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Deep learning segmentation model for automated
detection of the opacity regions in the chest X-rays
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Abstract Purpose The pandemic of Covid-19 has caused tremendous losses
to lives and economy in the entire world. The machine learning models have
been applied to the radiological images of the Covid-19 positive patients for
disease prediction and severity assessment. However, a segmentation model
for detecting the opacity regions like haziness, ground-glass opacity and lung
consolidation from the Covid-19 positive chest X-rays is still lacking.

Methods The recently published collection of the radiological images for a
rural population in United States had made the development of such a model
a possibility, for the high quality images and consistent clinical measurements.
We manually annotated 221 chest X-ray images with the lung fields and the
opacity regions and trained a segmentation model for the opacity region using
the Unet framework and the Resnet18 backbone. In addition, we applied the
percentage of the opacity region over the area of the total lung fields for
predicting the severity of patients.
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Results The model has a good performance regarding the overlap between
the predicted and the manually labelled opacity regions. The performance is
comparable for both the testing data set and the validation data set which
comes from very diverse sources. However, careful manual examinations by
experienced radiologists show mistakes in the predictions, which could be
caused by the anatomical complexities. Nevertheless, the percentage of the
opacity region can predict the severity of the patients well in regards to the
ICU admissions and mortality.

Conclusion In view of the above, our model is a successful first try in the
development of a segmentation model for the opacity regions for the Covid-
19 positive chest X-rays. However, additional work is needed before a robust
model can be developed for the ultimate goal of the implementations in the
clinical setting.

Model and supporting materials can be found in https://github.com/

haimingt/opacity_segmentation_covid_chest_X_ray.

Keywords Deep learning · segmentation model · chest X-rays · Covid-19

1 Introduction

Ever since the pandemic of Covid-19 in late 2019 till October 2020, there have
been 38.8 million cases infected with this virus in the entire world, causing 1.1
million deaths. In the United States alone, 21.8 thousand patients had died of
the infection and its complications [4]. The pandemic of Covid-19 has caused
enormous losses to the lives and economy. Accurate and fast scanning of the
lung situations for assessment of the disease progression has become a global-
wise ubiquitous requirement. During the peak period, more than 70,000 new
cases were diagnosed almost every day in the United States, 7-10% among
them were hospitalized, and 2% of the diagnosed population have to be sent
to emergent departments who needed further assessment for ICU admissions.
The clinical environment in the era of Covid-19 pandemic has become very
challenging with high-pressure and stress.

Clinicians and researchers have been devoting tremendous amounts of work
for this unprecedented challenge. The field of diagnostic radiology has been a
crucial area in clinical management of this disease. Clinicians have summarized
the imaging characteristics of the Covid-19 infections for both the chest CT
images and chest X rays[7], including ground glass opacities, consolidations,
haziness and many others. Computer assisted segmentation and classification
models are quickly studied[1] to evaluate their abilities to assist physicians and
radiologists in assessing the radiological results.

Researchers have developed machine-learning models for Covid-19 related
imaging studies. One category of these models is the classification model of
lungs infected with the Covid-19 vs. those of other diseases using either the
chest CT images or chest X-rays[18]. Some researchers have claimed very good
results of using machine learning algorithms in differentiating Covid-19 ra-
diological characteristics, and some even claimed better model results than
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junior radiologists, but just slightly worse than experienced radiologists[18].
There have also been projects on predicting the severity of the Covid-19
pneumonia[11]. For example, a research group manually curated a severity
score for 96 chest X ray images[6], and used features from a model previously
trained on a large data set of the non-Covid cases to develop a linear regres-
sion model to predict the severity of the opacities in the chest X-ray. Another
research group came up with 6 severity scores for each chest X-ray image,
separately for the upper, middle and lower regions of the left and right lung
regions[15].

As far as we know about the most up to date publications, a segmenta-
tion model that can detect the location of the abnormalities for the Covid-19
positive chest X ray images is still lacking, while work has been done to suc-
cessfully segment the lung regions[3, 10]. However, a recently published data
set has made the development of such a segmentation model a possibility.

Recently, a research group made publicly available a data set of the 115
Covid-positive patients in the rural areas of the United States[8, 5]. The data
set includes the chest X-ray images of patients, chest CT images, as well as
the patient’s basic measurements and clinical prognosis like ICU admissions
or mortality. In contrast to most of the machine-learning projects on Covid-
19, which were developed from the images collected sparsely from the online
resources or various publications, this data set is more consistent in image
qualities and clinical data accuracy.

