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ABSTRACT 

Background: Alzheimer’s disease (AD) is an irreversible, progressive brain disorder that 

slowly destroys memory and thinking skills. The ability to correctly predict the diagnosis of 

Alzheimer’s disease in its earliest stages can help physicians make more informed clinical 

decisions on therapy plans. Objective: To determine whether the unsupervised discovering 

of latent classes of subjects with mild cognitive impairment (MCI) may be useful in finding 

different prodromal AD stages and/or subjects that have a low MCI to AD conversion risk. 

Methods: 18 features relevant with the MCI to AD conversion process described 681 subjects 

with early MCI. Subjects were split into training (70%) and validation (30%) sets. Subjects 

from the training set were analyzed using consensus clustering and Gaussian mixture models 

(GMM) were used to describe the shape of the discovered latent classes.  The discovered GMM 

predicted the latent class of the validation set. Finally, descriptive statistics, rates of 

conversion, and odds ratios (OR) were computed for each discovered class. Results: Through 

consensus clustering we discovered three different clusters among MCI subjects. The three 

clusters were associated with low-risk (OR = 0.12, 95%CI = 0.04 to 0.3|), medium-risk (OR = 

1.33, 95%CI = 0.75 to 2.37), and high-risk (OR = 3.02, 95%CI = 1.64 to 5.57) of converting 

from MCI to AD, with the high-risk and low-risk groups highly contrasting. Hence, prodromal 

AD subjects were present on only two clusters. Conclusion: We successfully discovered three 

different latent classes among MCI subjects with varied risk of MCI-to-AD conversion through 

consensus clustering. Two of the discovered classes may represent two different prodromal 

presentations of the Alzheimer´s disease. 

Keywords: Alzheimer’s disease, mild cognitive impairment, latent class analysis, consensus 

clustering, Gaussian mixture model. 
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1. INTRODUCTION 

Alzheimer’s disease (AD) is the most common form of dementia among the elderly [1]. There 

are currently more than 50 million people worldwide with dementia and 131.5 million people 

are predicted to be affected by AD in the year 2050 [2]. Hence there is a need for the discovery 

of effective treatments aimed to improve or cure the future AD cases. The clinical research 

and the pharmaceutical community have explored numerous new drugs, however over the 

last twenty years, no effective treatments have been developed to aid the affected population 

[3]. The current hypotheses for the lack of success in AD drug development are that current 

drugs cannot change the course of dementia at late disease stages and that subtle differences 

in AD phenotypes may require different treatment. Therefore, it is extremely important to 

diagnose AD in its earliest stages as well as detecting the possible AD subtype affecting the 

patient. Hence, early diagnosis and subtyping of Alzheimer’s disease have several benefits: 

They play a primal role in prompt evaluation and treatment of reversible or treatable causes 

and help physicians to make important decisions about patient’s care [4]. 

To achieve the early detection goal it is important to get a clear understanding of the causes 

and pathogenesis of AD and differentiate it from the complexity of aging [5-7]. It has been 

reported that 33.6% of subjects with mild cognitive impairment (MCI) are at risk of having 

early-stage AD [8, 9]. Hence, the prodromal phase of the AD is characterized by MCI with AD 

pathological features in brain tissue that start early in the disease process and are considered 

hallmarks of the disease [10]. In other words, the MCI stage in AD patients is a transitional 

stage between normal aging and clinical dementia [8, 9]. 

Some of the reported diagnostic methods are not accurate enough to separate patients with 

MCI that will progress towards AD vs subjects that will develop another type of dementia [11-

13]. Therefore, there is a demand for developing precise prediction models that yield an 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 20, 2020. ; https://doi.org/10.1101/2020.10.14.20212696doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.14.20212696
http://creativecommons.org/licenses/by-nd/4.0/


 
 

adequate prediction of subjects that will develop AD. Various methods have been suggested 

for early diagnosis [2, 14-16]. Although some work has been done in identifying different 

presentations of AD at an early stage [17], these efforts have been done in different settings 

and using limited clinical information [18]. The main challenge of AD subtyping is that the 

prodromal phase is defined by a collection of symptoms that are shared by many diseases or 

conditions [19]. Furthermore, there is a wide variety of possible disease subtypes and each 

one is associated with the explicit clinical data type used to define it: Cognitive 

questionnaires, medical history, imaging features, laboratory tests, nutrition habits, 

genomics, proteomics, radiomics, and so forth [20]. Hence, reaching a consensus definition of 

clinically relevant disease subtypes at the prodromal stage is of paramount importance [21, 

22].  

Defining clinical relevant subtypes is challenging, because there are thousands of possible 

ways in which MCI patients could be classified, and there is no clear difference in survival 

trajectories between many MCI to AD converters. One of the suggested methods proposes to 

apply a novel multi-layer clustering algorithm to a longitudinal cohort of MCI subjects to 

identify homogenous subtypes [23], while Ezzati et al. (2019) applied a latent class analysis 

(LCA) to detect subgroups among MCI patients [18]. To address this issue, we propose to use 

robust and unsupervised data clustering of the multidimensional features of MCI patients 

[24]. Data clustering aims to find a computer model that is able to select subjects that share 

similar characteristics. Our hypothesis is that those robust clusters also share the same AD 

etiology, thus, they may have similar treatment responses. Although data clustering can be 

done by many different machine learning (ML) algorithms, recent advances in ML have set 

forward statistical clustering strategies that are robust to algorithmic approaches [25, 26]. 

