phase saw changes in two indicators of social mobility: the proportion of location-

tracked smartphones staying at home, and the number of smartphones visiting a gym. For both 

indicators, those communities with a larger reduction in social mobility during April reported 

fewer new COVID-19 cases in May. During Phase III, COVID-19 incidence only gradually 

declined, remaining as high as the incidence seen at the end of Phase I. Across communities, the 

prevalence of households at high risk for intergenerational transmission was strongly correlated 

with the persistence of continued COVID-19 propagation. This association was even stronger in 

those communities with a higher rate of gym attendance in Phase II. The map of the prevalence 

of at-risk households in Los Angeles County coincided strikingly with the map of cumulative 

COVID-19 incidence. These findings, taken together, support the critical role of household 

structure in the persistent propagation of COVID-19 infections in Los Angeles County. Public 

health policy needs to be reoriented from a focus on protecting the individual to a focus on 

protecting the household.  
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Introduction 

In this article, we attempt to identify the critical forces driving the massive outbreak of 

COVID-19 in Los Angeles County, which has to date registered over 266,000 confirmed cases 

and almost 6,400 deaths (Los Angeles County Department of Public Health 2020a).  

To that end, we bring together four critical strands of the growing research literature on 

the worldwide COVID-19 epidemic. First, investigators have attempted to reconstruct the 

transmission dynamics of local outbreaks by applying theoretical models to data on reported 

cases (Hao et al. 2020, Fang, Nie, and Penny 2020). Second, cross-sectional studies have related 

the age structure and household composition of various countries to COVID-19 incidence and 

mortality (Aparicio and Grossbard 2020, Esteve et al. 2020). Third, numerous studies have used 

the techniques of geospatial analysis to evaluate the impacts of public health policies (Franch-

Pardo et al. 2020, Dickson et al. 2020, Orea and Alvarez 2020). And fourth, researchers have 

increasingly relied on data derived from the movements of devices with location-tracking 

software to study patterns of viral propagation (Dave et al. 2020, Harris 2020c, h).  

Here, we rely upon detailed data on the dynamics of COVID-19 transmission among 

approximately 300 communities within Los Angeles County during March through September 

2020. We use geospatial modeling and mapping techniques to study the radial spread of infection 

among these contiguous communities. We merge our geospatial data with information on two 

indicators of social mobility: the number of devices staying completely at home, and the number 

of devices visiting any one of nearly two thousand gyms and fitness centers in the county. We 

further overlay these data on a community-specific measure of the prevalence of households at 

high risk for intergenerational transmission. 

Data and Methods 

Los Angeles County Department of Public Health Data 

We relied on reports of confirmed COVID-19 cases issued by the Los Angeles County 

Department of Public Health (DPH) and regularly updated on its web-based data dashboard (Los 

Angeles County Department of Public Health 2020b). At the global county level, the dashboard 

provided the full history of cumulative cases by date of testing from March 1 through September 

19, 2020, the cutoff date for this study. 
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At the detailed geographic level, by contrast, the dashboard showed only the cumulative 

number of confirmed cases to date. Still, relying on an online archive of contemporaneous, daily 

press releases issued by the DPH (Los Angeles County Department of Public Health 2020c), we 

were able to reconstruct the history of cumulative cases at detailed geographic level from March 

21 onward. Prior to March 16, DPH did not report any geographic breakdown of cumulative case 

counts. We further excluded reports issued during March 16–20 because a substantial proportion 

of reported cases were still under investigation or their geographic unit of origin was withheld 

because of small numbers. 

DPH employs a geographical breakdown based upon countywide statistical areas 

(CSAs), a mixed classification of independent cities such as the City of Beverly Hills, 

neighborhoods within the city of Los Angeles such as Hollywood, and unincorporated places 

such as Hacienda Heights (City of Los Angeles 2020). The DPH kindly provided a crosswalk 

between CSAs and census tracts, based upon the locations of the centroids of each census tract, 

which permitted us to link the CSAs to other census-tract-based data sources. 

SafeGraph Data 

We relied upon two data sources provided by SafeGraph: the Patterns database 

(SafeGraph Inc. 2020a), and the Social Distancing database (SafeGraph Inc. 2020b). 

The Patterns database provides information on the movements of smartphones equipped 

with location-tracking software to numerous points of interest throughout the United States. We 

previously relied upon this data source in studies of visitors to President Trump’s rally at Tulsa’s 

BOK Center on June 20, 2020 (Harris 2020k), restaurant attendance in San Antonio around the 

time of street protests during May 30 – June 11, 2020 (Harris 2020j), and attendance at bars in a 

study of COVID-19 propagation in Milwaukee and Dane Counties in Wisconsin (Harris 2020c).  

Here, we focused on a particular class of points of interest to young adults. Specifically, 

we used the Patterns location_name variable to assemble an extensive list of 1,995 gyms in Los 

Angeles County, including entities offering exercise and resistance training, Zumba, Pilates, 

yoga, boxing and martial arts, but excluding those offering only massage. For each gym, we used 

the variable visitor_home_cbgs to identify the home census block groups of all visitors during 

February through September 2020, where a device’s home is the location where it is regularly 

located overnight. Taking advantage of the census tract crosswalk provided by the Los Angeles 

County DPH, we counted the number of device owners visiting gyms over time according to 
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their home CSA. As a result of a revision in the frequency of reporting of Patterns data, we 

ended up with two time series: the numbers of gym visitors originating from each CSA for each 

week from February 10 through April 27, 2020; and the numbers of gym visitors originating 

from each CSA for each month from May through August, 2020. 

The Social Distancing database provides information on both the origin and destination 

census block groups of device holders. We previously relied upon this data source in a study of 

the movements of individuals with a home in the Queens-Elmhurst COVID-19 hot spot to 

subway stations in Queens and Manhattan during the earliest days of the epidemic in New York 

City (Harris 2020h). 

Here, we focused on an indicator of social avoidance behavior more typical of older 

persons. Specifically, we used the variable completely_home_device_count to determine the 

numbers of devices originating in each census block group that stayed completely at home 

during a particular day. Using data on the corresponding device_count as a denominator for each 

census block group, and once again taking advantage of the census tract crosswalk provided by 

DPH, we constructed a time series of the mean percentage of devices staying completely at home 

in each CSA from the week starting February2 through the week starting September 13, 2020. 