In this data set, the radiological data represents a population of patients
who were diagnosed with Covid-19 in a specific region. Most of the images
are chest X-rays and only a small portion of patients ever received a CT scan.
Among these Chest X-ray images, as high as 30% have clear lungs without any
abnormalities. Thus, this data set avoids the problem of over-representation
of the more severe cases, which could be assembled from many different areas
of the world. Using such a dataset helps develop a more robust model for a
general population.

With the availability of this higher quality data, we aim to develop a model
of segmentation for abnormal areas in chest X-ray images of the Covid-19 pa-
tients. More specifically, we want to locate the opacity regions that are char-
acteristic of the Covid-19 infections, including haziness, ground glass opacities
and consolidations. We want to answer two specific questions in this study:
the first question is the development a model to point out the areas of the
opacities for Covid-19 positive chest X-ray images, and other other question is
the significance of the opacity info in determining the clinical severity of the
patients.
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2 Data and methods

2.1 Primary Data source

Recently, a collection of radiographic and CT images studies, together with
patient demographics, comorbidities, prognosis and key radiology findings, as
of July 2020, was published for a rural Covid-19 positive population in the
southern United States[8]. The collection was downloaded from the Cancer
Imaging Archive (TCIA) Public Access[5], containing 256 studies for a total
number of 105 patients. Due to the focus of this study, we filtered out CT
images and also X-rays that were taken in positions other than AP or PA. In
total, we have included 221 chest X-ray images from 105 patients in our study.
We randomly divided the entire dataset to the training and testing data sets
by a ratio of 7:3 (154 images for the training set, 67 images for the testing
set), but ensured that the images of the same patient were divided to the same
subset.

2.2 Validation dataset

Cohen et al. published a chest X-ray dataset together with the severity scores[6].
The images in this collection were from various sources and serve as a good
outside validation dataset. Due to the time consuming process of manual cu-
rations, we randomly selected a smaller dataset of 25 images from the original
96 images as our validation dataset.

2.3 Manual curations

Manual curations of the lung regions and the opacity regions were performed
for all the images in the above training, testing and validation data sets. For
simplicity considerations as well as the limitation of the resolution of the X-
ray images, opacity regions were not differentiated among the ground glass
opacities, haziness and consolidations . Lableme[17] was used for the curation
work, and the opacity regions were represented by polygons of connected dots.
The curations of the lung and opacity regions were saved in the Json format.
Manual curations were performed by a junior physician and were reviewed by
an experienced radiologist.

2.4 Image preprocessing and augmentation

The input X-ray image was then cropped to only keep the lung regions by
mapping the original image with the lung contour segmentation. The model
output was an image mask that has values 1 for manually curated opacity
regions and 0 for all other regions.
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Fig. 1 Sample images of the model input and output before and after augmentation.

Although the majority of our data comes from the same data source, the
images were not of the same size. For easier deployment of our model, all
training and testing images were resized to 320 by 320 pixels.

Data augmentation is a powerful technique to increase the amount of data
and prevent model overfitting. Since our dataset is very small, we applied
several different augmentations: horizontal flip, affine transforms, perspec-
tive transform, brightness/contrast/colors manipulations, image blurring and
sharpening, gaussian noise and random crops. All of these transformations
were performed using Albumentations, a fast augmentation library[2].

Sample images of the model input and output were included in Figure 1.

2.5 Model architecture and training

“Segmentation models” is a python library with neural networks for image
segmentation based on Keras and Tensorflow. It provides a high level API
for segmentation model architectures and neural network backbones. For this
study, we have chosen U-Net, the most popular and highly cited architecture
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which was developed specifically for biomedical image segmentation[14]. We
have chosen the neural network backbone of ResNet18[9] for its wide usage,
relatively smaller number of parameters and proven high performance. The
topology of the adopted network was illustrated in the GitHub link. Segmen-
tation loss was chosen to be Dice Loss[16] plus Focal Loss[12]. Dice Loss is
essentially a measure of overlap between two samples, while Focal Loss is a
measurement of how far off a prediction is from the truth.

2.6 Model metrics

We have chosen two popular metrics, IoU (Intersection over Union) and F1-
score, to evaluate our model performance[13]. IoU is calculated using the area
of overlap over the area of union between the input and prediction. F1-score
is 2 * the Area of Overlap divided by the total number of pixels in both im-
ages. The model metrics were evaluated on several different datasets, including
the training dataset alone, the testing dataset alone, the training and testing
dataset combined (the whole dataset), the validation dataset, the images with-
out opacity regions in the whole dataset as well as the images with opacity
regions in the whole dataset.

