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Abstract

Eradicated infectious diseases like smallpox can re-emerge through accident or designs of bioter-

rorists, and perpetrate heavy casualties. Currently, only a small percentage of the populace is

vaccinated, and their protection is likely to have waned. Most therefore are susceptible today.

And when the disease re-emerges the susceptible individuals may be manipulated by disinforma-

tion on Social Media to refuse vaccines. Thus, a combination of countermeasures consisting of

antiviral drugs and vaccines and a range of policies for their application need to be investigated.

Opinions as to receptivity of vaccines evolve with time through social exchanges over networks

that overlap with but are not identical to the disease propagation networks. These couple the

spread of the biological and information contagion and necessitate a joint investigation of the

two. Towards these, we develop a computationally tractable metapopulation epidemiological

model that captures the joint spatio-temporal evolution of smallpox and opinion dynamics.

The computations based on the model show that opinion dynamics has a substantial impact

on the fatality count. Towards understanding how perpetrators are likely to seed the infection

we identify a) the initial distribution of infected individuals that maximize the overall fatality

count regardless of mobility patterns, and b) which habitation structures are more vulnerable

to outbreaks. We assess the relative efficacy of different countermeasures and conclude that a

combination of vaccines and drugs minimizes the fatalities, and by itself, for smallpox, drugs

reduce fatalities more than the vaccine. Accordingly, we assess the efficacies of three separate

policies for administering the drugs and identify the best among them for various parameter

combinations. When the availability of the drug is finite, we show that increase in its supply

substantially reduces the overall fatality. Our findings lead to policy recommendations for pub-
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lic health and urban design authorities towards thwarting smallpox and other infectious disease

outbreaks.

Introduction

The devastative potential of a sudden outbreak of an infectious disease is self-evident in this

time of a pandemic. The havoc caused by the COVID-19 outbreak may not only be replicated

but also amplified should an eradicated infectious disease re-emerge. While naturally occurring

smallpox was eradicated in the 1970s through decades of a global vaccination campaign, it can

re-emerge under various scenarios [14,15,20,24]. Variola virus (smallpox virus) is a category A

bioterrorism agent [2] and stocks of the virus are known to officially exist in two high-security

biosafety level 4 laboratories in the United States (Centers for Disease Control and Prevention)

and Russia (VECTOR Institute) and potentially elsewhere too [14, 15, 20, 24]. For instance, in

2014, scientists at the National Institute of Health (NIH) discovered half-dozen forgotten vials

of smallpox in a storage room on its campus in Bethesda, Maryland [5,30]. In addition, a virus

similar to Variola, horsepox, has recently been synthesized from genetic pieces ordered in the

mail [28], and smallpox may be recreated using similar techniques.

If smallpox does re-emerge, vaccine hesitancy - that is, refusing immunization on non-medical

grounds (e.g., religious and philosophical beliefs, safety concern, disinformation) - can thwart

attempts to proactively prevent it. Anti-vaccination movements also known as “Antivaxxers”

have routinely propagated disinformation regarding immunization for various diseases e.g. that

measles, mumps, and rubella (MMR) vaccine causes autism [8,29]. A recent survey has shown

that respectively less than 25% and 50% individuals will opt for a COVID-19 vaccine within

three months and a year of its launch [10]. Vaccine hesitancy caused a spike in measles outbreak

in 2019 [7]. Consequently, the World Health Organization (WHO) added vaccine hesitancy to

their list of top 10 threats to global health in 2019 [31]. Vaccine hesitancy will particularly

damage the containment of future outbreaks of smallpox because only a small percentage of the

current populace is vaccinated, and their protection is likely to have waned.

Social media has fueled vaccine hesitancy by escalating disinformation on immunization,

and in the event of an outbreak may enable malefactors who seed the disease to simultaneously

amplify anti-vaccine campaigns and manipulate the target populace to refuse preventives. Also,

in the age of social media, opinions regarding receptivity to vaccines rapidly evolve, through
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social networks that overlap with but are not identical to biological networks. Specifically,

during physical interactions, both diseases and opinions may spread, whereas only opinions may

spread through remote (e.g., electronic) interactions. Finally, in some cases, only disease might

spread because individuals share the same physical space (e.g., public spaces like beaches, parks,

public transports) without exchanging ideas. Thus, spread of smallpox and opinion regarding

receptivity of vaccines must be jointly investigated.

Vaccine-hesitant individuals are likely to be more receptive towards receiving drugs. Be-

sides, underlying medical conditions like immunocompromise contraindicate a section of the

populace from receiving fast-acting live vaccines. Both vaccine-hesitant and immunodeficient

(also known as immunocompromised) individuals can benefit from antiviral drugs (e.g., tecovir-

imat (TPOXX) and cidofovir [3]) which may be used to both treat infected persons as well

as prevent disease in those exposed. These are currently stockpiled in the Strategic National

Stockpile for use if there is an outbreak of smallpox in the United States [3]. Drugs have an

advantage in a public health setting because they can be administered without the intervention

of a healthcare professional, e.g., TPOXX is taken orally twice daily [4]. The downside though

is that they need to be taken for many days throughout the outbreak. Thus, considering the

comparative advantages and disadvantages of drugs vis a vis vaccines, only a combination of

countermeasures may be able to successfully counter smallpox should it emerge. One can envi-

sion different policies for administering antiviral drugs: (a) Policy 1 – administer only to those

who have rashes (b) Policy 2 – once the number of cases in a neighborhood exceeds a certain

threshold, administer to anyone with fever or rashes in the neighborhood (c) Policy 3 – once

the number of cases in a neighborhood exceeds a certain threshold, administer to everyone in

the neighborhood. We therefore need a framework to assess application of a combination of

countermeasure and multiple countermeasure application policies. Note that the supply of the

countermeasures would be finite in practice, a constraint that ought to influence the design of

smart countermeasures.

Finally, geography, spatial distribution and mobility patterns of individuals is crucial in un-

derstanding the spread of an infectious disease and the efficacy of countermeasures. Locations

inhabited by the target population are comprised of different neighborhoods, some of which

are adjacent, some geographically disparate. Connection between individuals in geographically

close neighborhoods is expected to be more frequent than those between the disparate ones

leading to heterogeneous interaction rates. Next, interactions often happen through mobility
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which must follow geographical constraints. That is, when individuals move from one neighbor-

hood to another, they pass through those in-between; thus mixing between two geographically

disparate neighborhoods involves mixing with individuals in the neighborhoods in between. The

effectiveness of the countermeasure may well be substantially enhanced by exploiting groupings

of populations in distinct locales. And, the perpetrators of the attack may exploit the geography

to strategically implant the initially infected individuals, following a spatial distribution that

maximizes the spread of the disease.

Mathematical modeling is an indispensable analytical tool that can help us to prepare for and

respond to a smallpox incident. Several models have been constructed to understand the spread

of smallpox and the efficacy of vaccination and quarantine as a response to contain the disease

[14, 16, 18–20, 25, 27]. Note that immunocompetent individuals (that is, those with healthy

immune systems) can be immunized by the live vaccine (ACAM2000) which provides immunity

in a short time after administering if taken while they are susceptible (that is before they are

infected) or in the early part of incubation (that is shortly after infection) [11,14]. On the other

hand, the immunodeficient individuals can only be given the Modified Vaccinia virus Ankara

(MVA) vaccine (Imvamune) [11,14,17], MVA takes two-shots 30 days apart to provide immunity

[17]. Although approximately 20% of people in the United States are immunodeficient [1,21,25],

the existing work largely does not consider the impact of the immunodeficient population. But,

[20,25] considered such persons in their model, assuming though that they are contraindicated

from all vaccinations and excluded them from participating in vaccination altogether. However,

[11, 14, 17] have shown that immunodeficient persons can receive the MVA vaccine but it will

take a longer time to provide immunity. Only a few works have considered administering drugs,

e.g., [14, 19]. Evolution of opinions, mobility, impact of geography, finite supply of drugs, have

not been considered even in isolation in context of evolution of smallpox. None of the existing

works naturally simultaneously modeled these, particularly in conjunction with combination of

multiple countermeasures and different application strategies.

Epidemiological investigation of other infectious diseases have considered spatial hetero-

geneity in the spread [6, 9]. But these have not investigated questions particularly relevant for

bioterrorist attacks, namely 1)which spatial distributions of the initially infected individuals

maximize the spread of the disease 2) which topological connectivities of habitations enhance

vulnerability to infectious epidemics. Simultaneous administering of multiple countermeasures,

multiple policies for administering them and application constraints have not been considered
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in models for other infectious diseases either. Last, but perhaps the most important, the joint

spread of disease and opinion dynamics and the impact of one on the other remain an unchar-

tered territory in the modeling of infectious diseases. Such opinion dynamics, encompassing

receptivity to vaccine once developed and wearing protective gears like masks, is expected to

strongly influence the evolution of many infectious diseases, including COVID-19, in the current

age.

Our contributions are as follows. We develop a computationally tractable mathematical

model that jointly captures the evolution of a smallpox incident and opinion dynamics over time

and space and the impact of various combinations of spatial topologies, mobility rates, coun-

termeasures, and strategies for their applications. The model captures the essence of stochastic

evolution, while retaining computational tractability, and therefore easily scales to typical tar-

get population sizes for infectious diseases encompassing millions of individuals. Note that a

Monte Carlo simulation relying on an agent based stochastic simulation will not scale to that

magnitude. We utilize the model to quantify the impact of the opinion dynamics, different

countermeasures and application strategies, topologies and mobility patterns on metrics that

capture the overall health of the system such as total number of fatalities, and visits to health-

care facilities.

Our findings lead to several policy recommendations for public health authorities: 1) We

show that opinion dynamics has a substantial impact on the fatality count in the settings

in which vaccines are administered. Thus public health authorities must seek to incentivize

the spread of opinions favorable towards reception of vaccines over social and other media. 2)

They must anticipate that bioterrorist attacks will distribute the initially infected individuals to

maximize the fatalities. We identify such worst case distributions in this paper. 3) They should

influence new urban designs to render them less sensitive to the spread of infectious diseases

and monitor existing habitations that have specifically vulnerable topological distributions for

outbreaks. We identify which habitation structures are more vulnerable to bioterrorist attacks.

4) We assess the relative efficacy of different countermeasures and conclude that a combination

of vaccines and antiviral drugs is the most effective in reducing the fatalities, but if one must

choose one countermeasure, in this particular case, it ought to be the drugs. Accordingly, we

assess the efficacies of three separate policies for administering the drugs and identify the most

effective one for various parameter combinations. We show that when the availability of the

drug is finite, increase in its supply substantially reduces overall fatality. Thus public health
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authorities should stock adequate amounts of antiviral drugs to contain future outbreaks and

choose policies for administering them in accordance with their available supply. Finally, we

expect that our model would easily port to other infectious diseases such as COVID-19 through

the consideration of a different set of disease states and parameters.

Methods

Developing the model - state transition formulations

Infectious diseases evolve in different stages, different stages show different symptoms and the

initial stages need not show any symptom. In smallpox, individuals move from susceptible to

early incubation to late incubation to prodrome to early then late rash. From late rash, patients

either recover or die. Different stages have different durations. The incubation phase typically

lasts 8 to 17 days and does not have any symptoms. The prodromal phase begins at the onset of

the first symptoms (fever, chills, headache) and lasts for 3 days on average. The early and late

rash periods last for 3 and 7 days respectively [14]. We use susceptibles, incubators, prodromals

to denote the individuals in susceptible, incubation and prodrome stages respectively. Patients

can infect susceptible individuals in the prodrome, early and late rash stages. Thus, note that

even when patients do not show symptoms they can infect others.

Efficacy of countermeasures depends upon the stage in which they are administered. Vac-

cines prevent the onset of smallpox with certain probabilities if administered prior to the late

incubation stage. Live vaccines (ACAM2000) provide immediate immunity during this period.

Immunodeficient individuals are contraindicated for receiving the live vaccine, rather they are

administered the MVA vaccine (Imvamune) [11, 14, 17]. MVA takes two-shots 30 days apart to

provide immunity [17]. Antiviral drugs like tecovirimat (TPOXX) and cidofovir [3] are generally

administered to infected persons for treatment and can be used for prevention.

The application of countermeasures introduces additional states, namely preempted. Indi-

viduals enter the preempted state after developing immunity owing to the reception of vaccines.

Antiviral drugs preempt smallpox, so individuals also enter this state if they are administered

the drug. We assume that once individuals without symptoms are administered this drug, to

prevent the onset of smallpox even after possible exposure, they continue to receive the drug

until the disease is completely contained. Thus, preemption is permanent, and the preemption

state is an absorbing state, i.e., individuals can only enter this state, not leave it.

6

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 14, 2020. ; https://doi.org/10.1101/2020.10.13.20211680doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.13.20211680
http://creativecommons.org/licenses/by/4.0/


We now describe the state transitions, progressively considering the following scenarios: (1)

No countermeasure - neither drugs nor vaccines administered, (2) Vaccines only, (3) Drugs only,

(4) Both drugs and vaccines.