American Community Survey Data 

We relied on the 2018 public use microsample from the U.S. Census Bureau’s American 

Community Survey (ACS) (U.S  Census Bureau 2018). The nationwide database covered 

159,685 households and group living arrangements with a total of 378,817 persons. Out of the 

entire database, 41,086 households and group living arrangements with 102,092 persons were 

identified as residing in one of 69 public use microdata areas (PUMAs) within Los Angeles 

County (U.S  Census Bureau 2020b). 

We used the person records of the public use microsample to identify households with at 

least 4 persons, of whom at least one person was 18–34 years of age and at least one other person 

was at least 50 years of age. We describe these households here as at risk for intergenerational 

transmission. Among all such at-risk families in the Los Angeles County extract of the ACS, 44 

percent had 4 persons, 27 percent had 5 persons, 14 percent had 6 persons, and 15 percent had 7 

or more persons. Among the ACS’s 69 public use microdata areas (PUMAs), the median 

proportion of at-risk households was 14.9 percent.  
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Using the internal household sampling weights provided by the ACS, we then computed 

the proportion of at-risk households in each PUMA. Applying a Census Bureau crosswalk 

between PUMAs and census tracts (U.S  Census Bureau 2020a) and the DPH-provided 

crosswalk between census tracts and CSAs, we determined the corresponding proportions of at-

risk households in each CSA. Among 300 CSAs, the median proportion of at-risk households 

was 14.6 percent. By way of sensitivity analysis, we also varied the definition of an at-risk 

household, changing the age- and number-of-person cutoffs. 

Spatial Models 

We devised a spatial adaptation of a parsimonious empirical SIR (susceptible-infective-

resistant) model, similar to the model we employed in a study of COVID-19 transmission 

between younger and older persons in Florida’s most populous counties (Harris 2020e). 

To facilitate the exposition, we first review the continuous-time version of a 

parsimonious SIR model without spatial components (Harris 2020a). Let 𝑆(𝑡) denote the 

proportion of susceptible individuals at time 𝑡, 𝐼(𝑡) the proportion of infective individuals, and 

𝑅(𝑡) the proportion of resistant individuals. We assume that −�̇� = 𝛼𝑆𝐼, where �̇� = 	𝑑𝑆 𝑑𝑡⁄  

stands for the time derivative, and where 𝛼 reflects the rate at which susceptible and infective 

individuals interact, as well as the likelihood that an interaction will result in transmission. We 

further assume that 𝐼̇ = 𝛼𝑆𝐼 − 𝛽𝐼, where 𝛽 is the rate at which infectives become resistant, either 

through recovery or death. Finally, the population is assumed closed, so that �̇� + 𝐼̇ + �̇� = 1. At 

the start of an epidemic where virtually the entire population is naïve to the infectious agent, we 

have 𝑆 ≈ 1, so that −�̇�, the rate of new infections, is effectively proportional to 𝐼,	the stock of 

infectives. 

The discrete-time, empirically implementable version of this parsimonious model is as 

follows. Let 𝑦!" denote the rate of new COVID-19 cases per unit population in geographic unit 𝑖 

during time interval 𝑡, where the geographic units refer to CSAs and the time intervals refer to 

successive weeks. Let 𝑋!" denote the corresponding stock of infective individuals per unit 

population in CSA 𝑖 during week 𝑡. The equation of motion of  𝑋!" is given by 𝑋!" =

(1 − 𝛽)𝑋!,"$% + 𝑦!,"$%, where 𝛽 is the weekly depreciation rate of the stock of infectives. With a 

mean serial interval of 5.5 days (Griffin et al. 2020), we assume a weekly depreciation factor of 

1 − 𝛽 = 𝑒𝑥𝑝(−7 5.5⁄ )	= 0.28, that is, 𝛽 = 72 percent of current infectives become resistant each 
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week. We further assume that virtually all individuals are initially susceptible to infection. Given 

these assumptions, the model specification without spatial effects is 𝑦!" = 𝛼𝑋!,"$% + 𝜀!" , where 

the right-hand-side variable is constructed solely from prior weeks’ incidence rates, where 𝛼 is 

an unknown parameter, and where the error terms 𝜀!" are independent and identically distributed. 

We now consider the spatial adaptation of this parsimonious model. We specify 

 𝑦!" = 𝛼𝑋!,"$% + 𝛾∑ 𝑤!&𝑋&,"$%&'! + 𝜀!"   (1), 

where @𝑋&,"$%: 𝑗 ≠ 𝑖D refers to the stocks of infectives in all other geographic units, where both 𝛼 

and 𝛾 are unknown parameters. Here, @𝑤!&D are elements of a known symmetric matrix with zero 

diagonal elements, where each off-diagonal element represents the influence of geographic unit 

𝑗 ≠ 𝑖 on the rate of new infections in unit 𝑖. To implement this model, we set the off-diagonal 

element 𝑤!& = 1 if the distance between the centroids of CSA 𝑖 and CSA 𝑗 was 2 km or less, and 

𝑤!& = 0 otherwise, where the distances between centroids were calculated from the Haversine 

formula (Hedges 2002). We designate this specification as Spatial Model 1.  

Strictly speaking, the theoretical SIR model restricts the constant term of the empirical 

Spatial Model 1 to be zero. That is, all new infections are assumed to arise from contact with 

other infective persons located within the same or adjacent geographic units. The principal 

limitation of this restriction is that the stock of infectives 𝑋!" may be measured with error. In 

particular, the reported counts of confirmed COVID-19 cases may significantly understate the 

actual numbers of infectives, especially when asymptomatic, infective persons do not seek 

testing. What’s more, the strong assumption that the number undercounted infectives is 

proportional to the number of reported infectives may not be warranted. Accordingly, we 

consider a generalized version of our spatial model of the form 

 𝑦!" = 𝜇 + 𝛼𝑋!,"$% + 𝛾∑ 𝑤!&𝑋&,"$%&'! + 𝛿𝑍!,"$% + 𝜀!" (2), 

where 𝑍!,"$% represents a lagged exogenous characteristic of CSA 𝑖, and 𝜇 and 𝛿 are additional 

unknown parameters. We designate this specification as Spatial Model 2. 
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Results 

Weekly Incidence of Confirmed COVID-19 Cases in Los Angeles County 

Figure 1 plots the weekly incidence rate of confirmed COVID-19 cases per 100,000 

population in Los Angeles County as a whole, derived from the DPH’s data dashboard (Los 

Angeles County Department of Public Health 2020b). The data run from the week starting 

Sunday, March 1 to the week starting Sunday, September 20, 2020.  