2.7 Correlation with the disease severity

We calculated the percentage of opacity region by simply dividing the size of
both lung fields by the size of the opacity regions. We then used this metric as
the opacity percentage for predicting the severity of the patients, which was
extracted from the excel table of the primary data source. The prognosis of
each patient was among 3 categories: recovered with no ICU admission; re-
covered after ICU admission or deceased after ICU admission. For this data
source, all patients who were deceased had gone to the ICU. The receiver
operating curve (ROC) for the ICU admission was plotted using the opacity
percentage against whether a patient was admitted to the ICU. The receiver
operating curve (ROC) for the mortality was plotted using the opacity per-
centage against whether a patient was deceased.

We also downloaded a recently published model [6] for predicting the sever-
ity of the chest X-ray of the Covid-19 positive patients for a comparison. ROC
curves for ICU admission as well as mortality were calculated in a similar way
using the output opacity score of that model.

3 Results

3.1 Metrics of the trained model

The model metrics during the training process can be found in Figure 2. We
observed a steady increase of the IoU score for the training dataset and a steady
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Fig. 2 Model metric in the training process.

decrease of the model loss with increased epochs. The IoU score and the model
loss for the testing dataset showed significant fluctuations during epochs 10
to 25, with a gradual return to a more steady state during epochs 30 to 50.
In general, the trend of the metrics for both the training and the testing data
sets was consistent, showing a gradual improvement in the training process.

At the end of the training, the IoU score for the training dataset is 0.5157,
while the IoU score for the testing dataset is 0.4755 and the IoU score the
validation dataset is 0.6724. An IoU score >0.5 is normally considered a “good”
prediction[13]. Although our measurement was very close to this threshold,
thus, we had doubts about the actual performance of our model.

In the meantime, the validation dataset is from an alternative source. We
usually expect the same or worse performance in the validation dataset as
the model trained on a dataset with a limited variability may be lacking gen-
eralization capabilities to a dataset from an alternative source. The slightly
more superior performance raises strong suspicions. These issues area covered
in more detail in the discussion part.

3.2 Usage of the predicted opacities for predicting the disease severity

The ROCs of the opacity percentage on the mortality and the ICU admissions
can be viewed in Figure 3.a and 3.b. We see a great predictability of the
opacity percentage for the severity of the patients regarding mortality and
the ICU admissions. This is consistent with our expectations, as the opacity
region is the most intuitive measurement for assessing the patients by the
physicians and radiologists in the clinical setting. In addition, multiple papers
have quantitatively measured the associations of the opacity region with the
disease severity in the clinical settings[18]. Thus, the results of our study re-
iterate this relationship. Besides, the consistency between the performances
of our model predictions and the manually curated results show a reasonably
well-performing model.

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 22, 2022. ; https://doi.org/10.1101/2020.10.19.20215483doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.19.20215483
http://creativecommons.org/licenses/by-nc/4.0/


8 Haiming Tang et al.

Fig. 3 Performance of the opacity percentage in predicting mortality or ICU admission.
3.a, Opacity percentage calculated from manual labeling; 3.b, Opacity percentage calculated
from model predictions.

Fig. 4 Performance of the opacity percentage in predicting mortality or ICU admission.

3.3 Comparisons with the opacity score method

The Cohen group[6] developed a method to predict the severity of the chest
X-ray of the Covid-19 infections. We ran this method on our data sets and
applied the predicted opacity score for plotting the ROCs using the same pa-
tient severity data as above. The results can be viewed in Figure 4. We see a
surprisingly good consistency between the performances of the opacity score of
Cohen’s method and the opacity percentage of our model. The consistency is a
confirmation of the good performance of our segmentation model. Considering
the minimal simplicity of our metric, there could be a potential further devel-
opment of a model for predicting the severity of the chest X-rays. However,
this is not the scope of this study.

4 Discussions

4.1 The impact of the empty mask for IoU score

Due to the questions and suspicions we had for the IoU scores in the above, we
further explored this issue and found a problem that significantly affected the
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IoU score. As defined by the formulas, the denominators are the union of the
2 regions for the IoU score. However, for our dataset, there are a significant
number of images that do not have any opacity regions. These images have
radiology reports of ”clear lungs”, and the model predicted regions are also
usually none. Thus, by definition, the union of the manually labelled region
and the predicted region is 0, and a meaningful IoU score can not be calculated.

