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Abstract 26 

Physical exercise is an effective non-pharmaceutical treatment for Parkinson’s 27 

disease (PD) symptoms, both motor and non-motor. Despite the numerous reports on 28 

the neuroplastic role of physical exercise in patients with PD (PwPD), its effects have 29 

not been thoroughly explored via brain network science, which can provide a coherent 30 
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framework for understanding brain functioning. We used resting-state EEG data to 31 

investigate the functional connectivity changes of the brain’s intrinsic cortical networks 32 

due to physical exercise. The brain activity of 14 PwPD before and after a ten-week 33 

protocol of computerized physical training was statistically compared to quantify 34 

changes in directed functional connectivity in conjunction with psychometric and 35 

somatometric assessments. PwPD showed a significant reorganization of the post-36 

training brain network along with increases in their physical capacity. Specifically, our 37 

results revealed significant adjustments in clustering, increased characteristic path 38 

length, and decreased global efficiency, in correlation to the improved physical 39 

capacity. Our results go beyond previous findings by indicating a transition to a 40 

reparative network architecture of enhanced connectivity. We present a meaningful 41 

relationship between network characteristics and motor execution capacity which 42 

support the use of motor treatment in tandem with medication. This trial is registered 43 

with ClinicalTrials.gov Identifier NCT04426903. 44 

 45 

Impact Statement 46 

The effects of physical training (PT) on the neuroplasticity attributes of patients with 47 

Parkinson’s Disease (PwPD) have been well documented via neurophysiological 48 

evaluations. However, there is a knowledge gap on the role of training-induced 49 

neuroplasticity in whole-brain network organization. We investigated the PT effects on 50 

the brain network organization of 14 PwPD, using EEG and network indices coupled 51 

with psychosomatometric tests. We report evidence of reparative functional 52 

reorganization of the brain with more balanced integration and segregation abilities, in 53 

correlation to improved motor performance. The PD brain can repair and reestablish a 54 

better level of motor execution and control due to computer-empowered physical 55 

stimulation. 56 

 57 

Introduction 58 

Neuroplasticity is the brain’s ability to adjust and reorganize itself across an 59 

organism’s lifespan in both health and disease [1]. Patients with Parkinson’s Disease 60 

(PwPD), in contrast to healthy old adults, experience loss of dopaminergic brain cells 61 

of the substantia nigra projecting to the striatum [2]. Dopamine influences synaptic 62 

plasticity [3], and thus, dopaminergic neural loss in PD leads to an impaired 63 

neuroplastic ability [4]. 64 
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PD progression is characterized by brain atrophy, mainly in anterior brain regions 65 

but also extending to posterior ones [5], [6], as well as disconnections between brain 66 

regions [7]–[10]. Consequently, PD has been described as a disconnection syndrome 67 

with relevance to cognition, perception, and other neuropsychological domains [11]. 68 

Clear implications of this notion emerge from the study of the brain’s intrinsic resting-69 

state networks (RSNs). For instance, altered connectivity of the default mode network 70 

(DMN) can have a detrimental effect on the cognitive capacity of PwPD [9], [10], [12], 71 

[13], while temporal-occipital disconnections between the visual (VIS) network and 72 

DMN have been correlated with visuospatial impairment [9], [13]. Disruptions in the 73 

interconnections of the DMN and the frontoparietal network (FPN) can affect both 74 

executive functioning and cognition [12], while disturbances in the sensorimotor 75 

network and somatomotor (SMN) one have been found to relate to motor symptoms 76 

of PD [7], [9], [14]. 77 

A healthy human brain organizes itself in what is called a small-world (SW) network. 78 

SW organization features balanced local (local clustering of connections) and global 79 

(long-range connections) efficiency; both deemed essential for healthy brain function 80 

[15]. The brain network architecture of PwPD shows disruption of SW architecture 81 

towards a more random brain organization [9], [16]. This disruption is reported even at 82 

the very early stages of the disease, meaning lower segregation (local clustering), but 83 

preserved integration (average path length) [9], [16]. Along with the disease's 84 

progression, the brain’s functional architecture further deviates from the SW 85 

organization as it loses both local and global efficiency in correlation to PD-related 86 

cognitive decline [16], [17].  87 

Though one would expect that network abnormalities would limit plasticity, the PD 88 

brain can still feature neuroplastic capabilities, at least as compensatory mechanisms 89 