 

 
 

Figure 1. Weekly COVID-19 Cases per 100,000 Population in Los Angeles County 

 

To facilitate our analysis, we have divided the observation period into three successive 

phases. Phase I represents an initial period of exponential growth through the week of March 

29 – April 4. Phase II covers the subsequent period of continued slower growth, peaking around 

the week of July 5–11, while Phase III covers the final period of declining COVID-19 incidence.  

Mapping the Geographic Spread of COVID-19 Across Countywide Statistical Areas 

Appendix A shows 26 successive weekly maps of the cumulative incidence of confirmed 

COVID-19 cases per 100,000 during March 28 – September 19, 2020. The DPH did not report 

COVID-19 counts for the cities of Pasadena and Long Beach, which remain pale blue in each 
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map. The cumulative incidence across CSAs is color-coded in a geometric progression, starting 

with a threshold of 100 cases per 100,000 and successively doubling to 6,400 cases per 100,000. 

Figure 2 below maps the status of the epidemic as of March 28 (that is, the end of the 

week starting March 22). By that point, the cumulative incidence had exceeded 100 cases per 

100,000 in four relatively affluent CSAs: the Brentwood and Beverly Crest neighborhoods of 

Los Angeles, the City of West Hollywood, and the City of Palos Verdes Estates. 

 

 
 

Figure 2. Cumulative Incidence of Confirmed COVID-19 Cases per 100,000 Population, Los Angeles County, as of 
March 28, 2020 

The left and right panels of Figure 3 below, covering cumulative COVID-19 incidence 

through April 4 and 11, respectively, show the radial geographic expansion surrounding the 

initial focus of infection. By April 11, 2020, the cumulative incidence exceeded 200 per 100,000 

in the adjacent neighborhoods of Beverly Crest, Melrose, Carthay, South Carthay, Crestview, 

Century City, as well as the neighboring City of Beverly Hills. The focus of infection had 

expanded to the northwest into the communities of Encino and Tarzana, to the west into the 

coastal community of Pacific Palisades and the City of Malibu, and to the north and east into 

Hollywood, East Hollywood, Silverlake, Glassell Park, and the City of Glendale. 
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Figure 3. Cumulative Incidence of Confirmed COVID-19 Cases per 100,000 Population, Los Angeles County, as of 
April 4, 2020 (Left) and April 11, 2020 (Right) 

 

 
 

Figure 4. Cumulative Incidence of Confirmed COVID-19 Cases per 100,000 Population, Los Angeles County, as of 
July 11, 2020. 

While the epidemic continued to expand radially during Phase II, as seen in Appendix A, 

four foci of infection began to emerge. Figure 4 above displays the epidemic map as of July 11 at 

the end of Phase II, when the overall weekly incidence of confirmed cases had reached its peak. 
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At the lower left, we see that relative few cases continued to accumulate at the two initial foci of 

infection seen in Phase I. At the upper left, we see a hot spot in the sparsely populated, 

unincorporated area of Castaic, which appears to have arisen from an outbreak in May among 

inmates and employees at the Pitchess  Detention Center and its aftermath (Smith 2020, 

Tchekmedyian 2020). Aside from these identified areas, the map shows four new foci of 

infection: the Antelope Valley - Palmdale - Lancaster area to the north; the San Fernando Valley 

- Sylmar - Pacoima area to the west; the San Gabriel Eastern Valley - El Monte - West Covina - 

Pomona area to the east; and the Central/South - Vernon - Boyle Heights - East Los Angeles - 

Downey - Inglewood area in the center. 

Figure 5 displays the epidemic map as September 19, the cutoff date of our study. The 

four principal foci of infection that emerged during Phase II have intensified, while the two 

initial foci identified in Phase I show relatively few cumulative cases per 100,000 population.  

 

 
 

Figure 5. Cumulative Incidence of Confirmed COVID-19 Cases per 100,000 Population, Los Angeles County, as of 
September 11, 2020. 

In summary, these geospatial observations support the conclusion that the Los Angeles 

County epidemic was initially seeded in two areas: Brentwood - Beverly Crest - West 

Hollywood to the west and Palos Verdes Estates to the south. During Phase I, which lasted until 

approximately April 4, new infections spread radially to adjoining geographic areas, and this 
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radial geographic extension continued at least during the first week of Phase II, ending on April 

11. Thereafter, the epidemic appears to have been sustained not by continued radial expansion, 

but by the increasing concentration and growth of new infections in several identifiable foci. 

These foci of infection remained the dominant source of new COVID-19 cases even while the 

overall infection rate was declining in Phase III. 

Tests of Spatial Model 1 

Table B1 of Appendix B shows separate estimates of the parameters of Spatial Model 1 

for the three phases of the epidemic. During Phase I, the effect of neighboring communities, as 

captured by the parameter 𝛾 (estimate 0.406, 95% confidence interval [CI] 0.299–0.513, 

p < 0.001), was 39 percent of the within-community effect, as captured by the parameter 𝛼 

(estimate 1.028, 95% CI 0.894–1.163, p < 0.001). This finding was consistent with the radial 

geographic spread observed in the mapping data. The estimated parameters imply a 

contemporaneous reproductive number of (𝛼 + 𝛾) 𝛽⁄  = 2.0 for the entire county, a value 

consistent with the deceleration of the incidence curve at the end of Phase I, as seen in Figure 1. 

By contrast, during Phase II, the neighboring community effect 𝛾 (estimate 0.0.069, 95% 

confidence interval [CI] 0.054–0.083, p < 0.001), was only 12.4 percent of the within-

community effect 𝛼 (estimate 0.554, 95% CI 0.533–0.575, p < 0.001). This finding is consistent 

with map-based observations of reduced radial geographic propagation and continued within-

CSA transmission during Phase II. The parameter estimates would imply a reproductive number 

of (𝛼 + 𝛾) (1 − 𝛽)⁄  = 0.86 for Los Angeles County as a whole. The continued growth in 

countywide case incidence seen in Figure 1, even in the face of a reproductive number below 1, 

reflects the concentration of new COVID-19 infections in the four principal foci identified in 

Figures 4 and 5. 