To prove our hypothesis above, we extracted those images without any
manually labelled opacity regions from the whole dataset combining the train-
ing and testing data sets. Then we re-applied the IoU score metrics to the new
model created. It turned out that for the subset of 71 images without opac-
ity regions, the calculated IoU score was 2.4E-10, close to 0. But for the rest
150 images with manually labelled opacity regions, the calculated IoU score
increased to 0.6143 from the previous measurements of 0.5157 for the training
dataset and 0.4755 for the testing set. Thus, the adjusted corrected IoU score
for the entire dataset should be around (0.6143*150 + 1*71)/221 = 0.738, a
much acceptable good performance for a segmentation model.

The superior performance of IoU score on the validation dataset, however,
may come from the fact that most of the images in the validation dataset do
contain manually labelled opacity regions. After the adjustment above, the
IoU score of the validation dataset is slightly worse than that of the training
and testing data sets.

This discrepancy may come from the differences in these dataset: our model
was trained using the images from patients in the rural US regions, while
the images of the validation data set are from sources that are significantly
different.

4.2 Imperfections of the models

We printed out the predicted opacity regions for each of the images in our
dataset for a manual examination. The comparison images are available in the
supplemental materials. The examinations revealed some discrepancies, from
which we found several potential shortcomings of this segmentation model.

Figure 5 lists several representative samples that have discrepancies be-
tween manual labeling and predictions.

Firstly, the model flaw may come from the imperfections in the manual
curations. Figure 5.a shows that the manual curated regions are very scattered,
while the predicted regions cover larger and more consistent lung regions.
This actually may represent the imperfections in the manual labeling process.
This problem roots back to the ground truth for the opacity regions. This,
however, is non-trivial. The boundary of the opacity region is very difficult to
be clearly identified in the chest X-rays due to many issues, like image quality,
patient anatomy, baseline disease etc. In the clinical setting, even experienced
radiologists can identify a region of abnormality barely in a rough fashion. The
clear delimitation of the abnormality boundaries are usually difficult, especially
for lighter representations like ground glass opacity or haziness.
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Fig. 5 Representative samples that have discrepancies between manual labeling and pre-
dictions.

Secondly, some anatomical structures may compromise the model predic-
tions. Figure 5.b shows that the chest X rays have opacities in both lung bases,
however, the model prediction also contains a small region in the right lung
apex. However, this is a wrong prediction probably caused by the rib shadow.
Figure 5.c shows several tiny opacities in bilateral lung bases. However, the
model may mistakenly predict the high density as an opacity. The high density
is more likely due to the overlap of lung tissues instead of the ground glass
opacities or consolidations caused by infections and exudates.

Thirdly, as shown in Figure 5.d, the model may mistake the markings of
bronchial trees for opacities. The lungs in Figure 5.d are actually clear, but
the markings of bronchial trees are prominent. They were likely to have been
mistakenly predicted as opacities due to the higher densities.

5 Future improvements

As discussed above, the model predictions may be defective in a series of condi-
tions. The segmentation of the opacity area in the chest X ray is a challenging
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work, even for experienced radiologists. The clear delimitation of the opacities
is not as easy as delimitation of a solid mass with clear margins like tumors.

In general, the model performance is acceptable. Model metrics of IoU score
and F1 score show good overlap between the manually labelled area and the
predicted regions. From our examinations, correct locations can be detected
more than 80% of the time, however, the exact boundaries may need further
improvement.

To eliminate the influences of the anatomical structures or external instru-
ments like ribs, scapula, wires and pacemakers, we probably need to include
more chest X-ray images to more carefully label opacities. Another future di-
rection is to develop a more robust model that takes into account all of these
confounding elements. A possibility could be a multi-category segmentation
model that detects the different anatomical structures separately.

6 Conclusion

In this study, we have demonstrated the development of a segmentation model
for opacity regions for chest X-rays of the Covid-19 positive patients. The
model performance is generally good with a precise predicted location for
the opacities. Besides, the model shows a good generalization capacity when
applied to a validation dataset composed of images of different sources. In ad-
dition, the percentage of the predicted opacity regions over the total lung area
can predict the patient severity well regarding ICU admission and mortality.
The performance of patient severity prediction is comparable or slightly bet-
ter than the previously published ”opacity score” method. In despite of these
results, the model has a lot of imperfections in predicting the correct opacity
regions. This may not only root from the lack of training data diversity, but
also from the imperfections in manual labeling. Additional work is needed be-
fore a robust and accurate model can be developed for the ultimate goal of
implementation in the clinical setting. In view of the above, our model is a
successful first try in developing a segmentation model for the opacity regions
for the Covid-19 positive chest X-rays. Our model schema and the manual
segmentation data set may lay the foundation for the progress of more robust
and accurate lung segmentation models in the future.
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