No countermeasure

We first consider the case that all individuals are in the same neighborhood, that is, they interact

with each other at the same rate (homogeneous mixing). Each individual is either immuno-

competent or immunodeficient. Individuals in either category may be in one of the following

states: susceptible, early incubation, late incubation, prodrome, early rash, late rash, recovered,

dead. Fig 1 depicts the state transitions pictorially. There are two kinds of transitions: (1)

interactional and (2) non-interactional. The first kind of transition occurs as a result of physical

interactions in which the biological contagion spreads, that is, when two individuals are in close

proximity and one is susceptible while the other is infected (that is in one of the following states

prodrome, early rash, late rash), then the susceptible is infected with a certain probability and

transitions to early incubation stage. The second kind of transition occurs as a result of the

natural evolution of the disease in infected individuals. For instance, the disease transition from

early incubation to late incubation and from late incubation to prodrome after about 7 and 5

days respectively. From the late rash state, the immunocompetent individuals either transition

to the recovered or to the dead state, while immunodeficient individuals invariably die [13].
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Fig 1: Smallpox disease progression overview when no countermeasure is imple-
mented. The symbol S denotes susceptible, A and B denote early and late incubation respec-
tively, P denotes Prodrome, C and E denote early and late rash respectively, R denotes recovered
and D denotes dead. The suffix h denotes immunocompetency, and c denotes immunodeficiency
e.g., Sh, Sc respectively denote immunocompetent and immunodeficient susceptible, etc. Table
6 in Appendix A.1 contains all the relevant abbreviations we used to represent each state. The
states in blue color are the susceptibles (not yet infected but they are prone to infection) while
those in light green color are still in incubation period, hence they are not infectious. The
states in dark red are infectious while those in gold have recovered and black denotes dead.
In addition, the yellow arrows show interactional changes, namely susceptibles transitioning to
the incubation state after contracting the virus from infectious individuals. The blue arrows
indicate a non-interactional change, namely the natural progression of the disease.

Drug only

The state transitions for the drug only scenario is similar to that of the no countermeasure

scenario. The most important distinction here is that the disease may be preempted with the

drug. More specifically, if an individual is administered the drug before he is infected he does

not develop the disease while he is given the drug. If an individual is administered the drug

after he is infected, he is cured of the disease with a probability that depends on the stage of

the disease in which he receives the drug. We, therefore, introduce a state called Preempted,

which we denote by Q, into which individuals receiving the drug transition to with the specified

probability. Once an individual transition to this state, he remains in it (since he is either cured

or does not develop the disease) - thus, this is an absorbing state. Transition to this state is

non-interactional as it is induced through the consumption of drugs rather than an interaction

with another individual. The state transition for the drug only scenario is depicted pictorially

in Fig 2.
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Fig 2: Smallpox disease progression overview for drug only scenario. The state in
orange color denotes the preempted state. The red arrows denote preemption via drugs. Every
other state and transition has the same meaning as described in the caption for Fig 1.

Vaccine only

The individuals who receive vaccine transition to the preempted state, after developing perma-

nent immunity to the infectious disease. But, some individuals may not be willing to receive

vaccines. We refer to those willing to receive vaccine as cooperative, and the rest as non-

cooperative. Opinion regarding cooperation evolves with interactions with other individuals.

Thus, this scenario needs to model both opinion and disease dynamics and the two are coupled.

Thus, the state space needs also to be enriched to consider opinions and their evolutions. Fi-

nally, one also needs to distinguish between immunocompetent and immunodeficient individuals

because the latter can receive vaccines that act only very slowly regardless of their willingness

to do so, and may not recover from a serious infectious disease [13].

Interactions can be of the following kinds: (a) physical interactions with an exchange of

information and biological contagion (e.g., friends and acquaintances visiting homes of each

other), (b) physical interactions without any exchange of ideas (e.g., people commuting on

a bus, train, etc.) (c) virtual interactions with an exchange of ideas (e.g., a health worker

counseling a susceptible individual over the phone or internet). (a) can cause infection and

change in opinion, (b) can cause only infection, (c) can cause only change of opinion. All the

above represent interactional transitions in this case in which both disease and opinions spread

through interactions. Fig 3 depicts the state transitions of this scenario pictorially. Here we only

consider the case that the cooperatives persuade the non-cooperatives to become cooperatives

during opinion exchange, but in practice the opinion exchange may change opinions in the
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reverse direction too. In the next subsection we discuss how opinion changes in the reverse

direction may be accommodated through minor modifications.

Fig 3: Smallpox disease progression overview for vaccine only scenario. Building on
the definitions of states in Fig 1, the suffixes a and b respectively denote willingness to receive
vaccine and otherwise e.g., Sah, Sac respectively denote immunocompetent and immunodeficient
susceptibles that are willing to vaccinate. Similarly, Sbh, Sbc respectively denote immunocom-
petent and immunodeficient susceptibles that are not willing to vaccinate. Table 9 in Appendix
A.3 contains all the relevant abbreviations in this scenario. The states in blue color are the
susceptibles (not yet infected but they are prone to infection) while those in light green color
are still in incubation period, hence they are not infectious. The states in dark red are infected
and therefore infectious while those in gold have recovered, those in yellow are immunized, and
black denotes dead. In addition, the yellow arrows show susceptibles transitioning to the in-
cubation state after contracting the virus. The blue arrows indicate the natural progression of
the disease. The red arrows denote preemption via vaccination while the black arrows indicate
opinion evolution.

Referring to the above state transitions, we need to consider four different outcomes for

interaction between individuals:

(a) Neither of the individuals gets infected or changes their opinion after the interaction. For

instance, let a cooperative susceptible, Sah, interact with a cooperative early incubator

say Aah. This interaction does not lead to infection neither does it lead to a change in

opinion about immunization.

10

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 14, 2020. ; https://doi.org/10.1101/2020.10.13.20211680doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.13.20211680
http://creativecommons.org/licenses/by/4.0/


(b) Neither of the individuals gets infected, but one (and only one) changes his opinion, e.g.,

a cooperative susceptible, Sah, interacts with a non-cooperative early incubator, Abh.

The susceptible does not contract the infection but the early incubator might change his

opinion to become Aah.

(c) One of the individuals gets infected, but neither changes his opinion. This happens for ex-

ample in a physical interaction between a susceptible (e.g., Sbc) and an infected individual

(e.g., Pbc) both of whom share the same opinion.

(d) One of the individuals gets infected, and the other changes his opinion. This happens

for example in a physical interaction between a susceptible (e.g., Sbc) and an infected

individual (e.g., Pah) who have different opinions (Sbc may become Sac after the exchange).

Both drugs and vaccines

An individual may be preempted by receiving either the drug or the vaccine. The preempted

states are Qa or Qb respectively representing preempted cooperative and non-cooperative indi-

viduals. An individual can reach Qa by receiving either drugs or vaccines, while he can reach Qb

only by receiving drug. The state transition in this case may be obtained by combining those

of the drug only and vaccine only scenarios - more specifically, by adding to the vaccine-only

scenario, the transitions to the preempted state induced by delivery of drugs. Refer to Fig 4

for the state transitions. Note that in this figure, we assume that during opinion exchange

cooperatives convert non-cooperatives. To accommodate persuasion in the opposite direction,

one simply needs to invert the state transition directions corresponding to opinion exchange,

namely the directions of the black arrows.
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Fig 4: Smallpox disease progression overview for both drug and vaccine scenario.
The states colored orange are the preempted states. Every other state and transition has the
same meaning as described in the caption for Fig 3.

Capturing the impact of spatial heterogeneity

We divide the target geographical area into smaller regions, referred to as clusters, such that the

constituent regions are reasonably spatially homogeneous, that is, individuals inhabiting that

region interact with each other at similar rate. The clusters can for example be neighborhoods

of a city. The target geographical region can be a city, a county, a state, or even a country.

People within the same cluster have high contact rates between themselves, while those living

in different clusters have fewer contacts. In other words, intra-cluster interactions are higher

compare to inter-cluster interactions.

So far, an individual has been characterized by his cooperativity, stage of the disease, pre-

emption, immunocompetency or immunodeficiency. Now, he is also identified by the cluster

he inhabits. Thus, the cluster becomes part of his state description, which also changes as he

moves between the clusters.

To capture the geography of the region and the mobility rates of the individuals between

the clusters, we represent every cluster as a node on a graph. Now, the mobility rates across
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the clusters may be represented through a mobility rate matrix on the graph. The mobility rate

matrix is a matrix with rows and columns labeled by the cluster numbers, and whose i, j th

entry represents the mobility rate, κi,j , of individuals in cluster i to cluster j. Here, κi,j = 0 if

it is not possible to move directly from i to j (e.g., if these are not geographically adjacent or

if traffic rules do not permit vehicular mobility from i to j). If it is possible to move from i to

j, then κi,j represents the probability that an individual goes to cluster j when he decides to

move out of cluster i divided by the expected time he spends in cluster i.

We have pictorially represented some cluster decompositions in Fig 5. The central node

in Fig 5a for example represents the downtown of a city, and the other nodes represent the

neighborhoods surrounding it. Fig 5b depicts the cluster decomposition of a commercial and

business district located at the edge of a river, sea or ocean.

(a) Star topology

(b) Linear topology

Fig 5: Two example topologies.

We use matrices to specify physical and virtual contact rates within and across clusters.

Individuals in cluster i get in physical proximity of another in cluster j at a certain rate, the

rate is much higher if i = j, than when i 6= j. Only a fraction of these contacts spread

the disease. We consider that disease spread rate φi,j is the product of the rate at which an

individual in cluster i gets in physical contact with another in cluster j and fraction of contacts

between susceptibles and infectious individuals that spread the disease to the susceptibles. Rate

of an event is the expected duration between successive occurrences of the event. Typically, φi,i

would be much higher than φi,j for all i 6= j. Analogously, opinion spread rate αi,j is the product

of the rate at which an individual in cluster i exchanges opinions with another in cluster j and

fraction of such exchanges that change cooperativity.

The Clustered Epidemiological Differential Equation (CEDE) model

A joint investigation of infectious disease and opinion dynamics in presence of spatial hetero-

geneity inevitably leads to a computationally complex model with 1) a multiplicity of states
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representing a combination of stages of the disease, immunocompetency, and cooperativity, and

2) a multiplicity of state transitions representing interactional transitions due to spread of the

disease and opinions, non-interactional transitions due to mobility of individuals and the natural

progression of the disease in infected individuals. We model these by adapting the metapopula-

tion epidemiological model [6,9,12,23] which relies on a set of differential equations (co-authors

of this work have utilized the metapopulation model as well [12, 23]). Metapopulation models

have some distinct advantages in modeling the spread of infectious diseases. In general, estimat-

ing the spread of infectious diseases is computationally challenging because it involves millions

of individuals in habitation sizes one needs to consider. Metapopulation models alleviate this

challenge by relying on differential equations, which constitute computationally simple tools and

can be solved using readily available numerical techniques. The differential equations capture

the evolution of states of different fractions of the total population. Thus, the computational

time does not increase with the increase in the size of the populace.

Metapopulation models have however thus far not captured the transitions due to spread

of both disease and opinions and application of various countermeasures. We have been able

to adapt the metapopulation model to capture these attributes, we describe the adaptations in

Appendix A and refer to the resulting model as clustered epidemiological differential equations

or the CEDE, given that our target area is spatially decomposed in subregions referred to as

clusters.

We briefly describe the CEDE here. Each variable in the CEDE represents the fraction of

the population who are in a particular system state, each state representing the combination

of the cluster inhabited, the stage of the disease, immunocompetency, and cooperativity. Each

differential equation captures the evolution of a particular variable. Thus, the solution of the

system of differential equations provides the fraction of individuals in different states at given

times, that is, the spatio-temporal distribution of the disease and opinion spread. The terms

in the differential equations are either quadratic or linear. The quadratic ones represent the

interactional transitions (refer to the yellow arrows in Figs 1 - 4 and the black arrows in Figs 3

and 4) and the linear ones represent the non-interactional transitions (refer to the blue arrows in

Figs 1 - 4). Note that interactions always involve two individuals, hence interactional transitions

are represented by quadratic terms; in contrast, the non-interactional transitions involve only

one individual and are therefore represented by linear terms. This is typical of epidemiological

models starting from the classical Kermack–McKendrick formulation [22]) and onward to the
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metapopulation models [6,9,12,23]. Our work differs from the metapopulation epidemiological

models in that it has additional quadratic terms representing the interactional transitions due to

the spread of opinions, and additional linear terms representing preemption due to application

of countermeasures.

We now provide more details on the computation time of the CEDE. Let there be n clusters.

Then there are 29 x n system states in the most complex CEDE we propose, that is for the

scenario in which both vaccines and drugs are administered (Appendix A.4). In this scenario,

there are 29n differential equations and 29n variables. Thus, the computation time increases

with the increase in the number of clusters and system states, but the rate of increase is linear

in each of these. Thus, the computation time gracefully scales with the increase of the size of

the system.