During Phase III, the effect of neighboring communities, as captured by the parameter 𝛾  

(estimate 0.027, 95% confidence interval [CI] -0.008–0.061, p = 0.13) was statistically 

indistinguishable from zero, while the within-community effect 𝛼 (estimate 0.578, 95% CI 

0.523–0.633, p < 0.001) was indistinguishable from the corresponding estimate for Phase II. This 

finding is consistent with the continued increasing concentration of COVID-19 infections within 

communities as overall incidence continued to decline. 
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Social Mobility Indicators: Percent of Devices Completely at Home 

Figure 6 tracks the evolution of the percent of devices staying completely at home during 

the course of the epidemic in Los Angeles County. The timeline is marked in weeks, from the 

week starting Sunday February 2 to the week starting Sunday September 13. Four time series are 

shown, corresponding to CSAs in the four quartiles of the logarithm of cumulative COVID-19 

incidence as of our cutoff date of September 19, 2020, where the first quartile has the highest 

cumulative incidence and the fourth quartile has the lowest incidence. 

 

 
 

Figure 6. Percent of Devices Staying Completely at Home from Week of February 2 to Week of September 13, 2020, 
in Relation to the Quartile of Cumulative COVID-19 Incidence as of September 19, 2020 

 
In the pre-epidemic period, during the weeks starting February 2 through February 23, 

there is clear gradient between the four quartiles. Those CSAs ultimately ending up with the 

most COVID-19 cases initially had the largest percentage of devices staying at home.  Put 

differently, those geographic areas with the highest proportion of socially immobile persons at 

baseline ultimately suffered the greatest cumulative burden of viral infection. During epidemic 

Phases I through III, by contrast, the relationship between disease burden and social distancing 

reverses. Those CSAs that ultimately experienced the highest cumulative COVID-19 rates had 
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the smallest percent of devices staying at home. As discussed in more detail in Appendix C, this 

reversal was most pronounced during that portion of Phase I from March 15 onward, as well as 

in Phase II. 

Table B2 in Appendix B shows the estimates of Spatial Model 2 with the inclusion of the 

percent of devices staying completely at home as a covariate. As anticipated from Figure 6, the 

regression results show a significant negative sign for the estimated parameter 𝛿 only during 

Phase II. That is, the higher the percentage staying completely at home, the lower was the 

incidence of newly confirmed COVID-19 infections, but only during Phase II. 

Figure 7 below further explores the quantitative relationship between the percentage 

staying completely at home during the month of April and the subsequent number of newly 

confirmed COVID-19 infections during the subsequent month of May. Each data point is a 

single CSA. The legend at the left shows how the data points map into the four foci of infection 

identified in Figures 4 and 5. As indicated in Appendix D, the estimated population-weighted 

least squares regression line has a slope of –0.073, implying that an increase of 10 percentage 

points was associated with a 73-percent reduction in newly confirmed cases. These findings are 

likewise consistent with an impact of reduced social mobility during Phase II of the epidemic. 

For reference, Appendix E shows the weekly incidence of newly confirmed COVID-19 

infections separately for each focus of infection. 

 
 

Figure 7. Relation Between Percent Staying Completely at Home During April 5 – May 2 and the Incidence of 
Newly Confirmed Cases During May 10 – June 7, 2020 
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Social Mobility Indicators: Visitors to Gyms 

Figure 8 tracks the number of visitors to gyms from the week of Monday February 2 to 

the week of Monday April 27. The vertical axis has been normalized so that the week of March 2 

equals 100. As in Figure 6, we show four time series corresponding to CSAs in the four quartiles 

of the logarithm of cumulative COVID-19 incidence through the cutoff date of September 19, 

2020, where the first quartile has the highest cumulative incidence and the fourth quartile has the 

lowest incidence. Thus, the graph with the lightest colored data points shows the trend in gym 

visits by devices whose home was located in one of the lowest-incidence CSAs. By the week of 

April 6, gym visit rates among inhabitants of these lowest-incidence CSAs was 14.5 percent of 

baseline. By contrast, the darkest colored data points show that visit rates among inhabitants of 

the highest-incidence CSAs was 23.6 percent of baseline by that date. 

 

 
 

Figure 8. Weekly Visits to Gyms from Week of February 10 to Week of April 27, 2020, in Relation to the Quartile of 
Cumulative COVID-19 Incidence as of September 19, 2020 

 
Figure 9 shows the corresponding trends in visits to gyms by month from February to 

August, 2020. In this case, the vertical axis has been normalized so that visits for the month of 

February equal 100. As in Figures 6 and 7, the time series corresponding to CSAs in the four 

quartiles of the logarithm of cumulative COVID-19 incidence as of September 19, 2020, where 
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the first quartile has the highest and the fourth quartile has the lowest incidence. During the 

month of May 2020, gym visits among residents of CSAs with the highest incidence was 29.9 

percent of its February baseline, while gym visits among residents of CSAs with the lowest 

incidence was 23.9 percent of its February baseline. Thus, the gradient in gym visits across high- 

and low-incidence CSAs was largest in the month of April at the start of Phase II, but diminished 

progressively during Phases II and III. 

  

 
 

Figure 9. Monthly Visits to Gyms from February to August 2020, in Relation to the Quartile of Cumulative COVID-
19 Incidence as of September 19, 2020 

 
The lack of a complete series of weekly gym visitation rates prevented us from running 

Spatial Model 2 with gym attendance as an additional covariate. We were, however, able to carry 

out an analysis comparable to that for Figure 7. To that end, Figure 10 below explores the 

quantitative relationship between relative gym visitation during the month of April and the 

number of newly confirmed COVID-19 infections during the subsequent month of May. As in 

Figure 7, each data point is a single CSA. As indicated in Appendix D, the estimated population-

weighted least squares regression line had a slope of 0.018, implying that a 10-percentage-point 

increase in gym visitation was associated with an 18-percent increase in newly confirmed cases. 
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These findings are further consistent with an impact of reduced social mobility on COVID-19 

incidence during Phase II of the epidemic. 

  

 
 

Figure 10. Relation Between Index of Visits to Gyms During April and the Incidence of Newly Confirmed Cases 
During May 10 – June 7, 2020 

 

Household Structure 

Figure 11 below shows the weekly incidence per 100,000 of newly confirmed COVID-19 

cases from the week ending March 28 to the week ending September 19, 2020. We show four 

time series corresponding to CSAs in the four quartiles of at-risk household prevalence. The first 

quartile had an average prevalence of 25 percent, the second quartile had an average prevalence 

of 17 percent, the third had an average prevalence of 12 percent and the fourth had an average 

prevalence of 5 percent. As a result of data limitations described above, the time axis in Figure 

11 omits the first two weeks of data available only at the countywide level, as shown in Figure 1. 

