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Abstract (350/350) 18 

Background: Advanced prostheses can restore function and improve quality of life for individuals with 19 

amputations. Unfortunately, most commercial control strategies do not utilize the rich control information from 20 

residual nerves and musculature. Continuous decoders can provide more intuitive prosthesis control from multi-21 

channel neural or electromyographic recordings. Three components influence continuous decoder performance: 22 

the data used to train the algorithm, the algorithm, and smoothing filters on the algorithm’s output. As 23 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 23, 2020. ; https://doi.org/10.1101/2020.10.21.20217026doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.10.21.20217026


Page 2 of 40 
 
individual groups often focus on a single decoder, very few studies compare different decoders using otherwise 24 

similar experimental conditions.  25 

Methods: We completed a two-phase head-to-head comparison of 12 continuous decoders using activities of 26 

daily living. In phase one, we compared two training types and a smoothing filter with three algorithms 27 

(modified Kalman filter, multi-layer perceptron, and convolutional neural network) in a clothespin relocation 28 

task. We compared training types that included data with only individual digit and wrist movements vs. 29 

combination movements (e.g., simultaneous grasp and wrist flexion). We also compared raw vs. nonlinearly 30 

smoothed algorithm outputs. In phase two, we compared the three algorithms in fragile egg, zipping, pouring, 31 

and folding tasks using the combination training and smoothing found beneficial in phase one. In both phases, 32 

we collected objective, performance-based (e.g., success rate) and subjective, user-focused (e.g., preference) 33 

measures.  34 

Results: Phase one showed that combination training improved prosthesis control accuracy and speed, and that 35 

the nonlinear smoothing improved accuracy but generally reduced speed. Phase one importantly showed 36 

simultaneous movements were used in the task, and that the modified Kalman filter and multi-layer perceptron 37 

predicted more simultaneous movements than the convolutional neural network. In phase two, user-focused 38 

metrics favored the convolutional neural network and modified Kalman filter, whereas performance-based 39 

metrics were generally similar among all algorithms.  40 

Conclusions: These results confirm that state-of-the-art algorithms, whether linear or nonlinear in nature, 41 

functionally benefit from training on more complex data and from output smoothing. These studies will be used 42 

to select a decoder for a long-term take-home trial with implanted neuromyoelectric devices. Overall, clinical 43 

considerations may favor the mKF as it is similar in performance, faster to train, and computationally less 44 

expensive than neural networks. 45 

 46 

Keywords 47 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 23, 2020. ; https://doi.org/10.1101/2020.10.21.20217026doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.21.20217026


Page 3 of 40 
 
Prosthetic control; Activities of daily living; Neuroprosthetics; Neural prostheses; Bionic arm; DEKA LUKE Arm; 48 

Electromyography (EMG) 49 

 50 

Background 51 

Modern prosthetic hands can now recreate the complex movements of the human hand [1]–[8]. 52 

Unfortunately, unintuitive control makes prostheses difficult to use [9] and is a major factor in prosthesis 53 

dissatisfaction and abandonment [10]. Neural and electromyographic (EMG) signals from residual muscles 54 

provide a rich source of movement information that could be used to provide intuitive prosthesis control. With 55 

rare exceptions [11], [12], commercial prosthetic control uses only two-electrode EMG setups that provide 56 

sequential control of up to two degrees-of-freedom [1], [3], [5], [6], [13], [14], far inferior to the abilities of 57 

modern prosthetic hands.  58 

Using more neuromuscular inputs can provide more intuitive prosthesis control through richer, more 59 

diverse data that can be classified into different movements based on residual neuromuscular activation 60 

patterns. Several groups have demonstrated intuitive prosthesis control with decoders that classify distinct 61 

movements [15]–[22]. Generally, these decoders classify EMG patterns to several pre-determined grip patterns 62 

(e.g., close hand, open hand, pinch). More advanced classification strategies incorporate proportionality into the 63 

classes (e.g., enable partial hand closure) [23] or allow simultaneously active classes (e.g., simultaneously rotate 64 

wrist and close hand) [18]. Classifiers can be limited by allowing the user only a predetermined, fixed number of 65 

movement types.  66 

Continuous decoders provide another approach to intuitively control a prosthesis. Although 67 

nomenclature varies in the literature, here we refer to a continuous decoder as a decoder that predicts 68 

kinematic positions anywhere within some movement window (i.e., an infinite number of positions) and learns 69 

from continuous kinematic values, not classes with predefined kinematic values. We choose not to refer to 70 

continuous decoders as regression-based because not all continuous decoders use regression [24], [25]. Instead 71 
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of distinct classes of movements, continuous decoders allow independent and simultaneous movement of 72 