One of the most robust approaches applies consensus clustering, and Gaussian mixture 

models (GMM) to discover the stable latent classes from multidimensional data sets [27, 28]. 
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The objective of this study was twofold: To apply consensus data clustering to discover the 

latent classes from a set of AD-relevant characteristics from MCI subjects, and to describe the 

association of discovered classes with MCI to AD conversion. 

2. MATERIALS AND METHODS 

2.1. Data 

Data used in the preparation of this study was obtained from the TADPOLE challenge 

“standard” data sets (https://tadpole.grand-challenge.org). The TADPOLE sets were derived 

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study (adni.loni.usc.edu). The 

ADNI was launched in 2003 by the National Institute on Aging, the National Institute of 

Biomedical Imaging and Bioengineering, the Food and Drug Administration, private 

pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public-

private partnership. The primary goal of ADNI has been to test whether serial MRI, positron 

emission tomography (PET), other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of MCI and early AD. Determination 

of sensitive and specific markers of very early AD progression is intended to aid researchers 

and clinicians develop new treatments and monitor their effectiveness, as well as lessen the 

time and cost of clinical trials. The Principal Investigator of this initiative is Michael W. 

Weiner, MD, VA Medical Center and the University of California – San Francisco. ADNI is the 

result of efforts of many co-investigators from a broad range of academic institutions and 

private corporations, and subjects have been recruited from over 50 sites across the U.S. and 

Canada. The initial goal of ADNI was to recruit 800 subjects but ADNI has been followed by 

ADNI-GO and ADNI-2. To date, these three protocols have recruited over 1500 adults, ages 

55 to 90, to participate in the research, consisting of cognitively normal older individuals, 

people with early or late MCI, and people with early AD. The follow-up duration of each group 
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is specified in the protocols for ADNI-1, ADNI-2, and ADNI-GO. Subjects originally recruited 

for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For up-to-date information, 

see www.adni-info.org. 

The ADNI-TADPOLE dataset included 1737 subjects with longitudinal observations. Each 

observation included the diagnosis status, neurocognitive evaluations, quantitative MRI 

longitudinal observations, PET studies, APOE4 polymorphism, among others [29]. For this 

study, only the 681 subjects with early MCI (EMCI) and late MCI (LMCI) at baseline were 

included. Indeed, the ADNI dataset separates “early” and “late” mild cognitive impairment 

(MCI) based on a single memory test so that EMCI subjects are a cohort with milder episodic 

memory impairment than the LMCI group [30, 31]. This dataset comprised the different 

clinical data types: Questioners, Radiomics-Imaging, Laboratory test, Genomic. 

2.2. Feature selection 

Although the ADNIT-TADPOLE data set described each subject with 1,898 features, we only 

used a basic set of 18 features that can readily be observed in clinical practice and that are 

relevant or associated with MCI to AD conversion. Selected features included demographic 

information, scores from cognitive tests, volumes from different brain regions as measured 

through MRI, and genetic information. Information derived from PET imaging and 

cerebrospinal fluid were not considered due to the difficulty of performing those analyses 

across the world. 

The three selected demographic features were: Age, gender, and years of education. Nine 

features from cognitive tests were selected, namely: The 11-item score and 13-item score 

from the Alzheimer's Disease Assessment Scale (ADAS); total score from the Clinical 

Dementia Rating scale Sum of Boxes (CDR-SB); total score from the Functional Assessment 

Questionnaire (FAQ); total score from the Mini-Mental State Examination (MMSE); and 
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immediate score, learning score, forgetting score, and percentage forgetting score from the 

Rey's Auditory Verbal Learning Test (RAVLT). The five MRI-related features were: Total 

entorhinal volume, hippocampal volume (left plus right), middle temporal gyral volume (left 

plus right), total ventricular volume, and intracranial volume (ICV). Finally, the data set also 

included APOE4 status. 

The rationale for some of the selected features is that several studies have established some 

association between them and the AD neurodegenerative process [32]: Cognitive evaluations 

have strong predictive power of MCI to AD conversion, hippocampal and entorhinal volumes 

have also been associated with the MCI to AD conversion process, and APOE4 has been shown 

to be associated with age at onset of AD [33-38]. The demographic features, ventricle volume, 

and ICV were selected to study any possible anthropometric-, age-, or education-related 

associations in the clusters. Finally, the time to AD conversion was computed to study 

discovered MCI subtypes, while early MCI (EMCI) and late MCI (LMCI) status were selected 

to describe the associations of the discovered clusters. 

Selected features at baseline are shown in Table 1. While the sex and age of both classes were 

slightly similar, there was a statistical difference between the ratio of MCI to AD converters. 