During Phase I, weekly COVID-19 incidence was significantly higher among those CSAs 

with the lowest prevalence of at-risk households. During Phases II and III, the relationship 

reversed. By the week ending May 30, COVID-19 incidence among CSAs in the highest quartile 

was 4-fold the incidence among CSAs in the lowest quartile. This relative risk remained at 3 or 

more through the week ending August 15, after which it gradually decreased to 2.2 by the last 

week of our observation period. 
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Figure 11. Weekly Incidence of Newly Confirmed COVID-19 Cases from the Week Ending March 28 to the Week 
Ending September 19, in Relation to the Quartile of Prevalence of At-Risk Multigenerational Households 

 
Table B3 in Appendix B shows the results of Spatial Model 2 with two covariates: the 

percentage of devices staying completely at home (𝛿%) and the percentage of at-risk 

multigenerational families (𝛿(). During Phase I, we observed the same reverse relationships seen 

in Figures 6 and 11. As in Table B2, the percentage of devices staying completely at home was 

associated with a significant reduction in weekly confirmed COVID-19 cases. By contrast, the 

percentage of at-risk households was associated with a significant increase in COVID-19 cases 

not only in Phase II, but also in Phase III. 

We have thus far relied upon raw counts of confirmed COVID-19 cases without 

reference to their age distribution. One concern is that households satisfying our at-risk criterion 

necessarily have at least one person over 50 years of age, and therefore CSAs with a higher 

prevalence of at-risk household also have more elderly inhabitants. Older individuals, in turn, 

may be more likely to experience symptoms, undergo testing, and thus be included in reported 

COVID-19 case counts. To address this concern, Figure 12 below relates the prevalence of at-

risk households to the age-adjusted cumulative case rate as of the cutoff date of September 19, 

which is also reported by the DPH (Los Angeles County Department of Public Health 2020a). 
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Figure 12. Relation Between Percentage of At-Risk Multigenerational Households and the Age-Adjusted Cumulative 
Incidence of Confirmed COVID-19 Cases During Through September 19, 2020 

 
 

Figure 12 shows a positive relation between the prevalence of at-risk multigenerational 

households and age-adjusted cumulative incidence. As shown in Appendix D, the weighted least 

squares regression slope was 0.049, which means that every 10-percentage-point increase in the 

prevalence of at-risk households is associated with a 49-percent increase in cumulative 

incidence, with the population age distribution held constant. 

Figure 13 below further explores the relationship between the prevalence of at-risk 

multigenerational households and the age-adjusted cumulative incidence as of September 19, 

2020. To that end, we partitioned CSAs into four quartiles based upon their index of visits to 

gyms during April 2020, as described in Figures 9 and 10, and then tested the interaction 

between the index of gym visitation and the prevalence of at-risk households. As indicated in 

Appendix D, the weighted least squares regression line for the highest quartile of gym visitation, 

shown in green, had a slope of 0.052. The corresponding regression line for the lowest quartile of 

gym visitation, shown in gray, had a slope of 0.030. The difference in slopes, equal to 0.052 – 

0.030 = 0.022, had a 95% confidence interval of [0.012 – 0.032] and was significantly different 

from zero (p < 0.001). These results support a significant interaction between gym visitation in 

April and at-risk household prevalence in determining accumulated COVID-19 cases by 

September 2020.  
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Figure 13. Relation Between Percentage of At-Risk Multigenerational Households and the Age-Adjusted Cumulative 
incidence of Confirmed COVID-19 Cases Through September 19, 2020 for CSAs in the Highest and Lowest 

Quartiles of the Index of Visits to Gyms in April 2020 
 
 

 
 

Figure 14.  Cumulative Incidence of Confirmed COVID-19 Cases per 100,000 Population, Los Angeles County, as 
of September 11, 2020 (Left), Quintiles of the Percentage of At-Risk Multigenerational Families (Right) 

 
Figure 14 above highlights the concordance between the prevalence of at-risk households 

and cumulative incidence with two maps of Los Angeles County. The map on the left repeats the 

geographic distribution of cumulative incidence through the September 19 cutoff date, shown 
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above in Figure 5. The map on the right shows the geographic distribution of the percentage of 

at-risk multigenerational households, color coded according to the quintile of at-risk prevalence. 

The four foci of COVID-19 infection identified in Figures 4 and 5 can be readily identified in the 

map on the right. 

Discussion 

Summary of Findings 

We identified three phases of the COVID-19 epidemic in Los Angeles County (Figure 1). 

Phase I, which lasted until about April 4, saw the initial seeding of infection in relatively affluent 

communities such as Brentwood, Beverly Crest, and West Hollywood (Figure 2). From these 

initial foci, the epidemic spread radially (Figures 2 and 3). Beginning with Phase II, which saw 

COVID-19 incidence continue to rise until about July 11, the epidemic became concentrated in 

four identifiable foci (Figure 4) within the county. This geographic concentration was enhanced 

during Phase III (Figure 5), while COVID-19 incidence was falling.  

These conclusions were supported not only qualitatively by examination of serial maps of 

cumulative COVID-19 incidence (Appendix A), but also quantitatively by estimates from a 

spatial adaption of the standard SIR epidemic model (Spatial Model 1, Appendix B). During 

Phase I, we found, the velocity of propagation of infection in adjoining community statistical 

areas (CSAs) within a 2-kilometer radius was an estimated 39 percent of the within-community 

velocity (Appendix Table B1). By Phase II, the estimated velocity of transmission to adjoining 

areas had fallen substantially, and by Phase III, it was indistinguishable from zero. 

We used data on the movement of owners of smartphone devices equipped with location-

tracking software to study two social mobility indicators: the percentage of device owners who 

stayed completely at home all day; and the number of device owners attending gyms. We found 

that both indicators responded significantly during Phase II of the epidemic, especially in the 

month of April (Figures 6, 8 and 9). Those CSAs with the largest reductions in social mobility in 

April exhibited the most significant attenuation of the epidemic in May (Figures 7 and 10, 

Appendix D). 