[18], [19]. For instance, PD-related motor deficits only arise after approximately 80% 90 

depletion of striatal dopamine [20], and thus, the underlying compensatory 91 

mechanisms delay the emergence of clinical symptoms in PD [18]. This compensatory 92 

reorganization is more dominant in the motor tracts, suggesting selective 93 

neurodegeneration [19].  94 

From a therapeutic perspective, only pharmaceutical symptomatic treatments are 95 

available, often having potential side effects [21]. In contrast, neuroscientific evidence 96 

on brain-derived neurotrophic factor (BDNF) changes [22] or volumetric changes [23] 97 

in PwPD have shown promise for effective physical training (PT) protocols, which can 98 

trigger neuroplasticity and neuroprotection [24]. For instance, non-computerized PT 99 

can benefit muscular strength, mobility, and postural disabilities of PwPD [25], 100 

improving their confidence [26] and quality of life [27]. Computer-based training has 101 
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shown to be profitable for healthy elders [28] and elderly with neurodegenerative 102 

disorders, e.g., mild cognitive impairment (MCI) [29]. Despite the rare exploitation of 103 

computerized PT by means of (serious) game-based training, there are promising 104 

findings such as improved balance [30], rate of falls, and confidence in PwPD [31].  105 

Given the network disruption in PD [32], [33], invegistations into neuronal network 106 

reorganization due to PT may be helpful to bridge the gap between the mechanisms 107 

underlying the effectiveness of non-pharmateutical interventions and clinical 108 

presentations in PD. To our knowledge, only a few studies have examined functional 109 

connectivity changes following a non-computerized PT program [34]–[36] but these 110 

focused on the motor circuitry. Evidence in regard to computer-assisted PT for PwPD, 111 

though more scarce, has shown whole-brain network connectivity changes, and 112 

suggests that treadmill training with virtual reality can offer better results in PwPD (i.e. 113 

greater connectivity  within the sensorimotor network and the cerebellar network in 114 

association with improved walking performance) [37]. 115 

Here, we aim to narrow the knowledge gap in PD literature regarding the 116 

reorganization of the whole brain architecture and the relevant changes in network 117 

characteristics as a result of PT while at the same time offer innovative means and 118 

tools to facilitate such training. We hypothesized that our computerized PT scheme, 119 

combining aerobic, flexibility, strength, and balance exercises, could trigger the 120 

reorganization of the brain network in a reparative manner,  namely towards a network 121 

architecture of SW properties. To this aim, we used eyes-closed resting-state 122 

electroencephalographic (EEG) recordings before and after the 10-week long 123 

WebFitForAll [28] intervention. Source analysis was performed using low resolution 124 

electromagnetic tomography (LORETA) [38], and directed functional connectivity was 125 

estimated via phase transfer entropy (PTE) [39] in the 1-30 Hz frequency band. An 126 

FDR corrected t-test statistical comparison was performed to identify the significant 127 

connectivity changes (post- vs. pre-intervention). We also computed selected graph-128 

theoretical parameters that describe integration, segregation, and hierarchy to 129 

characterize plasticity in the PD brain and investigate how the training-induced 130 

neuroplasticity affects the state of the PD network. 131 

 132 

Results 133 

Psychometric and somatometric results 134 

Psychosomatometric comparisons between the pre- and post-intervention scores 135 

were performed using non-parametric Wilcoxon tests and paired t-tests. We found 136 
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statistically significant increases in the scores of the Berg Balance Scale (BBS) [40], 137 

the Short Physical Performance Battery (SPPB)  [41] balance and total score, the 138 

Community Balance & Mobility Scale (CB&M) [42], the Fullerton Senior Fitness Test 139 

(SFT) [43] Arm curl and 2-min Step test, the Tinetti Performance Oriented Mobility 140 

Assessment (POMA) [44], Gait and Total scores and decrease of the time of the 10 141 

Meter Walk Test [45] on both self-selected and fast velocity and SFT 8-foot Up-and-142 

Go test. No statistically significant differences were found in the psychometric 143 

evaluation tests (i.e., Mini-Mental State of Examination (MMSE) [46], Montreal 144 

Cognitive Assessment (MoCA) [47], and Parkinson’s Disease Questionnaire (PDQ-8) 145 

[48]). 146 

 147 

Table 1. Significant post vs. pre differences on somatometric tests and the post-pre 148 

mean difference. The sign of the mean difference denotes the direction (effect) of the 149 

changes. Results were considered significant for p < 0.05. 150 

Somatometric tests p-value t-value Mean difference 

BBS 0.019 2.326 1.71429 

SPPB Balance 0.028 2.482 0.42857 

SPPB Total 0.026 2.511 0.57143 

CB&M 0.003 3.215 6.85714 

SFT Arm Curl 0.028 2.349 2.357 

SFT 2-min Step 0.015 1.172 7.714 

SFT Up-and-Go 0.040 -2.263 -1.25714 

10-meter time Self 0.022 -2.263 -0.51500 

10-meter time Fast 0.011 -3.126 -0.27786 

POMA Gait 0.033 2.110 0.71429 

POMA Total 0.043 2.008 0.92857 

 151 

PTE results 152 

Statistical comparisons of the PTE matrices of the post vs. pre-intervention EEG 153 

data indicate the reorganization of the PD resting-state network (45 nodes, p < 0.05, 154 