The CEDE is however a deterministic model, while many of the state transitions are stochas-

tic. Nevertheless, through an application of the strong law of large numbers, under some com-

monly made regularity assumptions on the stochastic evolutions, one can show that as the

number of individuals increases, the fractions of individuals in different system states in the

stochastic system converge to the solutions of the CEDE, and the convergence becomes exact

in the limit that the number of individuals is infinity. For the mathematical proof we refer to

a recent work by one of the co-authors involving the application of the CEDE in a different

domain [23]. Thus the CEDE approximates the stochastic process better as the number of in-

dividuals increase. The commonly made regulatory assumptions under which the convergence

guarantees hold are that the stochastic evolutions are Markov, that is, the amount of time an

individual spends in each system state is exponentially distributed, which is what we assume to

estimate the parameters of the system.

The generality of the model is another important strength - it can accommodate information

dynamics, arbitrary topologies, mobility patterns, countermeasure combinations, countermea-

sure application strategies and constraints (e.g., finite or infinite supply). Despite this generality,

our model is computationally tractable and provides analytical convergence guarantees.

Finally, the model can be easily modified to accommodate diseases such as COVID-19 that

spreads through contact through appropriate selection of states and parameters.
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Results

We utilized our model to obtain insights on the impact of (1) opinion dynamics as to receptivity

to vaccine (2) the spatial distribution of the initially infected (3) various countermeasures (4)

geography and (5) policies for administering the countermeasures on public health metrics. We

mostly consider the total number of fatalities as the public health metric, but also in some cases

assess the number of visits to health care facilities.

We define the fraction of individuals who are willing to vaccinate at the initial time as initial

cooperativity. Unless otherwise stated, we use the following values of the parameters: (1) initial

cooperativity is 0.80 (2) the number of individuals who are initially infected is 10, 000 (3) supply

of drug is infinite (4) total population per cluster is 10 million. The rest of the parameters are

chosen as in Appendix B. Unless otherwise stated, we use policy 1 for administering drugs, that

is, drugs are administered to patients with rash. When we consider multiple clusters, we will

consider the star and linear topology shown in Figs 5a and 5b. We consider that if clusters

i, j are not adjacent in these topologies, the mobility rate κi,j = 0 and if they are adjacent

κi,j = κ, where κ = 0.01 unless otherwise stated. For example, in Fig 5a, clusters 1, 2 are

adjacent, while 2, 3 are not adjacent. Similarly, in Fig 5b, clusters 1, 2 are adjacent, while 1, 3

are not adjacent. We now consider the disease spread rate φi,j . We assume φi,j = 0 if i 6= j,

that is, there is no direct physical contact and therefore no direct spread of disease between

people inhabiting different clusters. We refer to φi,i as φ. Unless otherwise mentioned, we

consider φ = 0.00173, corresponding to R0 = 6.9, the standard estimate used for smallpox. We

discuss how we obtain φ from the above value of R0 in Appendix B.1. We next consider the

opinion spread rate, αi,j . We assume that αi,j = 0 if i 6= j, that is individuals in different

clusters do not directly exchange opinions. We consider that for all clusters i, αi,i = α, and

assess the system for different values of α, chosen from a range, rather than opting for only one

estimated value. For simplicity, we will refer to α as the opinion spread rate henceforth. We will

consider two different scenarios in our computation: 1) cooperatives convert non-cooperatives

during opinion exchange (default case in our computations) and 2) non-cooperatives convert

cooperatives during opinion exchange (when explicitly stated).
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Opinion dynamics has a strong impact on fatality rates

(a) Number of individuals infected at the initial
time is 1,000

(b) Number of individuals infected at the initial
time is 10,000

Fig 6: Relationship between fatality and opinion spread rate (single cluster).

Our numerical computations in this section show that opinion dynamics have a strong impact

on the fatality for the cases in which vaccines are used as a countermeasure, namely the “vaccine

only” and “both vaccine and drug” scenarios. We consider two cases separately: 1) cooperatives

converting non-cooperatives (Figs 6 and 7) and 2) non-cooperatives converting cooperatives

(Figs 8 and 9) during interactions. In the two cases above, the cooperatives (non-cooperatives,

respectively) convert the non-cooperatives (cooperatives, respectively) during their interactions

at the rate α, thus, as α increases from 0 to 1, more (less, respectively) people become willing

to receive vaccines, fatality in the “vaccine only” and “both vaccine and drug only” scenarios

decrease (increase, respectively).

We start with the case that cooperatives convert non-cooperatives during interactions. Fig

6 plots the fatalities in the single cluster case in all four scenarios as a function of α in the

range [0, 1]. With 1000 (10000, respectively) individuals initially infected, fatality for both drug

and vaccine scenario decrease by 38.3% (30.7%, respectively) as α increases from 0 to 1. The

fatality for the vaccine only scenario respectively decreases by 32.2% and 28.2% in these two

cases. The fatality for no countermeasure and drug only scenarios does not change with any

change in α.
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(a) Star topology (b) Linear topology

Fig 7: Relationship between fatality and opinion spread rate (multiple clusters).

We now consider multiple clusters for the case that cooperatives convert non-cooperatives

during interactions. Fig 7 plots the total fatality for both drug and vaccine scenario as a

function of α in the range [0, 1]. We consider three distributions of initially infected individuals

across the clusters: (1) uniform distribution across clusters (2) concentration in the central

cluster (clusters 1 and 3 respectively in the star and linear topologies) and (3) concentration

in a peripheral cluster (clusters 2 and 1 respectively in the star and linear topologies). As α

increases from 0 to 1 in the star topology, total fatality decreases by 29.4%, 66.8%, and 54.2%

respectively in the 3 scenarios. Similarly, as α increases from 0 to 1 in a linear topology, total

fatality decreases by 29.3%, 63.7%, and 52.4% respectively in the 3 scenarios. Therefore, the

decrease in total fatality is considerable in all cases and comparable across the two topologies.
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(a) Single cluster

(b) Star topology (c) Linear topology

Fig 8: Relationship between fatality and opinion spread rate when non-cooperatives
convert cooperatives.

We now consider the case that non-cooperatives convert cooperatives during interactions.

We report the results for the scenario in which both vaccines and drugs are administered for

α in the range [0, 1] and for a single cluster, multiple clusters with star and linear topologies

(Figs 8 and 9). As expected, with increase in α, fatality increases. Fig 8a shows that, in a

single cluster, as α increases from 0 to 1, fatality increases by 8.96% and 10.10% respectively

when initial number of infected individuals are 1, 000 and 10, 000 respectively. Furthermore, as

α increases from 0 to 1 in the star topology, fatality increases by 10.45%, 9.57%, and 9.79%

respectively for the 3 distributions of the initially infected enumerated in the previous paragraph

(Fig 8b). Similarly, as α increases from 0 to 1 in the linear topology, fatality increase by 10.47%,

9.63%, and 9.83% respectively for the 3 distributions (Fig 8c). The magnitude of the change
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is relatively low with increase in α as the initial cooperativity is 0.8, so the cooperatives do

not have very many non-cooperatives to convert. The magnitude of the change increases for

lower values of initial cooperativity (Fig 9). For example, when the initial cooperativity is

0.5, Fig 9a shows that in a single cluster, as α increases from 0 to 1, fatality increases by

27.69% and 30.53% respectively when initial number of infected individuals are 1, 000 and

10, 000 respectively. Furthermore, as α increases from 0 to 1 in the star topology for the case

where non-cooperatives convert cooperatives during interactions, fatality increase by 31.34%,

30.01%, and 30.35% respectively for the 3 distributions of the initially infected individuals (Fig

9b). Similarly, as α increases from 0 to 1 in the linear topology, fatality increases by 31.40%,

30.11%, and 30.40% respectively for the 3 distributions (Fig 9c).

(a) Single cluster

(b) Star topology (c) Linear topology

Fig 9: Relationship between fatality and opinion spread rate when non-cooperatives
convert cooperatives (initial cooperativity = 0.5).
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Distribution of initial infection and mobility of individuals have a significant

impact

The outbreak of an infectious disease may start from a single cluster or multiple clusters. It

is of interest to find out if fatality is higher in one of these scenarios and if the difference is

significant. This would help identify how the attacks might have been designed. We also seek

to understand how enhanced mobility of individuals affects fatalities.

We consider that both drugs and vaccines are used and plot the total fatality count across

linear and star topologies as a function of the preemption rate. The preemption rate is the

product of the reciprocal of the expected delay in developing immunity and the probability that

the vaccine or drug provides immunity at the stage of the disease the individual is in. The

delay is incurred in administering the vaccine or drug to the individuals (e.g., delay incurred in

getting the health worker’s appointment), there is also a delay in developing immunity after the

vaccine or the drug is administered. The basic preemption rates in different states have been

calculated in Appendix B. We consider a preemption scale factor that multiplies all these rates,

that is, scales the rates, we plot the fatality count as a function of this scale factor (Figure 10).

For each topology we consider the following two scenarios:

1. Initial infections are uniformly distributed across the clusters.

2. Concentration of initial infections in a few clusters (either a central or a peripheral cluster).

(a) Star topology (b) Linear topology

Fig 10: Relationship between fatality and rate of preemption.

Fig 10 reveals the following. Other things being equal, the fatalities are much higher when

initial infections are uniformly distributed across the clusters than when all the initial infections
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originate from one cluster. For instance, if the preemption rate is equal to 1.6 in the star topology

(see Fig 10a), then fatality when the initial infections are uniformly distributed would be 2.04

and 2.84 times the fatality when the initial infections occur only in cluster 1 and only in cluster

2 respectively. In addition, if the initial infections occur in one cluster, the fatalities are highest

if the infections originate from the center. For instance, if the preemption rate in the linear

topology (see Fig 10b) is equal to 0, then fatality when the initial infections originate from

cluster 3 (central cluster) would be 1.49 times the fatality when the initial infections occur in

cluster 1 (a peripheral cluster) only. Hence, given the same number of initial infections, the

fatalities are the highest if initial infections are uniformly distributed across all the clusters and

least when the initial infections originate from a peripheral cluster.

Fig 10 also shows that increasing the preemption rate substantially decreases the fatality

regardless of the distribution of the initial infection. Preemption rate may be increased by

decreasing the delay in administering the vaccine and delivering the drug to the individuals

which may be accomplished by increasing the number of health workers and the rate of delivery

of the vaccine and drugs to the health facilities.

We now plot the fatality count as a function of the mobility rates in the star and linear

topologies in Figs 11a and 11b.

(a) Star topology (b) Linear topology

Fig 11: Relationship between fatality and mobility rate.

We observe the following. If the initial infections are uniformly distributed across the clus-

ters, then fatality count does not change with the mobility rate, assuming that the mobility

rates between two clusters are the same in both directions. If the initial infections occur only in

one cluster, fatality substantially increases with the mobility rate. For instance, as the mobility
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rate increases from 0 to 1 in the star topology (Fig 11a), the total fatality increase by 202.6%

(from 27, 807 to 84, 136) if the initial infections originate from the central cluster only. Simi-

larly, the total fatality increases by 166.5% (from 27, 807 to 74, 112) when the initial infections

originate from a peripheral cluster.

These observations may be explained as follows. Mobility helps individuals in different

clusters mix with each other. Thus, if the initial infection is concentrated in a few clusters,

higher mobility rates help spread the disease faster into other clusters and lead to high fatalities.

This is the scientific basis for reducing travel links (land or air) between different regions when

the infection is localized. But if the initial infection is spread out uniformly, the disease spreads

in each region from the individuals initially infected even without any mobility. Thus mobility

enhances the spread only marginally and thereby increases the fatality only marginally. Thus

spatial quarantining strategies do not help much if the initial infection is uniformly spread.

Thus, the uniform spread of initial infection constitutes the most deadly form of a deliberate

attack.

We also note that regardless of the mobility rate, fatality is significantly higher when the

initial infection is uniformly spread as compared to when the initial infection is concentrated in

a few clusters. For instance, when the mobility rate is 0, the total fatality when initial infections

are uniformly distributed across the linear topology would be 11.4 times the fatality that occurs

if infections originate from one cluster (Fig 11b). When the mobility rate becomes 1, the total

fatality for the uniformly distributed initial infections would be 1.9 times the fatality that occurs

if initial infections occur in cluster 1 only.

Administering drugs substantially reduces fatality

We show that using drugs as a countermeasure against smallpox substantially reduces fatality

for various choices of parameter values, considering both unlimited (Figs 12 and 13) and limited

(Fig 14) availability of drugs.
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Infinite drug availability

(a) Relationship between fatality and disease
spread rate

(b) Relationship between fatality and initial coop-
erativity

Fig 12: Fatalities under four countermeasure application scenarios for various values
of infection spread rates and initial cooperativities for single cluster.