We used data from the 2018 American Community Survey on the age structure and 

composition of households in each CSA to characterize the prevalence of households at risk for 

multigenerational spread of viral infection. Throughout both Phases II and III, the weekly 
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incidence of new COVID-19 infections in CSAs in the highest quartile of at-risk household 

prevalence was more than 3-fold the incidence in CSAs in the lowest quartile (Figure 11). The 

persistent relationship between the proportion of at-risk households and the weekly incidence of 

new infections was confirmed in a generalized spatial model (Spatial Model 2, Appendix B). The 

relationship between at-risk household prevalence and age-adjusted cumulative COVID-19 

incidence was observed in all four foci of infection (Figure 12, Appendix D). The quantitative 

relation between at-risk household prevalence and age-adjusted cumulative COVID-19 incidence 

was strongest in those CSAs with the highest index of gym visitation in April (Figure 13, 

Appendix D). The map of the prevalence of at-risk multigenerational households is strikingly 

concordant with the map of cumulative incidence (Figure 13). 

These findings, taken together, support the critical role of household structure in the 

persistent propagation of COVID-19 infections in Los Angeles County since April, once the 

epidemic had transitioned from its initial radial geographic spread to a phase of increasing 

concentration in high-incidence foci of infection. Moreover, we found evidence of a synergy 

between household structure and social mobility. The relation between the prevalence of at-risk 

multigenerational household and cumulative COVID-19 incidence was strongest in those CSAs 

with higher rates of gym attendance in April. 

Strengths and Limitations of This Study 

Our study takes advantage of the cohort structure of our database, in which we follow a 

group of related geographic units longitudinally over time. This structure allowed us to test a 

model of radial geographic expansion during Phase I of the Los Angeles County COVID-19 

epidemic. It also allowed us to identify the month of April 2020 as the interval with the widest 

dispersion among CSAs in two indicators of social mobility, and then to test whether the levels 

of social mobility in April were predictive of the incidence of new infections in May. Such a 

research design overcomes many of the limitations of before-after studies (Harris 2020i). 

On the other hand, our study is exclusively population-based. We do not follow a 

longitudinal cohort of individual households to see how many young adult members went to the 

gym, got infected, and then brought their infections home to older household members. A 

population-based indicator such as the proportion of households at risk for multigenerational 

transmission could thus be criticized as no more than a proxy for some other correlated 

characteristic of the community. One might inquire why we didn’t test the relation between 
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cumulative COVID-19 incidence and the proportions of households relying on food stamps or 

speaking Spanish or headed by a single parent, to take but a few examples. These alternative 

covariates, however, are at best tangential to the key question of intrahousehold propagation of 

infection. If we had focused on the severity of the disease, and not simply the incidence, then 

population-based indicators of access to healthcare would be more relevant. 

Our principal endpoint is the incidence of confirmed cases of COVID-19. It is now 

widely acknowledged that counts of confirmed cases substantially understate total infections 

(Havers et al. 2020). Serial population-based studies of seroprevalence are still uncommon 

(Hallal et al. 2020), and there is evidence that population seroprevalence may decline with time 

(Buss et al. 2020). Hospital admission rates have been studied as an alternative to confirmed case 

incidence (Harris 2020i, e), but such an endpoint depends on case severity and would thus be 

inappropriate for our study. 

We relied upon two indicators of social mobility: the percentage of device holders 

staying completely at home; and the number of visitors to gyms. In other studies, we have 

measured attendance at bars (Harris 2020c), numbers of sit-down restaurant reservations (Harris 

2020j, e) and indices of retail and recreational activity (Harris 2020d, e). These indicators are 

necessarily stand-ins for a more general concept. We cannot claim that attendance at gyms was 

the sole cause of the Los Angeles County epidemic any more than we can assert that attendance 

at sit-down indoor restaurants was the unique factor driving the surge of cases among younger 

persons in Florida (Harris 2020f). Still, we chose the rate of visitation at gyms as it would 

logically be an indicator of social activity among younger persons, and we likewise focused on 

the percentage staying completely at home as it would logically be an indicator of social 

immobility among older persons. 

We noted that the exceptionally high cumulative incidence of COVID-19 infections in 

the unincorporated area of Castaic (Figure 4) was likely attributable to an outbreak at a local 

prison. Rather than attempt to identify and exclude other potential outliers in our universe of 

approximately 300 community statistical areas, we included all observations in our longitudinal 

analysis. 

As a result of data limitations, our panel of CSA-specific case reports begins on March 

21, 2020, well into Phase I of the Los Angeles County epidemic (Figure 1). The conclusion that 

the epidemic was already slowing down is supported by our estimate of a contemporaneous 
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reproductive number ℛ = 2.0 for the interval March 21 – April 4, significantly below the basic 

reproductive number ℛ) = 3.5 observed in the earliest days of the outbreaks in Wuhan (Hao et 

al. 2020) and New York City (Harris 2020h). 

While we don’t have an accurate geospatial snapshot of the very earliest seeding of the 

virus, the fact that the cumulative incidence of confirmed cases had reached 100 per 100,000 

population in relatively affluent CSAs (Figures 2 and 3) points to multiple importations by 

individuals with the resources to travel. A phylogenetic analysis of SARS-CoV-2 samples drawn 

during March 22 – April 15 at a major hospital located within one of the initial foci of infection 

found that the larger proportion belonged clades derived from Europe (Zhang et al. 2020). Our 

finding that the epidemic spread during Phase I principally through radial geographic expansion 

stands in sharp contrast to the earliest days of the outbreak in New York City, where community-

transmitted infections were dispersed throughout all five boroughs in a matter of days (Harris 

2020g, Gonzalez-Reiche et al. 2020). 

To Live and Die from Coronavirus in L.A. 

Having focused exclusively on the incidence of confirmed cases of COVID-19, this study 

has not confronted questions about coronavirus-related mortality. While we were able to 

reconstruct the temporal path of confirmed cases in the more than 300 communities in Los 

Angeles County, we did not have access to comparably detailed data on deaths by community by 

week. The study of mortality dynamics is considerably more complex, as it entails such 

additional considerations as access to medical care and the prevalence of co-morbidities that 

enhance the risk of complications. In Los Angeles County, in particular, the map of the COVID-

19 case fatality rate may well turn out to look like a map of diabetes prevalence. Even further 

complicating the analysis is the progressive reduction in case fatality observed over the course of 

the epidemic (Harris 2020b).  

Why Did Incidence Rates Undergo a Reversal in July 2020? 

Thus far, we have made no mention of public policies concerning the COVID-19 

epidemic, including orders issued by public officials at the state, county and municipal level. 