Finally, we computed the effect size of all features using Cohen's d and odds ratio for 

continuous and discrete variables, respectively [39].  

2.3. Consensus Clustering and Gaussian Mixture Modeling 

Figure 1 summarizes the overall methodology used for cluster discovering and validation. 

The specific model parameters depend on the training set [40], hence, model fitting and 

inference are biased towards the training set. To avoid training biases, our set of MCI subjects 

was split into training and validation sets:  70% (n=476) of the subjects were randomly 

selected and used to discover the MCI clusters/latent classes and to train the GMM 
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parameters. Once all the cluster-parameters were estimated on the training set, we predicted 

the corresponding classes on the remaining 30% (n=205) of the subjects. After that, we 

described the characteristics of each one of the groups. 

First, we had to estimate the optimal number of 𝐾 Gaussian mixtures and parameters 𝜃 =

{𝜙1, 𝜇1, 𝛴1, ⋯ , 𝜙𝐾 , 𝜇𝐾 , 𝛴𝐾}   given the multidimensional vector 𝑥 of each patient in the training 

set. In other words, the algorithm must find the optimal partition of the data (𝐾) and the 

parameters of the Posterior probability distribution described by eq. 1: 

 

𝑝(𝜃|𝑥) = ∑

𝐾

𝑖=1

�̂�𝑖𝑁(�̂�𝑖 , �̂�𝑖) (1) 

where �̂�𝑖  is the mixture weight, and �̂�𝑖  and �̂�𝑖  are the mean vector and covariance matrix of 

each Gaussian cluster, respectively [41].  Once a GMM was estimated, the latent class �̂� of a 

new subject was then predicted using the Mahalanobis distance (eq. 2): 

 

�̂� = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑘∈{1,…,𝐾} (𝑥 − �̂�𝑘)𝑇�̂�𝑘(𝑥 − �̂�𝑘) 
(2) 

Not all the observed features follow a Gaussian distribution, but we assumed that the linear 

combination of random variables, eq. 3: 

 

𝑥𝑛,𝑗 = ∑

𝑛

𝑖=1

𝑤𝑖,𝑗𝑓𝑛,𝑖  
(3) 

follows a normal distribution, where 𝑤𝑖,𝑗  is a coefficient that weights the contribution of each 

𝑓𝑖  feature for a specific patient 𝑛. In this study, we used the principal components analysis 

(PCA) transform to find the weights of the linear transformation [42-44]. To avoid feature 

biases in the PCA computation, we normalized all the features using the z-transform: 

 
𝑓𝑛,𝑖 = (𝑓𝑛,𝑖 − 𝜇𝑖)𝜎𝑖

−1 
(4) 

where 𝑓𝑛,𝑖  is the raw observed feature, and 𝜇𝑖  and  𝜎𝑖 are the sample mean and the sample 

standard deviation of each feature, respectively. 
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We estimated 𝐾 using the consensus clustering method, a robust methodology for the 

estimation of the clustering structure of the sampled data set [45-48]. The main element of 

consensus clustering is the cluster co-association matrix (CCAM), an NxN matrix that stores 

the frequency that two subjects share the same latent class. The frequency is computed by 

randomly selecting a training set of subjects and then estimating their latent class by a user-

supplied clustering method. After that, we count if a subject pair shares the same cluster, e.g.: 

  

 

 

                                                            1, 𝑖𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟  
   𝑀ℎ(𝑖, 𝑗) =  𝑀ℎ−1(𝑖, 𝑗)  + 

 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             
  
 

(5) 

where 𝑀ℎ  is the CCAM after the ℎ𝑡ℎ repetition of the clustering method. The procedure is 

repeated several times to get a robust estimation of the co-association. The analysis of the 

CCAM matrix is done by computing the proportion of ambiguous clustering (PAC) and 

studying the hierarchical cluster of the CCAM [27]. 

In summary, the specific implementation of the consensus clustering was as follows: First, we 

normalized all features; second, we performed the PCA transform and selected the first 3 

components (capturing more than 80% of total variance); third, we repeated the clustering 

method for 𝐾 = {2, 3, 4, 5 𝑎𝑛𝑑 6) one hundred times, where at each specific 𝐾, we randomly 

selected 70% of the training samples for latent class discovery using the expectation-

maximization (EM) algorithm of the mclust package (mclust 5.4.5) [49] and the latent classes 

of the other 30% (i.e. the clustering validation set) were predicted using equation (2) with 

the trained GMM; fourth, the CCAM matrix of the predicted latent classes was analyzed and 

used to discover the optimal number of clusters; fifth, the GMM was fit and trained using the 

optimal number of clusters found by consensus clustering on the PCA transformed data using 

the EM algorithm (mclust 5.4.5). 
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2.4. Statistical Analysis of the MCI Subtypes  

After we estimated the z-normalization parameters, computed the PCA transform, discovered 

the number of MCI clusters and their associated parameters of the GMM, we proceeded to 

estimate the latent class of each one of the samples in the holdout sample. The latent class 

prediction is done in three steps: First, compute the z-score of each one of the hold-out-

samples using equation (4) and the mean and standard deviation of the train samples; second, 

extract the tree principal components using equation (3); and third, estimate the latent class 

using equation (2). This procedure provides a unique class label for each testing-set sample. 