First, Fig 12a plots fatality as a function of disease spread rate, φ for the four scenarios for

one cluster. Visually, we note that for the entire range of φ considered, the scenarios that

involve administering of the drug, namely the “drug only” and “both” scenarios, have much

lower fatality than those that do not involve administering of drugs, namely the “vaccine only”

and “no countermeasure” scenarios. Specifically, at φ = 0.00173 (which corresponds to the

standard value of R0 for smallpox as noted in Appendix B.1), the fatality for the “vaccine

only” and “no countermeasure” scenarios are respectively 17.5 and 66.9 times that of the “drug

only” scenario. Also, fatality for the “vaccine only” and “no countermeasure” scenarios are

respectively 67.6 and 257.8 times that of the “both vaccine and drug” scenario. And fatality

of the “drug only” scenario is 3.8 times that for the “both” scenario. Thus, deploying both

countermeasures substantially reduce fatality, but if only one countermeasure is to be deployed,

the drug is a better option in terms of fatality. This is because the non-cooperatives consent to

the reception of the drug but not to the vaccine and the immunodeficient ones can only receive

vaccines that act very slowly.

In addition, Fig 12b plots fatality as a function of the initial cooperativity. The conclu-

sions with respect to efficacy of the drug remain the same as in the previous paragraph. For

example, when the initial cooperativity is 0.8, then the fatality for the “vaccine only” and “no

countermeasure” scenarios are respectively 27.3 and 66.9 times that of the “drug only” scenario.
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Also, fatality for the “vaccine only” and “no countermeasure” scenarios are respectively 67.3

and 164.5 times that of the “both vaccine and drug” scenario. And fatality of the “drug only”

scenario is 2.5 times that for the “both” scenario.

(a) Relationship between total fatality and disease
spread rate (star topology)

(b) Relationship between total fatality and initial
cooperativity (linear topology)

Fig 13: Fatalities under four countermeasure application scenarios for various values
of infection spread rates and initial cooperativities for multiple clusters.

We now consider the multiple cluster case. Fig 13a plots total fatality as a function of

disease spread while Fig 13b plots total fatality as a function of the initial cooperativity. The

patterns are similar to what we reported in the previous paragraphs. For example, when the

initial cooperativity is 0.8, for the star topology, from Fig 13a, the fatality for the “vaccine

only” and “no countermeasure” scenarios are respectively 18.5 and 66.86 times that of the

“drug only” scenario. Also, fatality for the “vaccine only” and “no countermeasure” scenarios

are respectively 66.91 and 241.28 times that of the “both vaccine and drug” scenario. And

fatality of the “drug only” scenario is 3.61 times that for the “both” scenario. From Fig 13b,

for linear topology, the total fatality for the “vaccine only” and “no countermeasure” scenarios

are respectively 28.24 and 66.86 times that of the “drug only” scenario. Also, from Fig 13b,

total fatality for the “vaccine only” and “no countermeasure” scenarios are respectively 66.95

and 158.51 times that of the “both vaccine and drug” scenario. And fatality of the “drug only”

scenario is 2.37 times that for the “both” scenario.

25

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 14, 2020. ; https://doi.org/10.1101/2020.10.13.20211680doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.13.20211680
http://creativecommons.org/licenses/by/4.0/


Finite drug availability

We now consider that the drug availability is finite and drug is no longer administered when

the supply is exhausted. We assume that the first time a patient is administered the drug, he

is handed out enough quantity of the drug for his daily consumption throughout the period of

the outbreak. Since the period of the outbreak can vary and may depend on re-introduction of

the infection from outside, we measure the drug supply in terms of the number of patients who

has been administered the drug. Fig 14 plots the fatality as a function of the drug supply as

measured above, and reveals that the fatality for the scenarios in which drug is administered,

namely the “drug only” and “both drug and vaccine” decrease linearly with increase in drug

supply, and remains constant once the supply crosses a threshold. Above the threshold value

there is enough drug to administer to the population who need drugs. For the single cluster

case, the fatality in the drug only case decreases from 4.4 million to 65, 808 as the drug supply

increases from 0 to approximately 10 million, which constitutes the threshold value. Note

that the population size is 10 million here, thus the fatality does not decrease any further

once the drug supply is enough to preempt the entire population. The fatality in the both

drug and vaccine scenario decreases from 1.8 million to 26, 752 (98.514%, see Fig 14a) as the

drug supply increases from 0 to approximately 4 million, which constitutes the threshold value.

Since individuals can also be preempted through vaccines, one only needs enough drug supply

to preempt 4 million individuals to decrease the fatality count to its minimum possible value.

Similarly, for the four cluster star topology, the fatality in the drug only scenario decreases

from 17.6 million to 263, 234 (98.504%, see Fig 14b) as the drug supply increases from 0 to

approximately 40 million, which constitutes the threshold value. The fatality in the both drug

and vaccine scenario decreases from 7.58 million to 113, 305 (98.505%, see Fig 14b) as the drug

supply increases from 0 to approximately 16.4 million, which constitutes the threshold value.

In addition, for the five cluster linear topology, the fatality in drug only scenario decreases

from 22 million to 329, 042 (98.504%, see Fig 14c) as the drug supply increases from 0 to

approximately 50 million, which constitutes the threshold value. The fatality in both drug and

vaccine scenario decreases from 9.3 million to 138, 821 (98.507%, see Fig 14c) as the drug supply

increases from 0 to approximately 20 million, which constitutes the threshold value. Note that

for the star topology, the threshold value for “both case” is approximately 4 times that of the

corresponding single cluster since there are 4 clusters. This is because the total population is

4 times the population for the corresponding single cluster. Similarly, for the linear topology,
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the threshold is exactly five times that for single cluster since the population size is 5 times as

the number of clusters. Again, the threshold value is less than that in the drug only scenario

for the same reason as for single cluster.

The fatalities for the scenarios not involving drugs naturally do not change with increase

in the availability of the drug. Also, note that when the drug supply is zero, i.e., no drug

is available then the fatality in the drug only scenario equals that for the no countermeasure

scenario, and the fatality in both drug and vaccine scenario equals that for the vaccine only

scenario. For low value of the drug supply, the vaccine only scenario has lower fatality than

the drug only scenario, but as the drug supply increases, the fatality for the drug only scenario

falls below that of the vaccine only scenario. Thus, if the drug supply is low and if one needs

to choose between the countermeasures, vaccine is better with respect to fatality count. And,

high values of the drug supply substantially reduce the fatality count.

(a) Single cluster (b) Star topology (c) Linear topology

Fig 14: Relationship between fatalities and antiviral drug availability.

Impact of topology

We now compare the fatality counts across topologies and identify patterns that emerge. To-

wards this end, we consider the fatalities in star and linear topologies reported in Figs 7 - 14.

We compare the per cluster fatality (total fatality count normalized by the number of clus-

ters) of the star and linear topologies for representative data points in the figures and report

in Tables 1 to 5. In these Tables, we compare the fatalities for three distributions of initially

infected individuals across the clusters (1) uniform distribution across clusters (2) concentration

in the central cluster (clusters 1 and 3 respectively in the star and linear topologies) and (3)

concentration in a peripheral cluster (clusters 2 and 1 in the star and linear topologies). We

represent these as “Uniform”, “Central”, “Peripheral” respectively. To distinguish between the

cases that cooperatives convert non-cooperatives and non-cooperatives convert cooperatives,
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we add suffixes to the terms denoting the three distributions, that is, we denote the first case

by UniformC, CentralC, and PeripheralC, and the second by UniformNC, CentralNC, and Pe-

ripheralNC. When we consider only the first case, which is the default, we omit the suffixes

altogether. The columns titled “Normalized Linear” and “Normalized Star” respectively rep-

resent the per cluster fatalities for the Linear and Star topologies respectively. We obtain the

difference between the per cluster fatalities of the star and the linear topologies (Column titled

“Difference”) and present the difference as a percentage of the former in the tables (Column

titled “% Change”). In Tables 1 - 4, we consider the scenario in which both drugs are vaccines

are administered (“Both”). In Table 5, we additionally consider Drug only, Vaccine only, and

Neither scenarios.

We consistently observe the following from the tables: 1) the per cluster fatalities of the

two topologies are about the same in the uniform case 2) the per cluster fatality is considerably

higher in the star topology for the Central and Peripheral cases. The first happens because

the initial number of infected individuals is the same in each cluster and the mobility rates to

and from each cluster are the same throughout. We conjecture that the per cluster topologies

will not significantly vary depending on the placement of the clusters for uniform distribution

and symmetric mobility patterns. Now consider the Central and Peripheral cases. The average

distance between a central or a peripheral cluster to the other clusters is higher for the star.

Thus, if the initially infected individuals are concentrated in only the central or the peripheral

cluster, over time the infection spreads faster in the star as compared to the linear leading to a

greater number of per cluster fatalities in the former.
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Distribution Normalized Linear Normalized Star Difference Percentage change

Uniform/α = 0 56, 309 56, 293 -3, 061 -0.5.436%
UniformC/α = 1 19, 666 19, 598 -68 -0.346%
UniformNC/α = 1 62, 208 62, 176 -32 -0.051%
Central/α = 0 33, 316 47, 038 13, 722 41.19%
CentralC/α = 1 4, 041 5, 067 1, 026 25.39%
CentralNC/α = 1 36, 526 51, 542 15, 016 41.11%
Peripheral/α = 0 22, 516 29, 657 7, 141 31.72%
PeripheralC/α = 1 4, 006 4, 978 972 24.26%
PeripheralNC/α = 1 24, 729 32, 561 7, 832 31.67%

Table 1: Per cluster fatality in Figs 7 and 8. In Figs 7a and 7b, Figs 8b and 8c, we
consider a star topology with 4 clusters and a linear topology with 5 clusters respectively. C in
UniformC, CentralC, PeripheralC denotes cooperatives converting non-cooperatives. Similarly,
NC in uniformNC, CentralNC, PeripheralNC denotes non-cooperatives converting cooperatives.
Recall that α is the opinion spread rate. When α = 0, the cooperatives and non-cooperatives
will have the same values.

Distribution Linear Normalized Star Difference Percentage change

Uniform/α = 0 42, 060 42, 020 -40 -0.095%
UniformC/α = 1 22, 421 22, 373 -48 -0.214%
UniformNC/α = 1 55, 267 55, 190 -77 -0.139%
Central/α = 0 22, 227 31, 154 8, 927 40.16%
CentralC/α = 1 4, 638 5, 848 1, 210 26.09%
CentralNC/α = 1 28, 919 40, 504 11, 585 40.06%
Peripheral/α = 0 15, 468 20, 268 4, 800 31.03%
PeripheralC/α = 1 4, 578 5, 700 1, 122 24.51%
PeripheralNC/α = 1 20, 171 26, 420 6, 249 30.98%

Table 2: Per cluster fatality in Fig 9. We also include the values obtained for the case
where cooperatives convert non-cooperatives and cooperativity is 0.5. In Fig 9b and 9c, we
consider a star topology with 4 clusters and a linear topology with 5 clusters respectively. C in
UniformC, CentralC, PeripheralC denotes cooperatives converting non-cooperatives. Similarly,
NC in uniformNC, CentralNC, PeripheralNC denotes non-cooperatives converting cooperatives.
Recall that α is the opinion spread rate. When α = 0, the cooperatives and non-cooperatives
will have the same values.

Distribution Normalized Linear Normalized Star Difference Percentage change

Uniform/λ = 0 4, 400, 000 4, 400, 000 0 0%
Uniform/λ = 5 222, 670 222, 567 -103 -0.0463%
Central/λ = 0 2, 687, 531 3, 823, 157 1, 135, 626 42.26%
Central/λ = 5 80, 860 111, 508 30, 648 37.90%
Peripheral/λ = 0 1, 800, 793 2, 373, 055 572, 262 31.78%
Peripheral/λ = 5 63, 089 80, 999 17, 910 28.39%

Table 3: Per cluster fatality in Fig 10. In Figs 10a and 10b, we consider a star topology
with 8 clusters and a linear topology with 10 clusters respectively. We denote the preemption
scale factor as λ.
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Distribution Normalized Linear Normalized Star Difference Percentage change

Uniform/κ = 0 27, 891 27, 694 -197 -0.7063%
Uniform/κ = 1 27, 891 27, 694 -197 -0.7063%
Central/κ = 0 2, 443 6, 952 4, 509 184.57%
Central/κ = 1 15, 083 21, 034 5, 951 39.46%
Peripheral/κ = 0 2, 443 6, 952 4, 509 184.57%
Peripheral/κ = 1 14, 361 18, 528 4, 167 29.02%

Table 4: Per cluster fatality in Fig 11. In Figs 11a and 11b, we consider a star topology
with 8 clusters and a linear topology with 5 clusters respectively. Recall that κ is the mobility
rate.