From the moment that the state governor (Newsom 2020), the county supervisor (Barger 2020), 

and the mayor of the city of Los Angeles (Garcetti 2020) all declared emergencies on March 4, 

these public policies undoubtedly contributed to the marked reduction in social mobility seen 

during Phase I and the beginning of Phase II (Figures 6, 8 and 9). The more difficult question is: 
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Did these public policies contribute to the turnaround in COVID-19 incidence that marked the 

transition from Phase II to Phase III at some time around week of July 12, 2020? 

Figure 11 appears to show the near simultaneous peaking in COVID-19 incidence across 

diverse CSAs during the week of July 12-18. Appendix E, however, suggests that in the 

Antelope Valley and San Fernando Valley foci of infection, the peak incidence rate was delayed 

to the end of July. That would only widen the search window for the most influential public 

policies. On July 1, the Los Angeles County health officer issued an order closing indoor onsite 

dining (Los Angeles County Department of Public Health 2020d). On July 2, the office of the 

governor launched a wear-a-mask public awareness campaign (Office of Governor Gavin 

Newson 2020). On July 13, the state public health officer closed indoor operations in bars not 

concurrently serving meals, as well as gyms in counties on its monitoring list, to which Los 

Angeles County already belonged (Angell 2020). And on July 23, the Los Angeles County health 

officer ordered everyone diagnosed with or likely to have COVID-19 to self-isolate and 

quarantine (Davis 2020a, b).  

Whether any one of these specific public policy measures had a dominant impact is 

COVID-19 incidence is difficult to ascertain. Figure 6 shows only a slight, temporary bump in 

the proportion of devices staying completely at home in late July and early August, while Figure 

9 indicates that gym visitation in Los Angeles County in August 2020 was still hovering at 30 

percent of its baseline level in February. The present study did not measure the prevalence of 

mask usage in Los Angeles County. 

Implications 

Despite an array of aggressive public policies aimed at reducing social mobility, our 

findings suggest that intrahousehold transmission has been the critical vehicle for the persistence 

of the COVID-19 epidemic in Los Angeles County. The prevalence of at-risk households in a 

community, it appears, is not simply a predictor of the persistence of coronavirus transmission, 

but also a multiplier of the effects of other policies aimed at social distancing. The impact of 

preventing one case of asymptomatic infection in a socially active young adult, who would 

otherwise have brought his or her infection into the household, will depend directly on the 

number of susceptible household members who have been spared. 

Our results cast a pessimistic shadow on so-called targeted policies that selectively relax 

restrictions on lower-risk, younger persons while seeking to protect more vulnerable older 
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persons (Chikina and Pegden 2020, Acemoglu et al. 2020, Iverson, Karp, and Peri 2020, Gollier 

2020). Such a policy might be feasible in settings where older persons are sequestered in 

retirement communities or assisted living facilities, but the data here show that this is not the 

reality of Los Angeles County. 

Most importantly, our findings require us to view the household rather than the individual 

as the foremost target of healthcare policy. The message “protect yourself” (protégete in 

Spanish) needs to be reconfigured as “protect your family” (protége a tu familia). When a 

healthcare provider encounters a new patient with suspected or established COVID-19, the 

interview needs to turn quickly to questions about other household members, their health status, 

and their symptoms. The widely recognized model of the patient-centered medical home 

(Alexander and Bae 2012) needs to be replaced by the family- and household-centered medical 

home.  
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Appendix A: Cumulative Incidence of Confirmed Covid-19 Cases Per 100,000 Population, 

Los Angeles County, March 28 – September 19, 2020  

The maps shown below indicate the cumulative incidence per 100,000 in each 

countywide statistical area (CSA) for 26 successive weeks during March 28 – September 19, 

2020. The DPH did not report COVID-19 counts for two cities within the county, Pasadena and 

Long Beach, which are colored pale blue throughout. CSAs are color-coded in a geometric 

progression, starting with a threshold of 100 cases per 100,000, and then successive doubling to 

6,400 cases per 100,000. In the map for March 21, omitted here, no CSA had yet had a 

cumulative incidence over the 100-per-100,000 threshold. 
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Appendix B: Detailed Spatial Model Estimates 

In the detailed results described below, Phase I covers the period from March 21 – April 

4, Phase II covers April 11 – July 11, and Phase III covers July 18 – September 19. 

Table B1 shows the parameter estimates for Spatial Model 1 under the restriction that the 

constant term equals zero. As noted in equation (1) in the main text, the parameter 𝛼 measures 

the effect of the within-CSA stock of infective individuals, while the parameter 𝛾 measures the 

effect of the stock of infectives in nearby CSA’s within a 2-kilometer radius. 

 

 Table B1. Estimates of the Parameters of Spatial Model 1 for 
the Three Phases of the Los Angeles County Epidemic 

 

 

 Phase 𝛼J 𝛾J No. Obs.  
 I 1.028 0.406 586  
  (0.068) (0.054)   
 II 0.554 0.069 4,102  
  (0.011) (0.007)   
 III 0.578 0.027 2,930  
  (0.028) (0.018)   
 

Table B2 shows the parameter estimates for Spatial Model 2 with an unrestricted constant 

term, where the parameter 𝛿 gauges the effect of the percentage of devices staying completely at 

home. 

 

Table B2. Estimates of the Parameters of Spatial Model 2 for the Three Phases of the Los 
Angeles County Epidemic: Percent of Devices Staying Completely at Home 

 
Phase �̂� 𝛼J 𝛾J 𝛿L No. Obs. 

I –16.403 0.724 0.228 0.643   584 
    (7.469) (0.068) (0.050) (0.167)  

II 118.919 0.471 0.027 –2.075 4,088 
  (10.066) (0.012) (0.006) (0.231)  

III  –2.565 0.493 0.013 0.886 2,922 
 (37.016) (0.038) (0.018) (0.983)  

 

Table B3 shows the parameter estimates for Spatial Model 2 with an unrestricted constant 

term, where parameters 𝛿% and  𝛿(, respectively, gauge the effects of the percentage of devices 
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staying completely at home and the percentage of at-risk multigenerational households. The 

numbers of observations were identical to those in Table 2. 