Hence, to test the hypothesis that each latent class represents a unique set of clinically 

relevant MCI subtypes, we studied the association of each cluster to the clinical relevant 

outcome of MCI to AD conversion.  

The relevance of each latent class in the context of AD was determined by computing the OR 

for MCI to AD conversion [50] and the Kaplan-Meier plot of each cluster [51], checking for 

statistical differences between the survival curves using the Log-rank test [52]. Furthermore, 

we studied the differences of each latent class among converters and non-converters 

(prodromal AD) and statistical differences between features of the subtypes were computed 

using the ANOVA test. Finally, we studied the potential training bias between the discovered 

subtypes by reporting statistical differences between training and testing sets [53]. Values 

lower than 0.05 were considered significant, and no attempt was made to correct for false 

discovery.  

3. RESULTS 

Through consensus clustering we discovered three different sets of MCI patients. Figure 2 

shows the CCAM of the 100 predicted validation results of the consensus clustering for all 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 20, 2020. ; https://doi.org/10.1101/2020.10.14.20212696doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.14.20212696
http://creativecommons.org/licenses/by-nd/4.0/


 
 

analyzed values of 𝐾, and clearly illustrates these three different sets of patients among the 

ADNI-MCI. Additionally, Figure 2 also displays the result of the comparison of the PAC. Taking 

these results into account, we judged that 𝐾 = 3 was optimal for this analysis. 

Figure 3 depicts the PCA and t-distributed stochastic neighbor embedding (t-SNE) 

visualization of the predicted latent class on the training set and the hold-out testing set. 

Subtypes 1 through 3 represent the MCI to AD low-, medium-, and high-risk subtypes, 

respectively. Table 2 illustrates the proportion of reverters (conversion from MCI to normal 

cognition), stable MCI subjects, and converters (conversion from MCI to AD) per discovered 

MCI subtype, as well as their corresponding OR with a 95% confidence interval. It is clear 

that, with an OR of 3.02 (95%CI 1.64 to 5.57), subtype 3 represents a group at a higher risk 

of MCI to AD conversion than the other two subtypes. On the other hand, subtype 1 has an 

almost null risk of converting, with and OR of 0.12 (95%CI 0.04 to 0.31). Hence, with an OR 

of 1.33 (95%CI 0.75 to 2.37), subtype 2 was considered a medium-risk subgroup. 

Furthermore, the low-risk subjects have a high chance of reverting back to a normal cognitive 

status, with an OR of 29.15 (95%CI 3.6 to 236.23). Additionally, the amount of EMCI patients 

in the medium- and high-risk groups was much smaller than LMCI subjects, whereas most 

subjects in the low-risk group were EMCI patients. 

Table 3, Table 4, and Table 5 depict the descriptive statistics of the explored features 

stratified by subtypes for all subjects, for just converters, and for just stable subjects, 

respectively. Notably, most of the features derived from cognitive tests were found to have 

significantly different means between the medium- and high-risk groups, but that same 

difference was not found in features from other sources of information. Regarding stable 

subjects, only the years of education, APOE4 status, and middle temporal gyral volume were 

not found significantly different between the three subtypes in the testing set. Finally, Figure 
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4 shows the Kaplan-Meier plots of all three MCI subtypes on the training and testing sets. 

These plots show the time to conversion, and from them is clear that the low-risk subtype 

shows a very different trajectory than the at-risk (medium- and high-risk) subtypes. Although 

the survival curve does not seem very different between subtypes 2 and 3, the log-rank test 

indicated that they are statistically different (p< 0.05). The survival analyses performed on 

subjects who progressed to AD indicated that the rate of MCI to AD conversion in at-risk 

groups was significantly greater than that of the low-risk group in both sets. 

4. DISCUSSION 

Here, we described three different populations of MCI subjects that were discovered using 

unsupervised learning via consensus clustering. The discovery of the three MCI subtypes was 

done using a representative training set of the ADNI database. The modeling of these 

subtypes with GMM allowed us to predict the MCI classes on an independent testing set. The 

statistical analysis of the discovered MCI groups identified at least two MCI groups that are 

at higher risk of progression towards dementia. The OR of converting from MCI to AD for 

these two groups was very large, namely 8.52 (95%CI 3.22 to 22.56), and slightly larger than 

the OR between EMCI and LMCI subjects, 7.5 (95%CI 4.9 to 11.5). This implies that the 

unsupervised clustering successfully discovered the low-risk subjects among the MCI 

population. Additionally, the two at-risk groups showed different behaviors, having 

statistically different means for cognitive test-related features, statistically different Kaplan-

Meier curves, and contrasting values for the OR of remaining stable and for the OR of 

converting. The detailed analysis of the at-risk groups indicated that the differences in the 

two groups were present even after we stratified the analysis for the patients that developed 

dementia.  
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Gamberger et al. [23] investigated 5-year longitudinal outcomes and biomarker data from 

562 MCI subjects using a novel multilayer clustering algorithm. In that work, two 

homogenous clusters of MCI subjects with markedly different prognostic cognitive 

trajectories were identified. A cluster of rapid decliners had a five times larger rate of 

conversion than that of a cluster of slow decliners. However, some patients did not fit into 

either cluster, most of them with baseline ADAS scores located between slow and rapid 

decliners. Our work has classified MCI subjects with the same accuracy, also finding a five 

times larger rate of conversion between the low-risk and the at-risk groups. But, we assigned 

all patients to a specific subtype and were able to further subdivide the at-risk group into 

significantly different subtypes (medium- and high-risk). 