Distribution Normalized Linear Normalized Star Difference Percentage change

Both/uniform, m = 0 1, 858, 493 1, 895, 512 37, 019 1.99%
Both/uniform, m = 50 million 27, 764 28, 326 562 2.02%
Drug/uniform, m = 0 4, 400, 000 4, 400, 000 0 0%
Drug/uniform, m = 50 million 65, 808 65, 808 0 0%
Vaccine/uniform, m = 0 1, 858, 493 1, 895, 512 37, 019 1.99%
Vaccine/uniform, m = 50 million 1, 858, 493 1, 895, 512 37, 019 1.99%
Neither/uniform, m = 0 4, 400, 000 4, 400, 000 0 0%
Neither/uniform, m = 50 million 4, 400, 000 4, 400, 000 0 0%
Both/central, m = 0 737, 058 1, 013, 650 276, 592 37.53%
Both/central, m = 50 million 10, 803 14, 842 4, 039 37.39%
Drug/central, m = 0 2, 690, 869 3, 823, 159 1, 132, 290 42.08%
Drug/central, m = 50 million 41, 522 57, 627 16, 105 38.79%
Vaccine/central, m = 0 737, 058 1, 013, 650 276, 592 37.53%
Vaccine/central, m = 50 million 737, 058 1, 013, 650 276, 592 37.53%
Neither/central, m = 0 2, 690, 869 3, 823, 159 1, 132, 290 42.08%
Neither/central, m = 50 million 2, 690, 869 3, 823, 159 1, 132, 290 42.08%
Both/peripheral, m = 0 558, 877 721, 110 162, 233 29.03%
Both/peripheral, m = 50 million 8, 242 10, 627 2, 385 28.94%
Drug/peripheral, m = 0 1, 804, 136 2, 373, 052 568, 916 31.53%
Drug/peripheral, m = 50 million 28, 028 35, 916 7, 888 28.14%
Vaccine/peripheral, m = 0 558, 877 721, 110 162, 233 29.03%
Vaccine/peripheral, m = 50 million 558, 877 721, 110 162, 233 29.03%
Neither/peripheral, m = 0 1, 804, 136 2, 373, 052 568, 916 31.53%
Neither/peripheral, m = 50 million 1, 804, 136 2, 373, 052 568, 916 31.53%

Table 5: Per cluster fatality in Fig 14. In Figs 14b and 14c, we consider a star topology
with 4 clusters and a linear topology with 5 clusters respectively. We denote the number of
individuals who have been administered the drug as m.

Drug administering policy has a significant impact

We compare various drug administering policies with respect to (1) fatalities (2) health system

load (number of doctor visits), considering the scenario in which both drugs and vaccines are

administered.
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We first compare policies 1 (i.e., only people with rashes receive drugs) and policy 2 (i.e.,

all people with fever and rash in a cluster receive drugs provided the number of patients with

symptoms, that is, fever, rash, etc. exceeds a threshold of choice). First we consider only

1 cluster and threshold as 2000, that is, 0.02% of the population in each cluster. Policy 1

preempts 3, 455, 827 people with antiviral drugs while 241, 434 people died. Policy 2 preempts

3, 911, 249 people with drugs while 26, 752 people died. Thus, the fatality under policy 1 is

approximately 9 times the fatality under policy 2. We get the first indication that different

policies for administering drugs substantially alter the fatality count. But, clearly, policy 2 will

need greater number of drugs as it preempts a greater number of individuals. We therefore next

compare different policies for a finite supply of drugs.

We consider three different policies for multiple clusters and limited availability of drugs.

Policies 1 and 2 are as before. Under policy 3, drugs are administered to everyone in a cluster

once the number of patients with symptoms in the cluster exceeds a certain threshold (2000 for

us). Drugs can be administered as long as the supply lasts. In Figs 15a and 16a, we consider the

Central and Peripheral distributions for the initial infections, we consider the Uniform scenario

in Figs 15b and 16b.

(a) Star topology (b) Star topology

Fig 15: Policies for drug deployment (star topology).
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(a) Linear topology (b) Linear topology

Fig 16: Policies for drug deployment (linear topology).

We plot the fatality as a function of the drug supply as measured in the number of individuals

preempted from the available supply for the star and linear topologies. We choose a star of 8

and a linear topology of 5 nodes to demonstrate the applicability of our model on topologies

of different sizes. As shown in Figs 15 and 16, fatality decreases linearly with the supply of

drugs until the supply reaches a threshold beyond which fatality does not change with antiviral

availability. Recall that we had observed the same trend for Policy 1. We show that other

policies we consider in this section follow the same trend. Next, we observe that Policy 2 always

has lower fatality than policy 1. For low values of drug supply, policies 1 and 2 attain lower

fatality as compared to policy 3. Thus, Policy 2 is the best in this case.

Once the drug supply exceeds a certain level, Policy 3 attains the lowest fatality among

all 3 policies. Intuitively, when the availability of drugs is large, the policy that preemptively

administers drugs to most individuals who are in proximity of infected individuals would attain

the lowest fatalities. This is what Policy 3 does. In contrast, when the drug availability is

limited, policies that administer drugs to individuals without symptoms as well will quickly

exhaust their supplies and from then onwards not be able to protect those who need it most,

e.g., those with symptoms. Thus, Policy 3 will not do well under these circumstances, which is

what we observe. But, when the drug availability is low, it is unclear if it is better to reserve

drugs for those in rash stage (Policy 1) or administer drugs to those with fever and who are in

clusters where infection level has crossed a given value (Policy 2). The model informs us that

the latter is a better option in this case, as by additionally preempting those with fever Policy

2 reduces the number of infectious individuals and thereby reduces the spread of the infection.
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The fatalities significantly differ depending on the policy we deploy. For instance, when the

initial infections are uniformly distributed across the star topology and the quantity of drugs

available is enough for the population, the ratio between the fatalities of the worst and best

policies at any given point can become as high as 323 (1584942 : 4902) and that between the

fatalities of the second best and best policies at any given point can become as high as 36.0

(176648 : 4902) as the figures reveal.

(a) Linear topology (b) Star topology

Fig 17: Doctor’s visits against drug availability.

During the outbreak of an infectious disease, the number of doctor visits of individuals is

an important measure of the health of a system. We consider that an individual will visit the

doctor’s office at the onset of fever (that is, Prodrome state). Thus, the number of doctor visits

by individuals equals the number of individuals who enter the Prodrome state. We plot this as

a function of drug supply for the three policies under consideration. As Fig 17 shows, when the

drug supply is 0, the three policies will have equal number of doctor’s visits. This is anticipated

as the policies differ only in the conditions under which drug is administered. The number of

doctor visits decreases only slightly with an increase in drug supply for Policy 1. This is because

under Policy 1 an individual is administered drug only after he develops a rash, which happens

after he develops a fever, regardless of the drug supply. The slight decrease happens as greater

drug supply enables the preemption of a greater number of individuals who develop rashes and

thereby reduces the spread of the disease. For the other two policies, the number of doctor visits

decreases considerably (and linearly) with an increase in the supply of drugs until the supply

reaches a level beyond which the number of doctor visits does not change with an increase in

the availability of antiviral drugs. The pattern is similar to how the fatality count changes for
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these policies as a function of the drug supply. And, as the drug supply increases, the number of

doctor visits under Policy 1 becomes substantially higher than those for the other two policies.

As shown in Fig 17a, once the drug supply exceeds a certain level, the number of doctor’s visits

for Policy 1 is respectively 8.93 and 247 times that for Policy 2 and Policy 3. Similarly, from

Fig 17b, the number of doctor’s visits for Policy 1 is respectively 8.97 and 323 times that for

Policy 2 and Policy 3. For low values of drug supply, Policy 2 attains a lower number of doctor

visits as compared to Policy 3. Thus, Policy 2 maximally reduces the load on doctors among

the 3 policies in this case. Once the drug supply exceeds a certain level, Policy 3 attains the

lowest load on doctors among all 3 policies. From Fig 17a, the number of doctor visits under

Policy 2 is 36 times that for Policy 3 in this region. From Fig 17b, the number of doctor visits

under Policy 2 is 27.7 times that for Policy 3 in this region. The explanation for this relative

performance is similar to that for fatality counts given in the previous paragraph.

Discussions

Based on our findings, we recommend policies that public health authorities can implement

should smallpox re-emerge. Some of the recommendations are specific to smallpox, others are

likely to apply for the containment of any infectious disease such as COVID-19.

From results of investigation of opinion dynamics: We have shown that evolution of

opinion with respect to receptivity of vaccine has a strong impact on fatality count. Therefore,

health authorities and other policymakers should seek to influence exchange of opinion towards

enhancing receptivity to vaccine, possibly through health education seminars, workshops, vigor-

ous dissemination of health information on social, digital and conventional media and through

direct engagement with influencers on these platforms.

From results of investigation on mobility patterns and distribution of initial infec-

tion: We have shown that other things being equal, epidemics are more disastrous, when 1)

the initial infections are uniformly distributed across various clusters than when all the ini-

tial infections only occur in one cluster, 2) the outbreak originates from the central cluster(s)

than when it originates from the peripheral cluster(s). Thus health authorities should anticipate

that bioterrorist attacks will seed the initially infected uniformly across a region, the authorities

should also be vigilant more about central regions than peripheral ones.
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In addition, when the initial infections are uniformly distributed, fatalities in each cluster

are the same irrespective of the mobility rates between the clusters. On the other hand, when

the initial infections occur in one cluster only, total fatalities would escalate with an increase

in mobility rates. Therefore, policymakers should opt for cordoning off areas where infection

level is high before the infection spreads widely; once the latter happens reducing mobility rates

across areas is unlikely to contain the disease.

From results of investigation on impact of administering drugs: We have shown that

the most effective countermeasure consists of a combination of antiviral drugs and vaccines,

but if only one countermeasure can be administered it ought to be the former. Therefore,

policymakers should endeavor to stock enough antivirals in case smallpox reemerges. People

are usually more receptive to receiving drugs than vaccines, thus a less intense information

campaign may suffice for containing the disease through the former.

In addition, we have shown that regardless of the pattern of distribution of initially infected

individuals the fatalities substantially decrease if the delay in administering vaccines and deliv-

ering drugs to individuals decrease. Thus, health authorities must be prepared at short notice

to supply large amounts of vaccines and drugs to healthcare facilities and deploy a large number

of health workers to administer/deliver those in the event of an outbreak.

From results of investigation on impact of topology: Our results indicate that other

things being equal, the star topology has about the same or higher fatalities per cluster than

the linear topology, the fatalities per cluster are about the same when the initial infections are

uniformly distributed. This happens because there exists a central cluster in the star topology

which is adjacent to all other topologies, in the linear topology the central cluster is much

farther off from the peripheral clusters. This has important implications on pandemic sensitive

urban design - topologies that have central regions that are close to all other regions will be

more vulnerable to an outbreak and hence better avoided. If such topologies are inevitable

because of legacy issues or because of fundamental constraints such as geography, then the

health authorities need to monitor those more closely and stock greater amount of drugs for the

residents and incentivize formation of consensus to accept vaccines as and when available.

From results of investigation on various drug administering policies: We find that

for low (large, respectively) values of drug supply, the health authorities should opt for policy
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2 (3, respectively) to lower the fatality count and the number of visits to doctors’ offices. Thus,

policymakers should be flexible about the choice of the policy and adapt it to the resource at

hand.

Our first, second and fourth findings and the resulting recommendations are also likely to

hold for other infectious diseases, e.g., COVID-19. The other two findings and the resulting

recommendations are specific to smallpox.
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A Equations of Smallpox disease dynamics

A.1 Developing the Clustered Epidemiological Differential Equations for

Disease, Information and Countermeasure Dynamics

We first consider the case of no countermeasure.

Table 6: Relevant abbreviations (no countermeasure scenario)

Compartment Description

Sc immunodeficient susceptibles
Sh immunocompetent susceptibles
Ac immunodeficient early incubators
Ah immunocompetent early incubators
Bc immunodeficient late incubators
Bh immunocompetent late incubators
Pc immunodeficient prodromals
Ph immunocompetent prodromals
Cc immunodeficient individuals in early rash stage
Ch immunocompetent individuals in early rash stage
Ec immunodeficient individuals in late rash stage
Eh immunocompetent individuals in late rash stage
R Individuals that recovered from the disease
D Dead

Referring to the notations in Table 6, we index each term by the clusters the individuals in the

state inhabit. More specifically, Shi(t) is the fraction of individuals who are susceptible and im-

munocompetent and are in cluster i at time t, Sci(t), Ahi(t), Aci(t), Bhi(t), Bci(t), Phi(t), Pci(t), Chi(t), Cci(t)

may be defined similarly using Table 6 as a basis. Finally, Ri(t), Di(t) are respectively the frac-

tions of individuals who are recovered and dead and are in cluster i at time t. Let Ii(t) be the

fraction of the infectious individuals in cluster i at time t, that is, the individuals who can pass

on the disease to the susceptibles through contact. Then,

Ii(t) = Pci(t) + Phi(t) + Cci(t) + Chi(t) + Eci(t) + Ehi(t).

Interaction between individuals corresponding to Shi(t), Sci(t) and Ij(t) spread the disease to

the susceptibles and transform them to early incubators - refer to the yellow arrows in Fig 1.

Natural progression of the disease change Ahi(t) to Bhi(t) to Phi(t) to Chi(t) to Ehi(t), and

finally Ehi(t) to either Ri(t) or Di(t); also, Aci(t) to Bci(t) to Pci(t) to Cci(t) to Eci(t), and

finally Eci(t) to either Ri(t) or Di(t) - refer to the blue arrows in Fig 1. Mobility changes
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the cluster indices. The transitions are similar for the immunocompetent and immunodeficient

individuals, but the fractions of those who recover in each populace are different.