individual degrees-of-freedom (e.g., finger or wrist movements), allowing the user to potentially produce any 73 

grip pattern. Continuous decoders have been used to provide prosthesis control with linear [26]–[28] and 74 

nonlinear [29]–[31] algorithms. Nonlinear algorithms generally take longer to train and are subject to overfitting; 75 

however, they may capture the nonlinear nature of multi-dimensional EMG data [32], especially for complex 76 

movement patterns. Recently, hybrid decoders have combined classification and regression control with 77 

promising results [33].   78 

Kalman filters, and related variations, provide a linear approach to continuous control that has been 79 

used with cortical [34] and peripheral [26], [35] recordings. Multi-layer perceptrons (MLPs), a relatively simple 80 

artificial neural network, have been used for both classification [32], [36], [37] and continuous [29], [38]–[40] 81 

control. Convolutional neural networks (CNNs), which, in the prosthetic domain, convolve temporally over their 82 

input, have also been used for classification [41], [42] and continuous [30], [31] control. CNNs temporal 83 

convolution enables them to learn features from raw EMG data [31], [41], whereas other strategies typically use 84 

time-domain features, such as the mean absolute value of segmented EMG.  85 

Beyond the algorithm itself, the data used to train the algorithm affects prosthesis control. Training an 86 

algorithm in multiple arm positions can improve prosthesis control whether the position data is used to train the 87 

algorithm [32], [43] or not [44], although incorporating positional data may not benefit linear algorithms [45]. 88 

For continuous controllers without a discrete set of classes, using training data with simultaneous movements of 89 

more than one degree-of-freedom may expose nonlinearities in EMG data and preferentially benefit nonlinear 90 

algorithms with higher learning capacities.  91 

Modifying a continuous decoder’s output can improve prosthesis control by improving stability. 92 

Smoothing filters, such as a traditional low-pass filter can smooth the output and reduce unwanted jitter [46]. 93 

One study incorporated a camera system to selectively low-pass filter the output when a grasp was detected 94 

[47]. Low-pass filters inevitably introduce delay into the control. Nonlinear smoothing filters can reduce small-95 

amplitude jitter without slowing larger movements [48], [49].  96 
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Prosthesis control improvements are generally demonstrated sequentially in three domains: offline, 97 

online, and real-world. Offline comparisons measure the ability of a decoder to map EMG inputs to kinematic 98 

outputs, without the user in the loop. Several offline comparisons have helped improve the state of the art for 99 

both continuous [40] and classification [17], [18], [32], [42], [50]–[52] control. Although they are a useful first 100 

step in improving control, offline improvements do not necessarily imply online improvements [53], largely 101 

because they do not incorporate the continuous interaction of the user with the controller. Online 102 

improvements incorporate user feedback and have been demonstrated through Fitts’ law or virtual target tasks. 103 

Several online comparisons have demonstrated differences among control strategies [28], [30], [31], [36], [41], 104 

[53]–[57]. The relationship of online performance to real-world performance is debated [58]–[60]. Comparing 105 

decoders through real-world activities of daily living provides the most realistic approximation of how a decoder 106 

would function in everyday life. Real-world comparisons have demonstrated the benefits of continuous [61], 107 

[62] and classifier [20], [49], [63]–[66] control strategies over commercial control; however, only a couple 108 

comparisons have been made among research-grade control strategies [49], [66] , both of which were 109 

classifiers.  110 

In this work, we conduct a two-phase real-world comparison of 12 continuous decoders that span the 111 

three major components affecting control (training data, algorithms, and smoothing). In the first phase, we 112 

compare training an algorithm with individual finger or wrist movements vs. combination movements (e.g., 113 

simultaneous flexion of all fingers to make a functional grasp) and compare the effect of using a nonlinear 114 

smoothing filter [48]. We study these conditions in a two-degree-of-freedom decode using advanced, previously 115 

published, continuous control decoders: a modified Kalman filter (mKF) [35], an MLP [29], and a CNN [30], )—all 116 

variations together yield 12 different decoders for comparison. In the second phase, we performed a more 117 

extensive evaluation of five-degree-of-freedom decodes with the mKF, MLP, and CNN using the combination 118 

training and smoothing filter found most beneficial in phase one. We focus on both performance-based 119 

objective and patient-centric subjective measures. To our knowledge, this study provides the first comparison of 120 

the same individuals using multiple continuous decoders and a physical prosthesis to complete real-world tasks. 121 
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A large part of our motivation for this study is to identify the “best” decoder among the advanced decoders we 122 

have previously published, in part because the results of this study will guide our clinical translation of advanced 123 

prosthesis control in a long-term take-home clinical trial. 124 

 125 

Methods 126 

Signal Acquisition & Prosthesis Setup 127 

 Signal acquisition has been described previously [35]. In brief, surface EMG (sEMG) was collected from a 128 

sEMG sleeve [67] with the 512-channel Grapevine System (Ripple Neuro LLC, Salt Lake City, UT). Thirty-two 129 

single-ended channels were acquired at 1 kHz and filtered with a 6th-order high pass Butterworth filter (15 Hz), 130 