FDR corrected, 10000 permutations) (Figure 1). Specifically, the cortical 155 

reorganization is characterized by the enhanced connections between: (i) middle and 156 

inferior occipital nodes and parahippocampal, and middle and superior temporal nodes 157 

of the left hemisphere, and inferior frontal, culmen, and fusiform nodes of the right 158 

hemisphere, and (ii) right (middle and superior) frontal nodes and inferior frontal, 159 

parahippocampal, middle occipital, and middle and superior temporal nodes of the left 160 
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hemisphere. In respect to the core resting-state networks, as defined by Yeo et al.[49], 161 

we have noted increased connectivity within the VIS, and between the VIS and each 162 

of the DMN, the dorsal attention network (DAN), the ventral attention network (VAN), 163 

SMN, and limbic (LIM) networks, the DMN and the SMN, as well as the FPN and the 164 

LIM, the VIS and the SMN. Figure 1 illustrates the statistically significant post to pre-165 

intervention differences of the brain networks. For illustrative purposes, we also 166 

provide a circular graph of the brain connectivity network. Table 2 summarizes the 167 

connections between the core resting-state networks. 168 

 169 

Figure 1. Significant differences in cortical connectivity between post- and pre-170 

intervention networks (orange denotes the left hemisphere and blue the right). Node 171 

colors correspond to distinct intrinsic resting-state networks [49] (Purple-Visual, Blue-172 

Somatomotor, Green-Dorsal Attention, Violet-Ventral Attention, Cream-Limbic, 173 

Orange-Frontoparietal, Red Default Mode). A: Information direction is depicted 174 

through line arrows, and the color scale represents t-values. The visualized networks 175 

are significant at a level of p<0.05, FDR corrected. B: Circular graph depicting the 176 

cortical reorganization in the PD brain. The cortical reorganization is characterized by 177 

the emergence of a direct connection between the left inferior occipital gyrus, the left 178 

middle occipital gyrus, the left middle temporal gyrus, the left superior temporal gyrus, 179 

the right middle frontal gyrus, and the fusiform gyrus. 180 

 181 

Table 2. Significant increase in connectivity of RSNs as defined by Yeo et al [49]. The 182 

black color signifies the within-network connectivity, the green color the bilateral 183 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 23, 2020. ; https://doi.org/10.1101/2020.10.21.20209502doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.21.20209502
http://creativecommons.org/licenses/by-nc-nd/4.0/


connectivity between-networks, and the blue color the unilateral connectivity between-184 

networks from the RSN in the first column to the RSN in the first row. 185 

RSN VIS SMN DAN VAN LIM FPN DMN 

VIS        

SMN        

DAN        

VAN        

LIM        

FPN        

DMN        

 186 

Graph Measures 187 

Graph theory analysis included measures of integration (Global Efficiency (GE), 188 

Characteristic Path Length (CPL)), segregation (Cluster Coefficient (CC), Transitivity 189 

(TS), Local Efficiency (LE), Modularity (Q), and node centrality (Betweenness 190 

Centrality (BC), Degree Centrality (DC)). Our graph-theoretical analysis, using each 191 

subject’s adjacency matrix, revealed statistically significant differences in the GE, CPL, 192 

and TS (Table 3). We report a decrease in the GE and TS and an increase in the CPL 193 

due to our intervention. We found statistically significant increases and decreases in 194 

the local CC. The increase of CC was observed in 210 nodes, including bilateral frontal, 195 

temporal, parietal, and lingual lobes, and the right occipital lobe. The remaining 653 196 

nodes showed reduced CC after the intervention. Figure 2A depicts the nodes with 197 

increased CC, and Figure 2B those with decreased CC. LE, BC, DC, and Q did not 198 

show any statistically significant changes. 199 

 200 

 201 
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Figure 2. Whole-brain map of the statistically significant changes of the CC of the 863 202 

nodes. A: Increased CC in 210 nodes of bilateral frontal, temporal, parietal, and lingual 203 

lobes and right occipital lobe. B: Decreased CC in 653 nodes of bilateral frontal, 204 

lingual, occipital, parietal, and temporal lobes.The color map indicates the significance 205 

of the CC difference. 206 

 207 

Table 3. Significant post-pre changes in global (Global efficiency, Transitivity, 208 