We model the evolution of the states as per a set of epidemiological differential equations,

which we call clustered epidemiological differential equations or the CEDE. Let Ṡci be the deriva-

tive of Sci(t) with respect to time t (i.e., the rate of change with respect to t). Ȧhi(t), Ȧci(t),

Ḃhi(t), Ḃci(t), Ṗhi(t), Ṗci(t), Ċhi(t), Ċci(t), Ṙi(t), Ḋi(t) may be defined similarly. The parame-

ters of the CEDE have been summarized and defined in Tables 7 and 8 next.

Table 7: Parameters for the CEDE in the no countermeasure scenario

Parameter Symbols Some associated terms in (1) - (14)

Mobility rate κi,j Shj(t)κij , Bci(t)κji, Ehj(t)κij , Pci(t)κji, etc.

Disease spread rate φi,j Shi(t)φjiIj(t), Sci(t)φjiIj(t)

Opinion spread rate αi,j This scenario is not affected by opinion

Disease transition rate ω, β, γ, ρ, δ Ahi(t)ω, Pci(t)β,Chi(t)ρ,Rci(t)δ, etc.

Table 8: The disease transition rate parameters

Parameters Description of parameters
1
ω Expected time an individual is in early incubation

1
β Expected time an individual is in late incubation

1
γ Expected time an individual is in prodrome stage

1
ρ Expected time an individual is in early rash stage

1
δ Expected time an individual is in late rash stage

σ Probability that an immunocompetent individual at late rash stage dies

σ̃ Probability that an immunodeficient individual at late rash stage dies
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The CEDE follows:

Ṡhi(t) = −
n∑
j=1

Shi(t)φjiIj(t) +
n∑
j=1
j 6=i

Shj(t)κij −
n∑
i=1
i6=j

Shi(t)κji (1)

Ṡci(t) = −
n∑
j=1

Sci(t)φjiIj(t) +
n∑
j=1
j 6=i

Scj(t)κij −
n∑
i=1
i6=j

Sci(t)κji (2)

Ȧhi(t) =

n∑
j=1

Shi(t)φjiIj(t)−Ahi(t)ω +

n∑
j=1
j 6=i

Ahj(t)κij −
n∑
i=1
i6=j

Ahi(t)κji (3)

Ȧci(t) =
n∑
j=1

Sci(t)φjiIj(t)−Aci(t)ω +
n∑
j=1
j 6=i

Acj(t)κij −
n∑
i=1
i6=j

Aci(t)κji (4)

Ḃhi(t) = Ahi(t)ω −Bhi(t)β +
n∑
j=1
j 6=i

Bhj(t)κij −
n∑
i=1
i6=j

Bhi(t)κji (5)

Ḃci(t) = Aci(t)ω −Bci(t)β +

n∑
j=1
j 6=i

Bcj(t)κij −
n∑
i=1
i6=j

Bci(t)κji (6)

Ṗhi(t) = Bhi(t)β − Phi(t)γ +
n∑
j=1
j 6=i

Phj(t)κij −
n∑
i=1
i6=j

Phi(t)κji (7)

Ṗci(t) = Bci(t)β − Pci(t)γ +
n∑
j=1
j 6=i

Pcj(t)κij −
n∑
i=1
i6=j

Pci(t)κji (8)

Ċhi(t) = Phi(t)γ − Chi(t)ρ+

n∑
j=1
j 6=i

Chj(t)κij −
n∑
i=1
i6=j

Chi(t)κji (9)

Ċci(t) = Pci(t)γ − Cci(t)ρ+
n∑
j=1
j 6=i

Ccj(t)κij −
n∑
i=1
i6=j

Cci(t)κji (10)

Ėhi(t) = Chi(t)ρ− Ehi(t)δ +
n∑
j=1
j 6=i

Ehj(t)κij −
n∑
i=1
i6=j

Ehi(t)κji (11)

Ėci(t) = Cci(t)ρ− Eci(t)δ +

n∑
j=1
j 6=i

Ecj(t)κij −
n∑
i=1
i6=j

Eci(t)κji (12)

Ṙi(t) = ((1− σ)Ehi(t) + (1− σ̃Eci(t)) δ +
n∑
j=1
j 6=i

Rhj(t)κij −
n∑
i=1
i6=j

Rhi(t)κji (13)

Ḋi(t) = σ̃Eci(t)δ + σEhi(t)δ (14)

First note that (1) is similar to (2) as transitions are similar for the immunocompetent
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and immunodeficient individuals. The same observation may be made for ((3), (4)), ((5), (6)),

((7), (8)), ((9), (10)), ((11), (12)). So, we only explain (1), (3), (5), (7), (9), (11), as also (13),

(14).

The first terms in (1), (3), (the terms in green color) are quadratic terms which represent

the spread of the disease to the susceptibles due to interaction with the infectious individuals

and the subsequent transformation of the susceptibles to early incubators - refer to the yellow

arrows in Fig 1. Note that quadratic terms represent interactional changes as those changes

involve interaction between two individuals (as is typical with epidemiological modeling starting

from the classical Kermack–McKendrick work [22]). Since the spread of the disease reduces the

number of susceptibles and increases the number of early incubators, the first term in (1) has

a positive sign and that in (3) has a negative sign. The parameter φi,j represents the rate of

spread and has been defined in the methods section.

The last two terms in (1), (3), (5), (7), (9), (11), (13) (the terms in blue) are linear terms

representing mobility of individuals across clusters. The positive and negative terms respectively

represent inflow into and outflow from the cluster. The dead individuals do not move, so we do

not see such terms in (14). The mobility rates have been defined in the methods section.

All other terms in (3), (5), (7), (9), (11), (13), and (14) (the terms in red) represent the

natural progression of the disease - refer to the yellow arrows in Fig 1. The positive (negative,

respectively) terms correspond to arrows directed towards (away, respectively) from the cor-

responding state. For example the second term in (3) and the first term in (5) represent the

natural progression from early incubation to late incubation. The first term in (13) represents

the recovery of immunocompetent and immunodeficient individuals from the late rash stage.

Finally, the solution of the CEDE provides the spatio-temporal distribution for the spread

of the disease, namely the fraction of individuals who (1) are dead and are in cluster i at

time t (Di(t)), (2) have recovered and are in cluster i at time t (Ri(t)), (3) are susceptible

and are in cluster i at time t ((Sci + Shi)(t)), (4) are infected and are in cluster i at time

t ((Pci + Phi + Cci + Chi + Eci + Ehi)(t)), (5) are contagious and are in cluster i at time t

((Sci + Shi +Aci +Ahi +Bci +Bhi + Pci + Phi + Cci + Chi + Eci + Ehi)(t)).

A.2 Drug only

Comparing the state transitions for the “no countermeasure” and the “drug only” scenarios,

as depicted in Figs 1 and 2, we notice that the latter varies from the former in that it has
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one additional state called Preempted or Q. Thus, the CEDE for the drug only scenario can be

obtained from (1) to (14) by adding an equation that models the transition to this state and

modifying (1) to (14) to reflect this transition. Let Q(t) be the fraction of individuals who have

been preempted after receiving the drug. Then, (15) represents the evolution of Q(t).

Q̇(t) =
n∑
i=1

(Pci(t)τi + Phi(t)τi + Cci(t)µi + Chi(t)µi +Bci(t)τi

+ Bhi(t)τi +Aci(t)τi +Ahi(t)τi + Sci(t)τi + Shi(t)τi) (15)

Here τi is the reciprocal of the expected time required for an individual to receive the drug

in cluster i times the probability that the drug preempts the disease given that the individual

is yet to reach the rash stage. Similarly, µi is the reciprocal of the expected time required for

patients in cluster i to receive the drug times the preemption probability in the rash stage. The

terms τiPci(t), τiPhi(t), µiCci(t), µiChi(t), τiAci(t), τiAhi(t), τiBci(t), τiBhi(t), τiSci(t), τiShi(t),

represent the preemption of the individuals in cluster i in the respective states. Due to these

preemptions, (1) through (13) will respectively be decremented by Shiτi, Sciτi, Ahiτi, Aciτi,

Bhiτi, Bciτi, Phiτi, Pciτi, Chiµi, and Cciµi.

The CEDE above can cater to a range of policies for administering of the drug through

appropriate choice of the τi, and µi. A policy choice may for example be to administer the drug

at a higher rate in certain clusters, either because of their centrality and thereby the prospect

of infectious individuals therein infecting others at a higher rate, or because the number of

infected individuals is high there. Such policies may be represented by selecting a higher value

for the corresponding τis. A policy choice may be to administer the drug to only those showing

certain symptoms, e.g., fever. The τis may then be selected based on the stage of the disease -

then they would be indexed by the stage as well. Finally, when the drug availability is finite,

τi and µi may be made dependent on time, and as the drug supply is exhausted, the τi and µi

may be chosen to be 0.

Finally, the solution of the CEDE provides the spatio-temporal distribution for the spread

of the disease and the impact of the countermeasure (drug). These are captured in the fraction

of individuals who (1) are dead and are in cluster i at time t (Di(t)), (2) have recovered and

are in cluster i at time t (Ri(t)), (3) are preempted (through drug) and are in cluster i at time

t (Qi(t)), (4) are susceptible and are in cluster i at time t ((Sci + Shi)(t)), (5) are infected and

44

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 14, 2020. ; https://doi.org/10.1101/2020.10.13.20211680doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.13.20211680
http://creativecommons.org/licenses/by/4.0/


are in cluster i at time t ((Pci + Phi + Cci + Chi +Eci +Ehi)(t)), (6) are contagious and are in

cluster i at time t ((Sci + Shi +Aci +Ahi +Bci +Bhi + Pci + Phi + Cci + Chi + Eci + Ehi)(t)).

A.3 Vaccine only

The principal difference between the “Vaccine only” scenario and the earlier scenarios lies in

the incorporation of the opinion dynamics. The individuals must now be classified based on

their cooperativity, leading to the new states enunciated in Table 9.

Table 9: Relevant abbreviations (vaccine only scenario)

Compartment Description

Sac immunodeficient cooperative susceptibles
Sbc immunodeficient non-cooperative susceptibles
Sah immunocompetent cooperative susceptibles
Sbh immunocompetent non-cooperative susceptibles
Aac immunodeficient cooperative early incubators
Abc immunodeficient non-cooperative early incubators
Aah immunocompetent cooperative early incubators
Abh immunocompetent non-cooperative early incubators
Bac immunodeficient cooperative late incubators
Bbc immunodeficient non-cooperative late incubators
Bah immunocompetent cooperative late incubators
Bbh immunocompetent non-cooperative late incubators
Pac immunodeficient cooperative prodromals
Pbc immunodeficient non-cooperative prodromals
Pah immunocompetent cooperative prodromals
Pbh immunocompetent non-cooperative prodromals
Cac immunodeficient cooperative individuals in early rash stage
Cbc immunodeficient non-cooperative individuals in early rash stage
Cah immunocompetent cooperative individuals in early rash stage
Cbh immunocompetent non-cooperative individuals in early rash stage
Eac immunodeficient cooperative individuals in late rash stage
Ebc immunodeficient non-cooperative individuals in late rash stage
Eah immunocompetent cooperative individuals in late rash stage
Ebh immunocompetent non-cooperative individuals in late rash stage
Ra Cooperative individuals that recovered from the disease
Rb Non-cooperative individuals that recovered from the disease
Q Vaccinated (immunized)
D Dead

To consider the impact of space, we further classify individuals in the states given in Table 9

based on the cluster they inhabit. Thus, Sahi(t) (Sbci(t), respectively) is the fraction of im-

munocompetent cooperative (immunodeficient non-cooperative, respectively) susceptibles who

are in cluster i at time t. As before, Ii(t) is the fraction of the infectious individuals in cluster
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i at time t. Let Xi(t) be the fraction of individuals who are cooperative and are in cluster i at

time t. Thus,

Ii(t) = Pahi(t) + Paci(t) + Pbhi(t) + Pbci(t) + Cahi(t) + Caci(t) + Cbhi(t) + Cbci(t)

+Eahi(t) + Eaci(t) + Ebhi(t) + Ebci(t)

Xi(t) = Vi(t) + Sahi(t) + Saci(t) +Aahi(t) +Aaci(t) +Bahi(t) +Baci(t) + Pahi(t)

+Paci(t) + Cahi(t) + Caci(t) + Eahi(t) + Eaci(t) +Rahi(t) +Raci(t)

The spread of opinions is modeled in the CEDE through quadratic terms (the terms in

orange) representing opinion exchange interactions between the non-cooperative and the co-

operative individuals, just as the spread of disease is modeled through quadratic terms (the

terms in green) representing physical contact based interactions between the susceptible and

infectious individuals. For simplicity, in this subsection, we present the CEDE only for the sce-

nario that during opinion exchanges the cooperatives persuade the noncooperatives to become

cooperatives.