The herein presented unsupervised analysis of the ADNI data suggests that subjects at MCI 

may represent different AD subtypes that can be discovered at the prodromal phase of AD. 

Also, it may be worth exploring what other differences exist between the two at-risk groups, 

and these studies may highlight differences in etiology and possible differences in treatment 

response among these two groups.   

The current study is limited by the fact that only ADNI subjects with their corresponding 

clinical/medical and imaging features were used for this study. Our findings need to be 

validated in an independent cohort; nevertheless, the robust strategy of using a hold-out 

sample for inferring the properties and differences among the discovered groups indicates 

that there are at least three different MCI subtypes in the ADNI cohort.  

5. CONCLUSION 

In this search, we took advantage of consensus data clustering and GMM to discover the latent 

classes from a set of AD-relevant characteristics of MCI subjects. After identifying MCI 
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subtypes, the association of discovered classes with MCI to AD conversion were described. 

Our findings revealed three different subtypes of patients with MCI at early stage. At-risk 

groups showed a different trajectory than the low-risk subtype. Also, the characterization of 

these subgroups indicated that there are further substantial differences in some features that 

we considered studying amongst subgroups. 
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Table 1. Baseline characteristics of Tadpole Challenge Subjects used on this study. 

Feature EMCI LMCI Effect Size 

Subjects (male ratio) 249 (55.02%) 432 (61.11%) OR=1.28 (0.94-1.76) 

Age  70.98 (0.46) 73.31 (0.36) Z=0.32* 

Years of Education 16.03 (2.65) 15.77 (3.01) Z=0.08* 

MMSE total score 28.37 (0.1) 27.15 (0.09) Z=0.72** 

ADAS13 12.54 (0.33) 18.59 (0.31) Z=1.02*** 

ADAS11 7.84 (0.22) 11.49 (0.22) Z=0.90*** 

CDR-SB total score 1.31 (0.05) 1.64 (0.04) Z=0.39* 

RAVLT immediate score 39.42 (0.67) 31.42 (0.46) Z=0.81*** 

RAVLT learning score 5.35 (0.15) 3.44 (0.12) Z=0.78** 

RAVLT % forgetting score 47.29 (1.94) 68.31 (1.5) Z=0.68** 

RAVLT forgetting score 4.33 (0.17) 4.79 (0.11) Z=0.19* 

FAQ total score 2.10 (0.21) 3.89 (0.22) Z=0.46* 

Entorhinal cortex volume 3.77E3 (42.13) 3.33E3 (35.7) Z=0.62** 

Hippocampal volume 7.25E3 (65.09) 6.48E3 (53.13) Z=0.72** 

Middle temporal gyral volume 20.75E3 (164.4) 18.97E3 (142.09) Z=0.64** 

Ventricular volume 34.93E3 (1.31E3) 42.67E3 (1.14E3) Z=0.35* 

ICV 1.51E6 (9.74E3) 1.56E6 (8.03E3) Z=0.29* 

APOE4: {0, 1, or 2} ε4 alleles {145, 90, 14} {192, 177, 63} OR=0.57 (0.42- 0.79) 

MCI to AD converter ratio 11.65% 49.77% OR=7.5 (4.9- 11.5)*** 

Values in parenthesis represent the mean standard error unless specifically stated. The OR was computed with a 
confidence interval of 95% for LMCI vs EMCI. *, **, and *** denote a small effect size (between 0.2 and 0.5 for Z 
and between 1.5 and 2 for OR), a medium effect size (between 0.5 and 0.8 for Z and between 2 and 3 for OR), and 
a large effect size (larger than 0.8 for Z and more than 3 for OR), respectively.  
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Table 2. The results of classification on testing set (N = 205).  