Characteristic Path Length) and local (Local Clustering Coefficient) graph measures, 209 

along with their mean differences. The sign of the mean difference denotes the 210 

direction (effect) of the changes. Results were considered significant for p < 0.05. *For 211 

the local graph measures, the p-value reported is the mean value of the nodes showing 212 

the significant increase and decrease, respectively. 213 

Graph measures p-value Mean difference 

CPL 1.4402e-15 0.00649 

GE 1.8282e-26 -0.00658 

TS 

CC 

2.0489e-23 

2.8743e-13/4.6181e-12* 

-0.0061 

-0.01/0.00603 

 214 

Multiple Regression 215 

We tested for relations between network science indices and physical performance 216 

scores through linear regression analysis and found a statistically significant 217 

correlation between changes of SPPB total scores and graph theory indices of GE, 218 

CPL, and TS. We report that SPPB total score can predict GE (p= 0.011, a = -0.092, 219 

b =0), CPL (p = 0.007, a = 0.095, b = 0) and TS (p = 0.012, a = -0.092, b =0) changes. 220 

This means that higher scores in the SPPB test can potentially hint to the increase in 221 

CPL and decreases in GE and TS. 222 

 223 

Discussion 224 

Our findings indicate that a ten-week intervention of computerized physical training, 225 

in patients with PD, facilitates neuroplasticity, which consequently induces a beneficial 226 

cortical reorganization. Specifically, our results reveal that: (i) short-term PT influences 227 

positively the physical performance of PwPD, (ii) the PD brain can utilize 228 

neuroplasticity to reorganize itself in a reparative manner, (iii) reparative neuroplasticity 229 

may lead to a more flexible functional network, and (iv) the reparative reorganization 230 

correlates to the improvement of motor execution and control. 231 
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 232 

Short-term training influences physical performance  233 

The statistically significant differences in mobility, static and dynamic balance, 234 

muscular strength and endurance, functional mobility, and gait speed and control, and 235 

reduced risk of falls (Table 1) are in line with previously reported findings [27], [50]. 236 

Here, we report an improved motor performance in PwPD as an outcome of PT.  It 237 

must be noted that our protocol targets multiple domains (i.e., aerobic, resistance, 238 

balance, and flexibility exercises), while most studies investigating the effects of PT on 239 

the somatic capacity of PwPD have focused mainly on a specific domain, i.e., strength 240 

[27] or aerobic [51] and, less often, on a combination of two or more domains [50].   241 

 242 

Cortical reorganization of the PD brain network 243 

Our results indicate the emergence of a reorganized brain network of enhanced 244 

connectivity, triggered by our computerized PT intervention, which involves 245 

connections mainly within the VIS and between the DMN and the VIS, and connections 246 

of the FPN with the LIM, VIS, and the SMN (Figure 1, Table 2). The enhanced 247 

connectivity within and between the RSNs indicates that PwPD present capacity for 248 

neuroplasticity and to functionally reorganize their brains. Our findings go beyond 249 

previous studies that examine the results of PT focusing only on the connectivity of the 250 

primary motor cortex [34]–[36]. By exploiting the innovations brought about by the use 251 

of a fully computerized program for PT and utilizing whole-head analysis, we report the 252 

arise of effective connections, thus provide further insight into the neuroplastic 253 

attributes of PwPD due to computerized PT. 254 

The increased connectivity between the DMN and VIS hints towards the 255 

neuroprotective role of physical exercise in PD. The cognitive capacity of PwPD has 256 

been previously reported to positively correlate with the connectivity of the  DMN and 257 

VIS, meaning reduced connectivity leads to reduced cognitive capacity, with the 258 

occipital gyrus having a key role [52], [53]. The patients’ cognitive deterioration (i.e., in 259 

MCI) is accompanied by a loss of connections in the DMN, an effect evident from the 260 

early stages of the disease [54], meaning that cognitive decline in PD can be 261 

associated with disrupted connections in the DMN even in cognitively unimpaired 262 

PwPD [10]. As PD progresses, the occipital lobe exhibits hypoconnectivity with the 263 

temporal and frontal lobe [55], with changes in the visual system manifesting even 264 

before visual symptoms become clinically evident [56]. Additionally, the disrupted 265 

connectivity between the frontal and occipital cortex might also relate to typical non-266 

motor symptomatology of PD, such as executive dysfunction, attention problems, or 267 
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lower performance in visuospatial tasks [13]. We report increased connectivity 268 

between the DMN and VIS (Figure 1, Table 2), with the direction of information, as 269 

reflected by the PTE, indicating that the left occipital gyrus modulates the activity of 270 

the left middle temporal gyrus of the DMN. These shifts in the connectivity of PwPD 271 

indicate the formation of a network that points to the training's reparative effect.   272 