The immunocompetent cooperative susceptibles (respectively early incubators) who are in

cluster i are preempted (through vaccination) at the rate θi (πi respectively). The preemption

rate is the product of the reciprocal of the expected delay in developing immunity and the

probability that the vaccine provides immunity at the stage of the disease the individual is

in. The expected delay is the sum of the expected delays in 1) delivering the vaccine (e.g.,

delay incurred in getting the health worker’s appointment) and 2) developing immunity after

the vaccine is administered. After these individuals are vaccinated and develop immunity, they

transition to preempted state Q (the terms in black in the CEDE below); this process is denoted

by the yellow arrows in Fig 3. The fraction of individuals who are vaccinated and are in cluster

i at time t is Qi(t).

The resulting CEDE, for the evolution of the states of the immunocompetent individuals, is

shown in (16) - (31) with the coefficients defined in Tables 7 and 8 and additional parameters

defined in Table 10.
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Table 10: Parameters description (vaccine only scenario)

Parameters Description of parameters

θ Preemption rate for immunocompetent susceptibles

θ̃ Preemption rate for immunodeficient susceptibles

π preemption rate for immunocompetent early incubators

π̃ Preemption rate for immunodeficient early incubators

Ṡahi(t) = −
n∑

j=1

Sahi(t)φji(t)Ij(t) +
n∑

j=1

Sbhi(t)αjiXj(t) − Sahi(t)θi +
n∑

j=1
j 6=i

Sahj(t)κij −
n∑

i=1
i6=j

Sahi(t)κji (16)

Ṡbhi(t) = −
n∑

j=1

Sbhi(t)φjiIj(t) −
n∑

j=1

Sbhi(t)αjiXj(t) +
n∑

j=1
j 6=i

Sbhj(t)κij −
n∑

i=1
i6=j

Sbhi(t)κji (17)

Ȧahi(t) =
n∑

j=1

Sahi(t)φjiIj(t) +
n∑

j=1

Abhi(t)αjiXj(t) − Aahi(t)πi − Aahi(t)ω +
n∑

j=1
j 6=i

Aahj(t)κij −
n∑

i=1
i6=j

Aahi(t)κji (18)

Ȧbhi(t) =
n∑

j=1

Sbhi(t)φjiIj(t) −
n∑

j=1

Abhi(t)αjiXj(t) − Abhi(t)ω +
n∑

j=1
j 6=i

Abhj(t)κij −
n∑

i=1
i6=j

Abhi(t)κji (19)

Ḃahi(t) = Aahi(t)ω − Bahi(t)βi +
n∑

j=1

Bbhi(t)αjiXj(t) +
n∑

j=1
j 6=i

Bahj(t)κij −
n∑

i=1
i6=j

Bahi(t)κji (20)

Ḃbhi(t) = Abhi(t)ω − Bbhi(t)β −
n∑

j=1

Bbhi(t)αjiXj(t) +
n∑

j=1
j 6=i

Bbhj(t)κij −
n∑

i=1
i6=j

Bbhi(t)κji (21)

Ṗahi(t) = Bahi(t)β − Pahi(t)γ +
n∑

j=1

Pbhi(t)αjiXj(t) +
n∑

j=1
j 6=i

Pahj(t)κij −
n∑

i=1
i6=j

Pahi(t)κji (22)

Ṗbhi(t) = Bbhi(t)β − Pbhi(t)γ −
n∑

j=1

Pbhi(t)αjiXj +
n∑

j=1
j 6=i

Pbhj(t)κij −
n∑

i=1
i6=j

Pbhi(t)κji (23)

Ċahi(t) = Pahi(t)γ − Cbhi(t)ρ +
n∑

j=1

Cbhi(t)αjiXj +
n∑

j=1
j 6=i

Cbhj(t)κij −
n∑

i=1
i6=j

Cbhi(t)κji (24)

Ċbhi(t) = Pbhi(t)γ − Cbhi(t)ρ−
n∑

j=1

Cbhi(t)αjiXj +
n∑

j=1
j 6=i

Cbhj(t)κij −
n∑

i=1
i6=j

Cbhi(t)κji (25)

Ėahi(t) = Cahi(t)ρ− Eahi(t)δ +
n∑

j=1

Ebhi(t)αjiXj(t) +
n∑

j=1
j 6=i

Eahj(t)κij −
n∑

i=1
i6=j

Eahi(t)κji (26)

Ėbhi(t) = Cbhi(t)ρ− Ebhi(t)δ −
n∑

j=1

Ebhi(t)αjiXj(t) +
n∑

j=1
j 6=i

Ebhj(t)κij −
n∑

i=1
i6=j

Ebhi(t)κji (27)

Ṙahi(t) = (1 − σ)Eahi(t)δ +
n∑

j=1

Rbhi(t)αjiXj(t) +
n∑

j=1
j 6=i

Rahj(t)κij −
n∑

i=1
i6=j

Rahi(t)κji (28)

Ṙbhi(t) = (1 − σ)Ebhi(t)δ +
n∑

j=1

Rbhi(t)αjiXj +
n∑

j=1
j 6=i

Rbhj(t)κij −
n∑

i=1
i6=j

Rbhi(t)κji (29)

Q̇i(t) = Sahi(t)θi + Saci(t)θ̃i + Aahi(t)πi + Aaci(t)π̃i +
n∑

j=1
j 6=i

Qbhj(t)κij −
n∑

i=1
i6=j

Qbhi(t)κji (30)

Ḋi(t) = σEahi(t)δ + σ̃Eaci(t)δ + σEbhi(t)δ + σ̃Ebci(t)δ (31)
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The differential equations for the evolution of the states of the immunodeficient individuals

is identical to those of the immunocompetent individuals, as seen in equations (1) to (12) in

Appendix A.1. Specifically, the equation for Ṡaci(t) may be obtained from equation (16) for

Ṡahi(t), as the equation (2) for Ṡci(t) followed from equation (1) for Ṡhi(t). The only differences

in the equations for the immunodeficient individuals are that 1) they have lower preemption

rates than the immunocompetent ones as they can avail of different vaccines that act slower

and 2) those in late rash stage die while the corresponding immunocompetent ones can recover.

Specifically, the immunodeficient cooperative susceptibles (respectively early incubators) that

are in cluster i develop immunity at rate θ̃i (π̃i respectively). The preemption rates are de-

fined as for the immunocompetent ones, but have lower value as the immunodeficient ones can

only receive vaccines that provide immunity after multiple shots administered after specified

gaps. Thus, in general, θ̃i < θi and π̃i < πi. Note that the recovery and death rates for the

immunodeficient and the immunocompetent ones are as in Table 8.

We now explain the terms in (16) - (31). The second terms in (16) through (29) (the terms in

orange) are quadratic terms which represent the transformation of non-cooperative individuals

to cooperative ones through exchange of opinion with cooperative individuals - refer to the black

arrows in Fig 3. Since the change of opinion increases (respectively decreases) the cooperatives

(respectively noncooperatives), the second terms in the equations for the cooperatives (e.g.,

(16)) are positive and the second terms for the non-cooperatives (e.g., (17)) are negative.

The terms θiSahi(t) and πiAahi(t) (the terms in black) in (30) represent the vaccination

of immunocompetent cooperative susceptibles and early incubators. Vaccination reduces the

number of susceptibles and early incubators by transforming them to the vaccinated state. Thus,

these terms are subtracted from (16) and (18) respectively and added to (30). The second and

fourth terms of equation (30) correspond to the immunization of immunodeficient cooperative

susceptibles and early incubators.

The rest of the terms represent the phenomena modeled in equations (1) to (14) in Ap-

pendix A.1. Specifically, the first terms in (16), and (18) (the terms in green) are quadratic

terms which represent the spread of the disease to the susceptibles due to interaction with the

infectious individuals and the subsequent transformation of the susceptibles to early incubators

- refer to the yellow arrows in Fig 3. The disease dynamics is similar for the cooperatives and

non-cooperatives. The last two terms in (16), (18), (20), (22), (24), (26), (28) (the terms in

blue) are linear terms representing mobility of individuals across clusters. The dead individuals
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do not move, so we do not see such terms in (31). All other terms in (16), (18), (20), (22),

(24), (26) (the terms in red) represent the natural progression of the disease - refer to the blue

arrows in Fig 3.

Different types of vaccines and immunization policies may be captured through appropriate

choices of the values of θi, θ̃i, πi, π̃i. A policy choice may for example be to administer the vaccine

at a higher rate in certain clusters. Such policies may be represented by selecting a higher value

for the corresponding parameters. Some vaccines may act faster than others leading again to

higher values for the above parameters. Finally, when the availability of the vaccine is finite, the

values of these parameters may be made dependent on time, and as the supply of the vaccine

is exhausted, the parameters may be chosen to be 0.

Finally, the solution of the CEDE provides the spatio-temporal distribution for the spread

of the disease and opinion and the impact of the countermeasure (vaccine). These are captured

in the fraction of individuals who (1) are dead and are in cluster i at time t (Di(t)), (2)

have recovered and are in cluster i at time t ((Rahi + Rbhi)(t)), (3) are preempted (that is,

vaccinated) and are in cluster i at time t (Qi(t)), (4) are susceptible and are in cluster i at time

t ((Saci + Sahi + Sbci + Sbhi)(t)), (5) are infected and are in cluster i at time t ((Paci + Pahi +

Pbci + Pbhi + Caci + Cahi + Cbci + Cbhi + Eaci + Eahi + Ebci + Ebhi)(t)), (6) are contagious and

are in cluster i at time t ((Saci + Sahi + Sbci + Sbhi +Aaci +Aahi +Abci +Abhi +Baci +Bahi +

Bbci +Bbhi +Paci +Pahi +Pbci +Pbhi +Caci +Cahi +Cbci +Cbhi +Eaci +Eahi +Ebci +Ebhi)(t)).

A.4 Both drug and vaccine

In this case, individuals may be preempted through drug or vaccine. Thus, those preempted

may either be cooperative or non-cooperatives. Thus, we classify the preempted individuals into

cooperatives, Qa and non-cooperatives, Qb (Fig 4). The cooperatives among the susceptibles

and early incubators can transition to the state Qa after developing immunity through drug

or vaccine. Transition from the rest of the states (other than recovered or dead) to Qa or Qb

occurs through reception of the drug. Qa, Qb needs to be indexed by the clusters the individuals

inhabit.
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Table 11: Parameters description (both drug and vaccine)

Parameters Description of parameters

Θ Rate of preemption for immunocompetent cooperative susceptibles through
the reception of the drug or the vaccine

Θ̃ Rate of preemption for immunodeficient cooperative susceptibles through the
reception of the drug or the vaccine

Π Rate of preemption for immunocompetent cooperative early incubators
through the reception of the drug or the vaccine.

Π̃ Rate of preemption for immunodeficient early incubators through the reception
of the drug or the vaccine.

Θ̄ Rate of preemption for immunocompetent non-cooperative susceptibles
through the reception of the drug or the vaccine

Θ̂ Rate of preemption for immunodeficient non-cooperative susceptibles through
the reception of the drug or the vaccine

Π̄ Rate of preemption for immunocompetent non-cooperative early incubators
through the reception of the drug or the vaccine.

Π̂ Rate of preemption for immunodeficient non-cooperative early incubators
through the reception of the drug or the vaccine.

τ Rate of preemption for prodromals and non-cooperatives among susceptibles
through reception of drugs

µ
Rate of preemption for patients with rash through reception of drugs.

We use the parameters as defined in Appendix A.3 with some of the modifications described

in Table 11. Thus, the CEDE for both drug and vaccine scenario can be obtained from (16) to

(29) by adding two equations, (32) and (33) below, that model the transitions to Qa, Qb and

modifying (16) to (29) to reflect this transition and the distinction between Qa, Qb.

Q̇ai(t) =

n∑
i=1

(
Sahi(t)Θi + Saci(t)Θ̃i +Aahi(t)Πi +Aaci(t)Π̃i + Paci(t)τi + Pahi(t)τi

+ Caci(t)µi + Cahi(t)µi +Baci(t)τi +Bahi(t)τi +Aaci(t)τi +Aahi(t)τi) (32)

Q̇bi(t) =

n∑
i=1

(
Sbci(t)Θ̂i + Sbhi(t)Θ̄i +Abci(t)Π̂i +Abhi(t)Π̄i + Pbci(t)µi + Pbhi(t)µi

+ Cbci(t)µi + Cbhi(t)µi +Bbci(t)τi +Bbhi(t)τi +Abci(t)τi +Abhi(t)τi) (33)

We now describe the modifications in (16) to (29). The expression for Xi(t) in Appendix

(A.3) need to have Qai(t) instead of Qi(t). The terms ΘiSahi(t), Θ̃iSaci(t), πiAahi(t), π̃iAaci(t),

Sbci(t)Θ̂i, Sbhi(t)Θ̄i, Abci(t)Π̂i, and Abhi(t)Π̄i represent the preemption of individuals by either

vaccine or drugs for individuals in cluster i in their respective states. In addition, τiPahi(t),

τiPaci(t), τiPbhi(t), τiPbci(t), µiCahi(t), µiCaci(t), µiCbhi(t), µiCbci(t), µiEahi(t), µiEaci(t), τiBahi(t),
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τiBaci(t), τiBbhi(t), and τiBbci(t) represent preemption by drug only for individuals in cluster i

in the respective states. Due to these preemptions, (16) through (27) will respectively be decre-

mented by SahiΘi, SbhiΘ̂i, Saci(t)Θ̃i, Sbci(t)Θ̂i, AahiΠi, Abci(t)Π̂i, Aaci(t)τi, Abhi(t)Π̄i, Bahiτi,

Bbhiτi, Pahiτi, Pbhiτi, Cahiµi, and Cbhiµi.