  Subtype 1  
Low-Risk 

(N=55) 

Subtype 2  
Medium-Risk 

(N=85) 

Subtype 3  
High-Risk 

(N=65) 

Subtype 2 + Subtype 3 
At-Risk 

(N=150) 

EMCI 70.91% 28.24% 15.38% 22.67% 

Reverters (MCI to NC) 16.36% 0% 1.54% 0.67% 

Stable subjects 74.55% 60% 44.61% 53.33% 

Converters (MCI to AD) 9.09% 40% 53.85% 46% 

OR of reverting 
29.15 

(3.6 - 236.23) 
- 

0.23 
(0.03 - 1.83) 

0.03 
(0 - 0.28) 

 OR of remaining stable 
2.56 

(1.29 - 5.09) 
1.07 

(0.61 - 1.89) 
0.42 

(0.23 - 0.77) 
0.39 

(0.2 - 0.78) 

OR of converting 
0.12 

(0.04 - 0.31) 
1.33 

(0.75 - 2.37) 
3.02 

(1.64 - 5.57) 
8.52 

(3.22 - 22.56) 

The OR for each subtype were computed with a confidence interval of 95%. 
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Table 3. The test results of three subtypes for all MCI subjects. The Mean Standard Error (M±SE) was 

computed for all features in each subtype. The features were ordered based on the p-value of ANOVA test between 

the subtypes in the testing set. (* training-testing are statistical different p<0.05)  

MCI Subjects 
Testing set (N = 205) 

Features Subtype 1 
n=55 

“Low Risk” 

Subtype 2 
n=85 

“Medium Risk” 

Subtype 3 
n=65 

“High Risk” 

Anova            
p-value 

MMSE 29.09 ± 0.1* 28.28 ± 0.11 25.17 ± 0.12 P < 0.001 
ADAS13 9.87 ± 0.5 17.32 ± 0.52 21.7 ± 0.66 P < 0.001 
ADAS11 6.12 ± 0.35 10.69 ± 0.36 13.55 ± 0.5 P < 0.001 
RAVLT immediate 44.89 ± 1.39 31.75 ± 0.82 27.89 ± 0.9 P < 0.001 
RAVLT learning 6.02 ± 0.35 3.96 ± 0.27 2.28 ± 0.22* P < 0.001 
RAVLT % forgetting 29.8 ± 3.79 66.87 ± 3.14 75.56 ± 3.29 P < 0.001 
Hippocampus 7584.1 ± 93.21 6453.4 ± 103.65 6293.31 ± 137.53 P < 0.001 
Entorhinal 3861.22 ± 55.96 3323.71 ± 70.38 3165.85 ± 94.14 P < 0.001 
Ventricles 26425.07 ± 

1643.72 
44733.4 ±  2416.5 49653.96 ± 3438.5 P < 0.001 

FAQ 0.8 ± 0.17 3.93 ± 0.45 4.43 ± 0.58 P < 0.001 
CDRSB 1.04 ± 0.08 1.65 ± 0.1 1.77 ± 0.11 P < 0.001 
AGE 69 ± 0.79 74.23 ± 0.77 74.55 ± 1.05 P < 0.001 
Middle temporal gyrus 20828.85 ± 

289.78 
19330.93 ± 265.65 18954.92 ± 389.74 P < 0.001 

Gender Male :: 36 * 
Female :: 19 

Male :: 27 
Female :: 58 

Male :: 22 
Female :: 43 

P < 0.001 

ICV 1476558 ± 
16799.05 

1558232 ± 18155.3 1555429 ± 
22549.6 

P < 0.001 

RAVLT forgetting 3.07 ±  0.37 5.18 ±  0.27 4.52 ±  0.2 P < 0.01 
APOE4 35 / 17 / 3 45 /25 / 15 32 / 24 / 9 0.22 
Education 16.04 ± 0.39 16.29 ± 0.31 15.58 ± 0.37 0.36 

Training set (N = 476) 
Features Subtype 1 

n=126 
“Low Risk” 

Subtype 2 
n=215 

“Medium Risk” 

Subtype 3 
n=135 

“High Risk” 

Anova            
p-value 

MMSE 29.4 ± 0.06 28.08 ± 0.07 25.27 ± 0.07 P < 0.001 
ADAS13 10.22 ± 0.36 16.57 ± 0.38 21.33 ± 0.53 P < 0.001 
ADAS11 6.46 ± 0.25 10.17 ± 0.27 13.26 ± 0.39 P < 0.001 
RAVLT immediate 43.84 ± 0.89 32.98 ± 0.6 27.54 ± 0.63 P < 0.001 
RAVLT learning 5.92 ± 0.21 4.04 ± 0.16 2.89 ± 0.17 P < 0.001 
RAVLT % forgetting 37.1 ± 2.23 66.34 ± 2.12 74.91 ± 2.37 P < 0.001 
Hippocampus 7721.1±77.26 6613.1 ± 73.1 6196.2 ±86.37 P < 0.001 
Entorhinal 3983.7±51.64 3440.92± 51.99 3233.3 ±63.44 P < 0.001 
Ventricles 27891.21 ± 

1280.16 
42789.54 ± 1549.58 42954.19 ± 

2134.25 
P < 0.001 

FAQ 1.15 ± 0.16 3.83 ± 0.31 4.23 ± 0.39 P < 0.001 
CDRSB 1.12 ± 0.06 1.6 ± 0.06 1.76 ± 0.08 P < 0.001 
AGE 68.51 ± 0.6 73.14 ± 0.5 74.32 ± 0.58 P < 0.001 
Middle temporal gyrus 21223.97 ± 