Regarding FPN’s connections to other RSNs, the FPN seems to work here as a hub 273 

modulating LIM, VIS, and the SMN (Table 2), in line with its previously reported role 274 

as an adjustable hub among other networks for the flexible coordination of cognitive 275 

control [57]. The increased information flow from the FPN towards the LIM and the VIS 276 

networks could be interpreted as a mechanism of cognitive control and reorientation. 277 

Nevertheless, this assumption is not supported by our psychometric assessments. The 278 

modulation of the SMN from the FPN, combined with the statistically significant 279 

differences of the somatomotor assessments’ scores, could index an information 280 

pathway offering improved motor control and execution. 281 

 282 

Global and local graph indexes reveal a transition towards a reparative PD 283 

network organization 284 

Considering that the PD brain network features an abnormal structure towards 285 

randomness [16], we suggest that the reorganization of PD brain circuitry, due to PT, 286 

is characterized by a transition from a random-alike network towards a network 287 

architecture of SW-alike properties. Even though the reported decreased GE and 288 

increased CPL might indicate a step towards a less efficient network organization, this 289 

contradictory result could be explained as follows. Networks can be demonstrated 290 

inside a framework of regular, random, and complex networks. Regular networks 291 

appear to have high local and low global connectivity, while random networks show 292 

the contrary design with low local and high global connections [58]. The optimal 293 

function of human brain network architecture balances between integration and 294 

segregation by incorporating elements of regular and random networks to create a 295 

more complex architecture, the so-called SW organization [58]–[60]. Here, decreased 296 

GE and increased CPL, coupled with the fact that the PD brain network has a random-297 

alike structure, indicates excessive network integration in PwPD. This is further 298 

supported by evidence that as cognitive impairment becomes more severe, the 299 

network of PwPD shows higher GE and lower CPL, indicating more randomness [61]. 300 

Thus, our findings of lower GE and higher CPL could index the triggering of reparation 301 

neuroplasticity. 302 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 23, 2020. ; https://doi.org/10.1101/2020.10.21.20209502doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.21.20209502
http://creativecommons.org/licenses/by-nc-nd/4.0/


It is plausible that the transition’s attributes would at some point (e.g. due to more 303 

intense and/or longer duration of the training) reflect a SW network topology (Figure 304 

3). Here, the SW-alike attributes are present not only on a local level as well. Changes 305 

of the CC (Figure 2) indicate a more robust functional clustering organization, further 306 

supporting our suggestion of a reparative brain network architecture. Our post-training 307 

network’s robustness and segregation can provide neuroprotection in PwPD [16], but 308 

the efficacy of such a mechanism depends on the balance between integration and 309 

segregation, featuring SW network architecture [58], [60]. 310 

 311 

 312 

Figure 3. Illustration of our theoretical proposal. High integration (high GE) is 313 

characteristic of random networks (A), while regular networks show higher segregation 314 

(high LE). The optimal brain network organization is that of a SW network (C) balancing 315 

between high integration and segregation achieving the optimal wiring cost [15]. As 316 

reported by Dubbelink et. al [16] PD brain network organization, compared to controls, 317 

resembles that of random networks having less SW network characteristics (pre-318 

training network, B). Changes in connectivity and graph-theory characteristics, as an 319 

outcome of the reparation neuroplasticity in the PD brain, characterize our post-training 320 

network (B → C) as a transitional network from a random-alike network (B) towards a 321 

SW-alike organization (C), meaning more balanced integration and segregation 322 

resulting in a restored brain organization for our PwPD. 323 

 324 
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Whole-brain network reorganization improves motor execution and control 325 

Our multiple linear regression analysis revealed that SPPB total score correlates 326 

negatively with the post to pre differences of GE and TS, and positively with CPL post 327 

to pre changes. The higher total score of SPPB means reduced GE and TS and 328 

increased CPL. There is a relationship between better motor performance and 329 

reorganization of brain network connectivity patterns towards a more efficient 330 

architecture; better motor execution predicts a transition towards a reparative 331 

functional architecture, balancing both random and regular network characteristics. 332 