2nd-order low-pass Butterworth filter (375 Hz), and 60, 120, and 180 Hz notch filters. After connecting the sEMG 131 

sleeve to the acquisition device, channels were manually inspected and removed if shorted channels were 132 

detected (generally less than two channels). The differential pairs of all monopolar channels were calculated, 133 

and features (single-ended and differential) were created at 30 Hz using the mean absolute value of a 300-ms 134 

buffer (i.e., 528 features from an overlapping 300-ms boxcar filter). At 30 Hz, the buffer is updated every 33 ms, 135 

resulting in a 266-ms overlap between features. This update rate and buffer length has been used by our group 136 

extensively with various decoders [30], [35]. 137 
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Non-amputee participants donned the DEKA LUKE Arm [1] with a bypass socket enabling non-amputee 138 

use of a prosthetic arm, which has been shown to be representative of use by individuals with amputation [68]. 139 

The prosthesis, bypass socket, and sEMG sleeve are shown in Fig. 1a. The bypass socket, which has a freely-140 

rotating wrist attachment, had rubber bands providing wrist rotation resistance (0.34 Nm to 0.85 Nm at rest and 141 

maximal rotation, respectively). Baseline EMG activity was subtracted from each feature before collecting 142 

training data by subtracting the average EMG activity during a 10-s period where the user supported the weight 143 

of the bypass socket and DEKA LUKE Arm in a neutral position approximately waist height. Training data were 144 

recorded as participants mimicked the pre-programmed movements of the DEKA LUKE Arm. The kinematics 145 

from the pre-programmed movements were used to fit the algorithms described in the next section.  146 

Fig. 1 Prothesis setup and phase one task (a) The bypass socket and sEMG sleeve enable non-amputees to 147 

complete real-world tasks with prosthetic systems. (b) The clothespin relocation task. The clothespin relocation 148 

task tests prosthesis control with simultaneously active grasping and wrist movements, typical of many activities 149 

of daily living.  150 

Decode Algorithms 151 

 The mKF was implemented as has been demonstrated previously [35]. A Gram-Schmidt 152 

orthogonalization algorithm [69] was used to select 48 features as inputs for the mKF. Using 48 features was 153 

empirically found to be an effective number in [48]. Prior to selecting features, we temporally aligned the 154 

kinematics and features by maximizing the average correlation between every feature and kinematic. The 48 155 

(b) (a) 
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EMG features and kinematics were used to fit the parameters of a linear Kalman filter [25]. The post-hoc 156 

thresholds which were used to modify the Kalman filter online [35], were optimized offline [35]. The feature 157 

selection, Kalman filter fitting, and threshold optimization were completed using all the training data (i.e., no 158 

training and validation split). The mKF was trained, and the threshold optimized using MATLAB 2018b on a 159 

Windows 10 computer with 64 GB RAM and an Intel Xeon E5-2620v3. The same computer was used for runtime 160 

predictions.  161 

 The nonlinear MLP was implemented as has been demonstrated previously [29]. The MLP consisted of 162 

two hidden layers, each with 128 nodes, and a hyperbolic tangent (tanh) activation layer. The training and 163 

testing data were split 80% and 20%, respectively. As with the mKF, the MLP used 48 input features as chosen by 164 

the same stepwise Gram-Schmidt orthogonalization algorithm to provide cleaner feature data. Prior to selecting 165 

features, we temporally aligned the kinematics and features by maximizing the average correlation between 166 

every feature and kinematic. The MLP trained for three dataset aggregation iterations, each with ten epochs 167 

(found sufficient in [29]). The MLP was trained in Python 3.6 using TensorFlow 1.13 on a Windows 10 computer 168 

with 64 GB RAM and an Intel Xeon E5 1650v3 (not trained on a GPU). The same computer was used for runtime 169 

predictions.   170 

 The nonlinear CNN was implemented as has been demonstrated previously [30]. The CNN, comprising 171 

eight total layers, used all 528 features to fit the kinematic values. 75% of the data was used to train the 172 

algorithm, and the remaining 25% was used as a validation set. The network trained until the loss on the 173 

validation set was equal to or larger than the previously smallest loss for five iterations. The CNN was trained 174 

using MATLAB 2018b on an NVIDIA Quadro M4000 8 GB graphics card. The system ran on Windows 10 and had 175 