220.59 
19632.87 ± 201.19 18132.73 ± 255.02 P < 0.001 

Gender Male :: 60 
Female :: 66 

Male :: 75 
Female :: 140 

Male :: 60 
Female :: 75 

P < 0.001 

ICV 1516545 ± 
11587.63 

1557372 ± 
11297.12 

1540083 ± 
15688.69 

0.26 

RAVLT forgetting 3.88 ±  0.22 5.12 ±  0.17 4.86 ±  0.18 P < 0.01 
APOE4 77 / 45 / 4 96 /90 / 29 52 / 66 / 17 0.04 
Education 16.69 ± 0.2 15.94 ± 0.18 14.78 ± 0.29 P < 0.001 
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Table 4. The test results of three subtypes for MCI subjects converted to AD . The Mean Standard Error 
(M±SE) was computed for all features in each subtype. The features were ordered based on the p-value of t-test 
that computed between subtypes 2 and 3 in the Testing set. All features were used for clustering except the feature 
that was shown with *. The Conversion time to AD was computed for evaluation of clustering. (*< 0.05, **<0.01, 
***<0.001: p-value)  

     MCI to AD conversion 
 
Features 

Testing set (N = 74) Training set (N = 170) 
Subtype 2 

n=34 
“Medium Risk” 

Subtype 3 
n=35 

“High Risk” 

Subtype 2 
n=86 

“Medium Risk” 

Subtype 3 
n=78 

“High Risk” 
Conversion Time To AD * 2.51 ± 0.29 1.96 ± 0.24 2.36 ±  0.19 1.93 ±  0.16 
MMSE 28.26 ± 0.18 25.29 ± 0.17*** 28.14 ± 0.1 25.31 ± 0.1 
ADAS13 18.29 ± 0.89 23.5 ± 0.86*** 19.35 ± 0.58 23.42 ±0.66 
RAVLT learning 4.18 ± 0.44 2.14 ± 0.29*** 3.34 ± 0.27 2.6 ± 0.21 
ADAS11 11.65 ±0.65 14.81 ±0.68** 11.91 ± 0.43 14.44 ± 0.52 
RAVLT immediate 32 ± 1.41 27.31 ± 1.12** 29.58 ± 0.77 25.74 ±0.72 
Entorhinal 3164.6±113.16 2877.2±113.92 3220 ± 81.27 3096.42 ± 85.34 
RAVLT forgetting 5.59 ±  0.4 4.74 ±  0.29 5.14 ± 0.24 4.74 ± 0.24 
Hippocampus 6294.2±150.42 5989.1±175.01 6269.64 ± 115.22 5983.38 ± 104.9 
CDRSB 2.13 ± 0.16 2.13 ± 0.14 1.91 ± 0.9 1.96 ± 0.1 
RAVLT % forgetting 71.66 ± 4.9 80 ± 4.47 74.38 ± 3.08 78.54 ± 3.16 
Middle temporal gyrus 18622.15 ± 

399.38 
17828.26 ± 

481.82 
18893.5 ± 332.22 17412.73 ± 

308.76 
Education 16.68 ± 0.49 15.89 ± 0.44 16.05 ± 0.27 14.99 ± 0.35 
APOE4 9 /16 /9 15 / 14 / 6 21 / 51 / 14 30 / 35 / 13 
AGE 73.03 ± 1.12 74.65 ± 1.35 72.74 ± 0.75 73.42 ± 0.8 
FAQ 4.91 ± 0.7 5.74 ± 0.86 5.91 ± 0.56 5.31 ± 0.55 
Gender Male :: 11 

Female :: 23 
Male :: 14 

Female :: 21 
Male :: 30 

Female :: 56 
Male :: 40 

Female :: 38 
ICV 1569399 ± 

30124.35 
1555429 ± 
31363.65 

1580039 ± 
17781.46 

1529759 ± 
20933.13 

Ventricles 44233.62 ±  3600 44098.4 ± 
3604.12 

45042.6 ± 
2557.37 

43284.28 ± 
2516.6 
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Table 5. The test results of three subtypes for MCI stable subjects. The Mean Standard Error (M±SE) was 
computed for all features in each subtype. The features were ordered based on the p-value of ANOVA test between 
the subtypes on the testing set. (* training-testing are statistical different p<0.05) 

MCI Stable subjects 
Testing set (N = 121) 

Features Subtype 1 
n=41 

“Low Risk” 

Subtype 2 
n=51 

“Medium Risk” 

Subtype 3 
n=29 

“High Risk” 

Anova                
p-value 

MMSE 29.15 ± 0.12 28.29 ± 0.14 25.03 ± 0.18 P < 0.001 
ADAS13 9.69 ± 0.55 16.67 ± 0.63* 19.74 ± 0.92 P < 0.001 
ADAS11 5.91 ± 0.39 10.06 ± 0.39* 12.15 ± 0.67 P < 0.001 
RAVLT immediate 44.51 ± 1.57 31.59 ± 1* 28.14 ± 1.45 P < 0.001 
RAVLT learning 5.98 ± 0.34 3.82 ± 0.35 2.45 ± 0.35 P < 0.001 
RAVLT % forgetting 28.68 ± 4.49 63.69 ± 4.05 70.5 ± 4.93 P < 0.001 
Ventricles 26144±1737.6 45066.59±3262.3 57324.2 ±  6094.1 P < 0.001 
Hippocampus 7543.71 ±119.04 6559.51 ± 139.86 6563.28 ± 188.74 P < 0.001 
ICV 1461997±18424.5