The improvements in gait, mobility, and balance, as aspects of the SPPB test [41], 333 

meaning improved preparation and control of movement, is correlated to a more 334 

efficient brain organization with more SW-alike characteristics. This correlation further 335 

supports our suggestion of a PT-induced network organization that can prepare for, 336 

and control motor tasks. 337 

Motor severity in PD is correlated with the mean functional connectivity strength 338 

[9], meaning that disconnections observed in PD brain circuitry are linked to motor 339 

symptoms. The loss of integration in PD’s network as the disease progresses is 340 

associated with motor disorientation and motor symptoms severity [16]. Here, we found 341 

not only a balance of excessive integration (increased CPL and decreased GE) as a 342 

PT result, but we report that this balance is connected to improved motor performance. 343 

Thus, we can imply that these indexes hold promise as surrogate markers of motor 344 

symptoms severity in PD. 345 

 346 

Future directions and limitations 347 

Our relatively small sample size (14 PwPD) and the lack of an age-matched control 348 

group (healthy old adults or passive PwPD) may have limited the interpretation of our 349 

findings. Accordingly, the effects of our intervention could have been classified 350 

concerning different PD motor subtypes (e.g. tremor-dominant or postural instability 351 

gait difficulty) or along the continuum of cognitive capacity (e.g. PD-MCI). The 352 

correlation of the improved motor execution with a reparative brain organization is in 353 

support of the beneficial contribution of PT to disease modification and points towards 354 

the use of physical activity as a supplement to pharmacotherapy. Future studies could 355 

be targeted in disentangling the elements of neuroplasticity induced by physical 356 

(and/or cognitive) training and identify their contribution to disease modification. 357 

Follow-up studies are essential to address the stability of the reported findings. Though 358 

the modulation of the DMN from the occipital gyrus could mean improved cognition in 359 

PwPD, this was not evident in our study. Future reports could provide more insight into 360 
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the possible relation of PT-induced reparative neuroplastic and cognitive capacities in 361 

PD.  362 

 363 

Conclusion 364 

Our study provides emphasizes the need to introduce physical exercise in the daily 365 

activities of PwPD. In contrast to previous studies that focused on the primary motor 366 

area, the focus here is on the whole-brain network level. PT facilitates neuroplasticity 367 

in the PD brain, and induces a transition from an impaired PD brain organization 368 

towards a reparative one, characterized by a more balanced integration and 369 

segregation of information flow. These training-induced changes are related to 370 

improved motor performance and thus improved motor control. To our knowledge, this 371 

is the first time that graph theory indexes of resting-state EEG data have been used to 372 

reveal meaningful relationships to underlying PD processes and outcomes of 373 

importance in a translational inquiry. The incorporation of a fully digital version of PT 374 

in the form of computerized serious games adds to the innovations brought about by 375 

our study. 376 

 377 

Materials and Methods 378 

Subjects 379 

This is a study involving 14 PwPD (male: 12, mean age: 65.5±7.12, years of 380 

education: 13.64±3) on stage II or III according to the unified Parkinson's disease rating 381 

scale (UPDRS) (11 subjects on stage II, mean UPDRS score: 24±6.04). The subjects 382 

underwent PT, as well as psychosomatic evaluation before and after the intervention. 383 

This study is part of the pdLLM clinical trial, registered with ClinicalTrials.gov (identifier 384 

code NCT04426903). The study’s protocol was approved by the Bioethics Committee 385 

of the Medical School of the Aristotle University of Thessaloniki and was conducted 386 

under the Helsinki Declaration of Human Rights. All participants signed written 387 

informed consent before their inclusion in the study.  388 

 389 

Intervention Protocol 390 

The intervention consisted of PT. The study protocol was developed to improve the 391 

quality of life of people at risk for neurodegeneration such as PwPD. The training 392 

sessions were computerized, center-based, and conducted under supervision. The 393 

sequence of training methods was pseudo-randomized and counterbalanced. The 394 
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details of the PT intervention have been previously described in detail [62], [63] 395 

(summarized here in Figure 4). In short, PT is fully computerized here through the 396 

WebFitForAll facility, a web-service system through a general-purpose interface [64] 397 

and specific (serious) game-based activities of balance, endurance, flexibility, and 398 

aerobic exercise. The software has been used in many other studies (e.g., [29], [65]) 399 

with beneficial results. The intervention lasted 10 weeks, with a frequency of two times 400 

per week for an hourly session, and took place at the Thessaloniki Active and Healthy 401 

Ageing Living Lab (Thess-AHALL) [66] and the Association of Parkinson's Patients and 402 