 

Table B3. Estimates of the Parameters of Spatial Model 2 for the Three Phases of the Los 
Angeles County Epidemic: (1) Percent of Devices Staying Completely at Home, (2) Percent of 

At-Risk Multigenerational Households 
 

Phase �̂� 𝛼J 𝛾J 𝛿L% 𝛿L( 
I  –7.500 0.649 0.228   0.613 –0.464 
    (7.811) (0.131) (0.051)  (0.166)   (0.131) 

II  87.420 0.445 0.034 –1.884  1.709 
  (10.494) (0.012) (0.006)   (0.230)  (0.180) 

III –37.568 0.431 0.020   0.911 2.960 
   (38.237) (0.041) (0.018)   (0.981) (0.834) 

 

We reran the spatial models shown in Tables B1–B3 with variations in the radius of inter-

community influence (baseline: 2 kilometers), the mean serial interval (baseline: 5.5 days), and 

the definition of an at-risk household (baseline: one person 18–34 years, another person 50+ 

years, at least 4 persons). The results (not shown) displayed the same qualitative patterns seen 

here.  
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Appendix C: Interquartile Differences in the Percent Staying Completely at Home 

To quantitatively test the relationships shown in Figure 6, we calculated the difference 

between the highest- and lowest-incidence quartiles in the logarithm of percent staying 

completely at home. The table below shows the means and standard errors of these logarithmic 

differences in relationship to the phase of the epidemic. While Phase I of the epidemic in fact 

began at the beginning of March, we have reclassified the weeks of March 1 and March 8 in the 

baseline period for the purposes of this comparison, inasmuch as public awareness of the threat 

of contagion did not begin until mid-March. The table shows that during the baseline period, the 

percent staying completely at home in the highest quartile of COVID-19 incidence was 22.4% 

less than the percent staying completely home in the lowest quartile of COVID-19 incidence. 

During phases I and II, the percent staying at home in the highest quartile was 5–6% more than 

the corresponding percent staying completely at home in the lowest quartile. By phase III, this 

gradient persisted, but was much smaller in magnitude. 

 

 Difference Between the Highest- and Lowest Incidence CSA 
Quartiles in the Logarithm of the Percent of Devices Staying 

at Home 
 

 

 Phase Weeks Mean St. Error  
 Baseline 2/2 – 3/8 –0.224 0.020  
 I 3/15 – 4/5 0.051 0.009  
 II 4/12 – 7/5 0.059 0.012  
 III 7/12 – 9/13 0.019 0.005  
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Appendix D: Regression Models Underlying Figures 7, 10, 12 and 13 

For Figure 7, we ran a weighted least squares regression across CSAs, where the 

dependent variable was the logarithm of the incidence of newly confirmed COVID-19 cases 

during May 10 – June 7, and the independent variable was the percentage of devices staying 

completely at home during April 5 – May 2. The regression weights were the logarithms of the 

CSA population. Standard errors are shown in parentheses under the parameter estimates. 

 

 Table D1. Weighted Least Squares Regression for Figure 7 
 

 

 Slope Intercept No. Obs. 𝑅( statistic  
 –0.073 8.739 277 0.122  
  (0.012) (0.555)    
 

For Figure 10, we ran a weighted least squares regression across CSAs, where the 

dependent variable was the logarithm of the incidence of newly confirmed COVID-19 cases 

during May 10 – June 7, and the independent variable was the index of visits to gyms during 

April 2020. As in Figure 7, the regression weights were the logarithms of the CSA population.  

 

 Table D2. Weighted Least Squares Regression for Figure 10 
 

 

 Slope Intercept No. Obs. 𝑅( statistic  
 0.018 4.884 277 0.051  
  (0.005) (0.125)    
 

For Figure 12, we ran a weighted least squares regression across CSAs, where the 

dependent variable was the logarithm of the age-adjusted cumulative incidence of confirmed 

COVID-19 cases through September 19, 2020, and the independent variable was the percentage 

of at-risk multigenerational households. As in Figures 7 and 20, the regression weights were the 

logarithms of the CSA population. Standard errors are again shown in parentheses. 

 

 Table D3. Weighted Least Squares Regression for Figure 12 
 

 

 Slope Intercept No. Obs. 𝑅( statistic  
 0.049 6.823 293 0.367  
 (0.004) (0.064)    
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For Figure 13, we again ran a weighted least squares regression across CSAs, where the 

dependent variable was the logarithm of the age-adjusted cumulative incidence of confirmed 

COVID-19 cases through September 19, 2020. The independent variables included not only the 

percentage of at-risk multigenerational households, but also interaction terms with binary 

indicators of the quartile of gym visitation in April 2020. In the table below, the 1st quartile 

represents those CSAs with the highest index of gym visits (> 27.9 percent of the February 2020 

volume), the 2nd quartile represents CSAs with an index of gym visits in the range of 22.7 – 27.9 

percent of the February 2020 volume, and the 3rd quartile represents CSAs with an index of gym 

visits in the range of 18.0 – 22.7 percent of the February 2020 volume. The interaction terms 

with the binary indicator for the 4th quartile, representing CSAs with an index of gym visits less 

than 18.0 percent of the February 2020 volume, was the omitted variable.  

 

 Table D4. Weighted Least Squares Regression for Figure 13 
 

 

 Regressor Parameter St. Error  
 Percent At-Risk Households 0.030 (0.006)  
 × 1st Quartile Gym Visits 0.022 (0.005)  
 × 2nd Quartile Gym Visits 0.019 (0.005)  
 × 3rd Quartile Gym Visits 0.018 (0.005)  
 Intercept 6.881 (0.061)  
 No. Observations 286   
 𝑅( statistic 0.432   
 

In Figure 13, the gray regression line, corresponding to the lowest quartile of gym 

visitation, has a slope of 0.030, while the green regression line, corresponding to the highest 

quartile of gym visitation, has a slope of 0.030 + 0.022 = 0.052. The difference in slopes, 

estimated to be 0.022, had a 95% confidence interval of [0.012 – 0.032], and a t-test of the null 

hypothesis of no interaction yielded p < 0.001. 

We reran the regression models shown in Tables D1–D4 with variations in the definition 

of an at-risk household (baseline: one person 18–34 years, another person 50+ years, at least 4 

persons). The results (not shown) displayed the same qualitative patterns seen here. 
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Appendix E: Weekly Incidence of Newly Confirmed COVID-19 Cases by Focus of Infection 

Figure E1 graphs the weekly incidence of newly confirmed COVID-19 cases for each of 

the four foci of infection. The unfilled data points refer to the remaining CSAs not located in any 

of the foci. 

 

 
 

Figure E1. Weekly Incidence of Newly Confirmed COVID-19 Cases by Focus of Infection 
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