* 
1550773±22822.3 1608972±33269.7 P < 0.001 

Gender Male :: 28 * 
Female :: 13 

Male :: 16 
Female :: 35 

Male :: 8 
Female :: 21 

P < 0.001 

AGE 69.16 ± 0.96 75.03 ± 1.03 74.93 ± 1.64 P < 0.001 
FAQ 0.85 ± 0.2 3.27 ± 0.58 3 ± 0.67 P < 0.01 
Entorhinal 3831.39 ± 66.44 3429.75 ± 87.59 3514.86 ± 135.79 P < 0.05 
RAVLT forgetting 3 ±  0.45 4.9 ± 0.36 4.21 ±  0.28* P < 0.05 
CDRSB 1.13 ± 0.06 1.4 ± 0.08 1.5 ± 0.11 P < 0.05 
Education 16 ± 0.43 16.04 ± 0.41 15.07 ± 0.62 0.23 
Middle temporal gyrus 20763.27 ± 288.61 19803.45 ± 340.96 20272.14 ± 565.16 0.31 
APOE4 25 / 14 /2 36 / 9 / 6 17 / 9 / 3 0.35 

Training set (N = 279) 
Features Subtype 1 

n=99 
“Low Risk” 

Subtype 2 
n=124 

“Medium Risk” 

Subtype 3 
n=56 

“High Risk” 

Anova                
p-value 

MMSE 29.37 ± 0.07 28.03 ± 0.09 25.23 ± 0.11 P < 0.001 
ADAS13 10.45 ± 0.4 14.82 ± 0.45 18.48 ± 0.73 P < 0.001 
ADAS11 6.66 ± 0.29 9.05 ± 0.31 11.67 ± 0.53 P < 0.001 
RAVLT immediate 43.8 ± 1 35.33 ± 0.82 29.91 ± 1.07 P < 0.001 
RAVLT learning 5.86 ± 0.23 4.56 ± 0.2 3.27 ± 0.28 P < 0.001 
RAVLT % forgetting 36.39 ± 2.47 61 ± 2.82 70.21 ± 3.56 P < 0.001 
Ventricles 27856.04 ± 

1345.07 
41527.98 ±  

1961.6 
45098.57 ±  

3784.6 
P < 0.001 

Hippocampus 7692.84 ± 89.18 6833.41 ± 92.58 6449.59 ± 134.09 P < 0.001 
ICV 1513539±13110.6 1546945±14897.4 1549351±23670.7 0.12 
Gender Male :: 20 

Female :: 36 
Male :: 43 

Female :: 81 
Male :: 45 

Female :: 54 
0.22 

AGE 68.96 ± 0.67 73.41 ± 0.67 75.77 ± 0.8 P < 0.001 
FAQ 1.01 ± 0.14 2.54 ± 0.31 2.8 ± 0.51 P < 0.001 
Entorhinal 3976.63 ± 59.74 3573.42 ± 66.86 3408.79 ± 90.37 P < 0.001 
RAVLT forgetting 3.76 ±  0.23 5.13 ± 0.24 5.02 ±  0.27 P < 0.001 
CDRSB 1.13 ± 0.06 1.4 ± 0.08 1.5 ± 0.11 P < 0.01 
Education 16.65 ± 0.23 15.83 ± 0.25 14.52 ± 0.49 P < 0.001 
Middle temporal gyrus 21144.22 ± 240.44 20210.97 ± 249.42 19096.18 ± 405.57 P < 0.001 
 APOE4 64 / 31 / 4 72 / 38 / 14 22 / 30 / 4 P < 0.01 

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 20, 2020. ; https://doi.org/10.1101/2020.10.14.20212696doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.14.20212696
http://creativecommons.org/licenses/by-nd/4.0/


 
 

 

 

Figure 1. The overall methodology of subtype’s classification of ADNI dataset. The multimodal data is split into training 

and testing sets and the results of the testing set are used to describe the association of disease subtypes to clinical relevant 
outcomes. 
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Figure 2. Results of consensus clustering applied to the validation set of MCI subjects of the ADNI dataset. a, b, c, d and 
e) Consensus mapping for 𝐾 = 2,3,4,5 𝑎𝑛𝑑 6, respectively, and f) the comparison of PAC (smaller is the better) between 

the cluster numbers from 2 to 6. 
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Figure 3. The PCA (a and b) and t-SNE (c and d) visualization of the predicted latent class on the training (A and C) 
and the testing (B and D) sets. 
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Figure 4. Kaplan-Meier plots for each subtype on a) the Training set and b) the Testing set. There is a significant 

difference between subtype 1 and subtype 2 (Testing p-value < 0.05) in both plots while subtype 2 and subtype 3 are 

not significantly different. The log-rank test was used to calculate such differences. 
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