Friends of Northern Greece.  403 

 404 

Figure 4. PD-WebFitForAll design and flow of PD participants 405 

 406 

Physical training 407 

PT is based on the WebFitForAll exergaming platform [64], which employs motion 408 

sensor devices (i.e., Kinect), allowing the users to practice and maintain their physical 409 

status and well-being. The training protocol consists of aerobic (cycling, in-place-410 

hiking), flexibility (stretching), strength (weightlifting and resistance), and balance 411 

(static and dynamic) exercises in compliance to the ACSM and AHA recommendations 412 

[67]. Sports experts / physical educators and physiotherapists have defined a 50-70% 413 

intensity level of the maximum heart rate (HRmax). The 10-minute warm-up phase 414 

precedes the main body of training (40 minutes) that is followed by 5 minutes’ full 415 

recovery. For the aerobic exercises, the users are transferred to a virtual environment 416 

through Google maps and explore cities or landscapes. Upon correct completion of 417 

the flexibility and strength exercises, the trainees were progressively rewarded with an 418 

array of pleasing images. Balance exercises required the movement of the body in a 419 

horizontal or vertical axis [68]. 420 

 421 
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Psychometric and somatometric assessments 422 

The participants underwent assessments of their cognitive and physical capacity. 423 

The psychometric evaluation assessed attention, memory, and executive function, 424 

verbal fluency, mental flexibility, processing speed, and depression or well-being 425 

(MMSE [46], MoCA [47], Trail Making Test [69], PDQ-8 [48], Geriatric Depression 426 

Scale (GDS) [70]) The somatometric evaluation assessed the overall physical status, 427 

balance, walking, and risk of falls, via the 10 Meter Walk Test [45], the Community 428 

Balance & Mobility Scale [42],  the Short Physical Performance Battery [41], the 429 

Fullerton Senior Fitness Test [43], the Berg Balance Scale [40], and the Tinetti Test 430 

[44]. 431 

 432 

Experimental design and EEG recordings 433 

Pre- and post-intervention EEG resting-state activity was recorded measured for 5 434 

minutes, using a high-density Nihon-Kohden EEG device (128 active scalp electrode) 435 

at a sampling rate of 1000Hz. The EEG recordings were performed in an electrically 436 

shielded, sound, and light attenuated booth. The electrode impedances were kept 437 

lower than 10 kΩ. Participants were instructed to keep their eyes closed and to 438 

maintain a resting yet wakeful condition.  439 

 440 

EEG analysis 441 

Preprocessing 442 

The raw EEG data were initially visually inspected, bad channels were interpolated, 443 

and ocular artifacts (blinks and horizontal movement) were corrected through adaptive 444 

artifact correction [71] using the Brain Electrical Source Analysis software (BESA 445 

research, version 6, Megis Software, Heidelberg, Germany) (Figure 5, orange section). 446 

The pruned data were imported in the Fieldtrip Matlab toolbox [72] for further 447 

processing. The EEG data were filtered using a high-pass IIR filter at 1 Hz, a notch IIR 448 

filter at 47-53 Hz, and a low-pass IIR filter at 97 Hz. Independent component analysis 449 

(ICA) [73] was applied to the filtered EEG data, and the artifactual components were 450 

rejected. The EEG data were further inspected, and all remaining visible artifacts were 451 

removed. We randomly selected 15 segments, each with a duration of 4 seconds, from 452 

each EEG recording for further processing. 453 

 454 
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Source reconstruction 455 

Each subject’s segments (15 segments, 4-sec duration each) were imported into 456 

BESA (Figure 5, blue section). The current density reconstructions (CDR) were 457 

estimated in the 1-30 Hz frequency band for every sample point, solving the inverse 458 

problem with the use of the LORETA [38], which does not require the a priori 459 

declaration of the number of sources and is suitable for whole cortex analysis. The 460 

CDRs were exported as four-dimensional images (4-D), which were, in turn, imported 461 

into Matlab. Τhe imported images were further processed by superimposing a cortex 462 

mask including only grey matter, which excludes the brainstem and cerebellum, to limit 463 

the source space [74]. The source space consisted of 863 voxels.  464 

 465 

Functional connectivity 466 

The exported time-series of each voxel from the 4-D images were used to compute 467 

the Phase Transfer Entropy (PTE) (Figure 5, green section) [39]. Each voxel was 468 

considered as a node of the calculated network. The computation resulted in 863×863 469 

adjacency matrices, with the metric calculated independently for every voxel of every 470 

segment. The benefit of using PTE is that its results are not based on a specific data 471 

model because its computation relies on non-linear probability distributions. This 472 

allows for the detection of higher-order relations in the phase information flow and 473 

renders the measure impervious to source leakage [39]. The adjacency matrices, 474 

which were calculated separately for every segment, were averaged, resulting in a 475 

single connectivity matrix per subject. This methodology was previously used for a 476 

cross-sectional MEG resting-state analysis [75]. 477 

 478 
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 479 

Figure 5. EEG data analysis schematic. Pre-processing (orange): EEG data were 480 

first high-pass, bandpass, and low-pass filtered. ICA and visual inspection were used 481 

to reject artefactual data. Following, 15 segments of 4-s were randomly selected. 482 