Here the suffices a, b represent the two opinions. Those with suffix a convert those with

suffix b. To capture the scenario that cooperatives convert the non-cooperatives, we consider

those with suffix a as cooperative, and those with suffix b as non-cooperative. To capture the

scenario that non-cooperatives convert the cooperatives, we reverse the designations, that is,

those with suffix a are non-cooperatives, and those with suffix b are cooperatives. Note that

functionally the difference between the cooperatives and non-cooperatives is that the former

opt for vaccination while the latter does not. The vaccinations can be effective only if the

individuals are susceptible or in early incubation stage. Thus, in these states, the cooperatives

can be preempted through either drugs or vaccines, while the non-cooperatives can only be

preempted through drugs (that is, if they are eligible for drugs depending on the administering

policies). Thus, the preemption rates of the cooperatives are different from the non-cooperatives

in these stages, and that is the only functional difference. Thus, interchanging the preemption

rates of the states with suffix a with those of the corresponding ones with suffix b will switch

their roles as cooperatives and non-cooperatives. We describe how the preemption rates are

chosen in Section B of Appendix.

Finally, various policy choices for countermeasure application may be incorporated through

appropriate selection of the parameters in Table 11, similar to the connections made in the

concluding paragraphs of Appendices A.2 and A.3. In addition, the solution of the CEDE

provides the spatio-temporal distribution for the spread of the disease and opinion and the

impact of the countermeasure (vaccine and drug). These are captured in fraction of individuals

who (1) are dead and are in cluster i at time t (Di(t)), (2) have recovered and are in cluster

i at time t ((Rahi + Rbhi)(t)), (3) are preempted (that is, vaccinated or administered drugs)

and are in cluster i at time t ((Qai + Qbi)(t)), (4) are susceptible and are in cluster i at time

t ((Saci + Sahi + Sbci + Sbhi)(t)), (5) are infected and are in cluster i at time t ((Paci + Pahi +

Pbci + Pbhi + Caci + Cahi + Cbci + Cbhi + Eaci + Eahi + Ebci + Ebhi)(t)), (6) are contagious and

are in cluster i at time t ((Saci + Sahi + Sbci + Sbhi +Aaci +Aahi +Abci +Abhi +Baci +Bahi +

Bbci +Bbhi +Paci +Pahi +Pbci +Pbhi +Caci +Cahi +Cbci +Cbhi +Eaci +Eahi +Ebci +Ebhi)(t)).
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B Parameter estimation

B.1 Estimation of parameters used in all the scenarios

We first estimate the parameters that occur in all four scenarios ((1) no countermeasure (2) drug

only (3) vaccine only (4) both drug and vaccine) we have considered so far, namely the disease

progression parameters. These parameters have been described in Table 8. Typically, the early

incubation phase for smallpox lasts for 7 days and the late incubation phase for 5 days [14].

Assuming that each phase has an exponentially distributed random duration, 1/ω, 1/β are the

expected durations in these two phases. Thus, ω = 1/7, β = 1/5. Typically a patient is in

prodromal phase for 3 days [14, 15]. Thus, as for the incubation phases, γ = 1/3. Typically,

the early and late rash periods last for 3 and 7 days respectively [14]. Therefore, as before,

ρ = 1/3, δ = 1/7. On average, 30% of the infected immunocompetent individuals die of the

disease [14,15]. Thus, σ = 0.3. According to [13], immunodeficient individuals are not expected

to recover from smallpox. Thus, σ̃ = 1.

We now compute the disease spread rate described in Table 7. We assume φi,j = 0 if i 6= j,

that is, there is no direct physical contact and therefore no direct spread of disease between

people inhabiting different clusters. The basic reproductive number, R0, is defined as the average

number of secondary infections caused by a single typical infected individual among a completely

susceptible population. [11,14] estimated R0 for smallpox to be 6.9. We estimate φi,i to obtain

R0 = 6.9. Following the methodology in [20,32], we get φi,i = 0.00173.

Note that the infection indirectly spreads between clusters due to mobility of individuals

across clusters. Mobility rate is described in the methods section and Table 7. We do not

assume any specific value of the mobility rate between clusters but vary it across a range of

values as mobility rates heavily depend on the scenario under consideration.

B.2 Estimation of parameters related to delivery of drugs

We now estimate the parameters related to the preemption of infected individuals by drugs (refer

to Appendix A.2), these will also be used to compute the parameters in both drug and vaccine

scenarios. First, note that the stage of the disease in which an individual can be administered a

drug depends on the drug administering policy. We assume that in a state in which an individual

is allowed to receive a drug, he needs to wait for an exponentially distributed random time after

which he is preempted, that is, he is administered the drug and develops the ability to thwart
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the disease. Let ε be the parameter of this exponential process. We also assumed that the wait

time for different individuals is independent.

There are n individuals in all. The first individual who is preempted waits for the minimum

time among n. From the theory of exponential distributions, the minimum time is exponentially

distributed with parameter nε, and has expectation 1/nε. The second person to be preempted

has the minimum additional wait time among the remaining n − 1. Similarly, this additional

wait time is exponentially distributed with parameter (n − 1)ε and expectation 1/(n − 1)ε.

Similarly, the additional wait time for the third person (after the second person is preempted)

is exponential with parameter (n − 2)ε, and has expectation 1
(n−2)ε . This continues until the

last person whose expected additional wait time is 1
ε . Therefore, the total expected time for n

individuals to be preempted is,

1

nε
+

1

(n− 1)ε
+

1

(n− 2)ε
+ ...+

1

ε

=
1

ε

[
1

n
+

1

n− 1
+

1

n− 2
+

1

n− 3
+ ...+

1

3
+

1

2
+ 1

]

=
1

ε

n∑
k=1

1

k
≈ 1

ε
(ln(n) + constant)

The last expression follows from the Harmonic series (number) approximation. We obtain ε by

equating this expression to the total wait times required to develop immunity as reported in

the literature for cities. [14] and [33] state that the CDC’s Cities Readiness Initiative sets as

a goal that cities should be able to distribute antibiotics to their entire population within 48

hours. However, it is uncertain how many large cities with a population similar to our model are

prepared to meet this goal. Therefore, similar to [14], we consider a mass antiviral distribution

timetable of 4 days. We assumed that an individual can thwart the disease 2 days on average

after he starts receiving the drug. We also assume that the constant in the Harmonic number

approximation is negligible. Therefore, ε = ln (n) /(4 + 2). Considering n = 107, we have

ε = 2.6863.

According to [14], drug treatment before the onset of rash offers 99% protection against

mortality, and drug treatment 3 days post-onset of rash offers 80% protection against mortality.

Thus, we estimate the preemption rate for susceptibles, incubators, and prodromals as τ =

ε × 0.99 = 2.6594 (if the drug administering policy administers the drug to them), and the

preemption rate for those in the early rash stage as µ = ε ∗ 0.8 = 2.1490. We assume that the
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drug is ineffective in the late rash stage.

All policies for administering drugs use µ = 2.1490 as computed above. But τ will be 0 for

some states in which the drug is not administered depending on the policy under consideration.

Note that policy 1 administers drugs to only the patients with rashes. Thus, under policy 1,

τ = 0. In policy 2, once the number of cases in a given cluster exceeds a certain threshold,

drug is administered to anyone with fever (prodrome) or rashes, and τ = 2.6594 for prodromals;

otherwise, τ = 0 as in policy 1. In policy 3, drugs are administered to everyone in a given cluster

once the number of cases in the cluster exceeds a certain threshold, otherwise only those with

rash receive the drug. Thus, once the number of cases in a cluster exceed a certain threshold,

τ = 2.6594, otherwise τ = 0.

B.3 Estimating the parameters pertaining to immunization

We now consider the additional parameters in the vaccine only scenario above and beyond

those estimated in Appendix B.1. Refer to Table 10. According, to [14, 16, 20], it would take

approximately 10 days on average for cooperative individuals to get their shots in case of mass

vaccination against an epidemic in a large U.S. city. The immunocompetent individuals are

given the live vaccine (ACAM2000) which provides immediate immunity if taken during the

susceptible stage [26]. Finally, according to [14], vaccination within the early incubation stage

provides an 80% chance of disease prevention. Now, following the methodology in Appendix B.2,

θ = ln(107)
10 = 1.6118 and π = ln(107)∗0.8

10 = 1.2894 (as in Appendix B.2, we consider that there

are n = 107 individuals in the city under consideration). Next, we consider immunodeficient

individuals. They receive the Modified Vaccinia virus Ankara (MVA) vaccines [11,14] that takes

two-shots 30 days apart to provide immunity [17]. Thus θ̃ = ln(107)/(10 + 30) = 0.4030, and

π̃ = ln(107) ∗ 0.8/(10 + 30) = 0.3224.

B.4 Modifying the estimation for the vaccine and drug scenario

In this scenario, individuals can be preempted through either drug or vaccine. We estimate the

parameters in Table 11. We first consider the default case, that is, the cooperatives convert the

non-cooperatives, in this, the states with a in the suffix are cooperatives and those with b in

the suffix are the non-cooperatives. Vaccines are effective only when they are administered to

individuals in susceptible or early incubation stage. Thus, preemption in later stages can only

be through drugs. Referring to Table 11, 1/τ and 1/µ can therefore be directly obtained from
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the estimation strategy in Appendix B.2, i.e., τ = 2.6594 and µ = 2.1490.

The estimation of other parameters in Table 11 will depend on the policy for administering

the drugs. Note that in policy 1, drugs are administered to only patients with rash. Thus,

a susceptible or early incubator can be preempted only when he receives the vaccine. Thus

Θ, Θ̃, Π and Π̃ can be obtained directly from the respective values of θ, θ̃, π, π̃ estimated in

Appendix B.3. Specifically Θ = 1.6118, Θ̃ = 0.4030, Π = 1.2894 and Π̃ = 0.3224. And, since

the non-cooperatives do not receive vaccine, Θ̄ = Θ̂ = Π̄ = Π̂ = 0.

In policy 2, once the number of cases in a given cluster exceeds a certain threshold, drug is

administered to anyone with fever (prodrome) or rash. Thus, a susceptible or early incubator

can be preempted only when he receives the vaccine, and Θ, Θ̃, Π, Π̃, Θ̄, Θ̂, Π̄, and Π̂ can be

estimated identical to the previous paragraph. The drug delivery parameter in the prodrome

stage can be estimated as in the first paragraph, i.e., τ = 2.6594.

In policy 3, drugs are administered to everyone in a given cluster once the number of cases in

the cluster exceeds a certain threshold. Thus, in this case, susceptibles and early incubators may

either be preempted through drugs or vaccines. We assume that any such immunocompetent

individual is preempted through vaccination after an exponentially distributed wait time with

parameter θ, and is preempted through drug after an exponentially distributed wait time with

parameter τ . Thus, he is preempted after a minimum of the two wait times (if he receives

the drug earlier than the vaccine he will be preempted through drug and vice versa). When

the two exponential processes are independent, their minimum is an exponential process with

parameter Θ, where Θ = θ + τ . Now from the estimations in Appendix A.4 and first 4 rows of

Table 11, Θ = 1.6118 + 2.6594 = 4.2712. For an immunodeficient individual the parameter for

the vaccine is θ̃ = 0.4030 (from Appendix B.3). Thus, Θ̃ = 0.4030 + 2.6594 = 3.0624. Similarly,

Π = π + τ = 1.2894 + 2.6594 = 3.9488, and the Π̃ = π̃ + τ = 0.3224 + 2.6594 = 2.9818. For

late incubation, preemption can happen only through drug delivery, and the preemption rate

as estimated in the first paragraph is τ = 2.6594. The non-cooperative susceptibles and early

incubators can only be preempted through drugs. Thus Θ̄ = 2.6594, Θ̂ = 2.6594, Π̄ = 2.6594,

Π̂ = 2.6594.

Finally, we consider the case that the non-cooperatives convert the cooperatives. As ex-

plained in Appendix A.4, here the states with suffix a are the non-cooperatives and those with

suffix b are the cooperatives. Since the functional difference between these two are in the pre-

emption rates, the preemption rates of the states with suffix a need to be interchanged with
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the corresponding ones with suffix b. Note that only the susceptibles and early incubators can

receive vaccines, all the rest are preempted only through drugs and therefore their preemption

rates are the same regardless of whether they are cooperatives or non-cooperatives. Thus, only

the preemption rates of the cooperative susceptibles (respectively, early incubators) need to be

interchanged with the corresponding non-cooperative susceptibles (respectively, early incuba-

tors). That is, values of Θ, Θ̄ need to be exchanged. Similarly, values of 1) Θ̃, Θ̂, 2) Π, Π̄, 3)

Π̃, Π̂ need to be exchanged.
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