Source reconstruction (blue): The data were frequency filtered within 1-30 Hz, 483 

source reconstructed (4-D LORETA), and an 863-node homemade atlas was used to 484 

extract the time-series of every voxel from every segment per subject. Functional 485 

connectivity (green): Directed functional connectivity was computed for every 486 

segment of every subject, using the phase transfer entropy metric (PTE), and the 15 487 

matrices of every subject were averaged into one. A network science approach was 488 

taken for the computation of graph measures per subject. Group average statistics 489 

were calculated to identify the statistically significant differences of post- and pre-490 

intervention networks. 491 

 492 

Graph measures computation 493 

The Brain Connectivity Toolbox [76] was used to compute the graph measures of 494 

global (transitivity) and local clustering coefficient, global and local efficiency, and node 495 

betweenness centrality for each participant. The node degree centrality was also 496 

computed with the use of a Matlab function. The density of each graph was calculated 497 

by summarizing all the weights of the graph. 498 

CPL is the average shortest path length of the edges connecting the nodes of the 499 

network [77], and GE is the average inverse shortest path length of the network [78]. 500 
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TS of a graph is the ratio of closed triplets to the maximum number of triplets (open 501 

and closed) [79]. An open triplet is three nodes with one and/or two connections 502 

between them, while a closed triplet is three nodes with three connections between 503 

them (i.e., a triangle). CC of a node is the ratio of its connected neighbors to the 504 

maximum number of possible connections [77]. LE of a node is the computation of GE 505 

on a local level,  strongly related to CC [15]. BC measures the importance of a node in 506 

the communication of the network’s other nodes and corresponds to the fraction of all 507 

shortest path that passes through the node [76]. DC identifies the number of 508 

connections inward and outward of a node, i.e., it indicates that the higher the degree, 509 

the more prominent a node is to the network. 510 

Possible integration shifts were examined through CPL and GE, which quantify the 511 

efficacy of information transference and its assimilation in the network [76]. TS and CC 512 

were computed to investigate the training's effect on robustness, and to determine if 513 

the intervention could affect segregation through the clustering organization of the PD 514 

brain network [76]. Similarly, LE was used to interpret any changes in the segregation 515 

of the network. BC quantifies the importance of a node in the information flow between 516 

nodes [76]. 517 

 518 

Statistical analysis 519 

The pre- and post-intervention somatometric and psychometric assessment scores 520 

were compared using non-parametric Wilcoxon tests and paired t-tests. The statistical 521 

comparisons were performed using the IBM SPSS 25.0 software. Wilcoxon tests were 522 

performed on the psychometric battery tests and somatometric tests with a discrete-523 

values score, while paired t-tests were applied on the remaining somatometric 524 

assessment tests. 525 

The Network Based Statistics (NBS) [80] toolbox was employed to estimate the 526 

statistically significant differences between the pre- and post-intervention connectivity 527 

networks. A paired-samples t-test was performed, with the significance threshold 528 

defined at p<0.05, corrected using 10000 random comparisons via False Discovery 529 

Rate (FDR) correction. The significant differences between the two time points were 530 

visualized as weighted graphs through the BrainNet Viewer [81] toolbox. DC was 531 

calculated from the outcome of this comparison, and the results were depicted in the 532 

same graph. 533 

Analysis of Covariance (ANCOVA) was used for the graph measures. Each 534 

measure was the dependent variable with density being the covariate because density 535 

seriously affects the computation of the other measures. For local measures (i.e., CC 536 
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and BC), ANCOVA with FDR correction on the p-values for Type I errors was 537 

performed for each of the 863 nodes. 538 

The relationship between graph measures and assessment scores was examined 539 

by employing the linear regression model, which can determine the possible prediction 540 

of a dependent variable via an explanatory one (independent variable). The linear 541 

regression model was calculated on the difference of pre- and post-training 542 

measurements with elements of both graph measures and assessment scores set as 543 

the independent variable. Thus, we investigated whether shifts in the cortical 544 

organization could predict the beneficial impact of the intervention on the physical and 545 

cognitive capacity of our subjects and the opposite. The statistical significance of the 546 

prediction was tested by F-test at a significance level of p < 0.05. 547 
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