128 GB RAM and an Intel Xeon E5-2620v4 processor. The trained network was transferred to a Windows 10 176 

computer with 64 GB RAM and an Intel Xeon E5-2620v3 processor for runtime predictions.  177 

 After training, users were given position control of the prosthesis. In position control, the prosthesis 178 

returns to its rest position if the user is not actively making a movement. In velocity control (the counterpart of 179 

position control), the prosthesis does not move when the user rests. For tasks requiring multiple active 180 
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movements, position control forces the user to complete both movements simultaneously, whereas velocity 181 

control allows the user to complete these movements sequentially.  182 

Smoothing Filter 183 

 A smoothing filter was implemented as has been demonstrated previously [48]. The “latching filter” we 184 

used is a computationally inexpensive, recursive, nonlinear filter that smooths small-amplitude jitter but allows 185 

quick changes to its output. The latching filter nonlinearly adjusts its level of smoothing based on the difference 186 

between the previous, smoothed decoder estimate and the current decoder estimate to determine how much 187 

to move in the direction of the current decoder estimate (i.e., how much to smooth the transition from the 188 

previous estimate to the new estimate). For small estimate changes, the output is heavily smoothed, resulting in 189 

stability for low-amplitude movements. For large estimate changes, the output is nearly unsmoothed, resulting 190 

in quick movements. The latching filter makes the reasonable assumption that jitter amplitude is small relative 191 

to the movement range and that jitter occurs more frequently than do intended small movements.  192 

Study Overview 193 

 We conducted this study in two phases (Fig. 2a). In the first phase, we compared training paradigms and 194 

the use of a smoothing filter for all three algorithms, totaling 12 decoders: three algorithms, two training 195 

paradigms, and two output types. Due to the number of decoders and the consequential experiment duration, 196 

we selected a simple task, the clothespin relocation task, with a low, two degree-of-freedom control strategy 197 

(grasp and wrist rotation), which simplified the training and allowed the experiments to be completed in 2-3 198 

hours.  199 

 In phase two, we increased the decoder output to five degrees-of-freedom to evaluate the three 200 

algorithms’ control in a high-degree-of-freedom setting representative of modern myoelectric prostheses. The 201 

degrees-of-freedom used were: (1) thumb flexion, (2) index finger flexion, (3) middle, ring, and little finger 202 

flexion (which are mechanically coupled on the DEKA LUKE Arm), (4) wrist flexion, and (5) wrist rotation. We 203 

used the results of the first phase to inform the training paradigm and smoothing filter use. As we were 204 
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comparing only three algorithms in the second phase, we were able to perform four tasks (fragile egg, zipper, 205 

pouring, and folding) in a 2-3-hour experimental session.  206 

 207 

Fig. 2 (a) Overview of the two-phase functional comparison of 12 prosthesis control strategies. In phase one, we 208 

compared collecting training data with individual movements vs. combination movements and compared using 209 

(a) 

(b) 
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raw algorithm output vs. nonlinear output smoothing with a latching filter for an mKF, MLP, and CNN in a 210 

clothespin relocation task. In phase two, we compared the mKF, MLP, and CNN with fragile egg, zipping, 211 

pouring, and folding tasks. (b) Example combination movement, where two degrees-of-freedom are 212 

simultaneously active during the middle portion of the trial. 213 

 214 

Phase One: Training Type and Output Smoothing Comparison 215 

Training Paradigms 216 

Ten participants (24 ± 4 years [mean ± SD]; seven right-handed, three left-handed; nine male, one 217 

female) with no prior prosthesis experience mimicked the DEKA LUKE Arm movements in three training periods 218 

to provide training data for the control algorithms. The two-degree-of-freedom decode training consisted of 219 

opening and closing the hand as well as rotation of the wrist. Prior to each training period, study administrators 220 

coached the participants through one trial of each movement, to acquaint the participants with mimicking the 221 

movements. In the first training period, users completed 12 trials of individual movements: close hand, open 222 

hand, pronate, supinate. Each individual movement consisted of a 0.7-s rise time, 3-s hold, and 0.7-s return to 223 

rest position (for a total of 4.4 s per movement). The second training period repeated the first period; however, 224 

only four trials of each movement were completed. The first and second training periods took 5 and 1.5 minutes, 225 

respectively. 226 

The third period introduced combination movements, where both degrees-of-freedom were 227 

simultaneously active for the middle portion of the trial (see Fig. 2b for a visual representation). Users 228 

completed four trials each of eight different movements: close hand and pronate, close hand and supinate, open 229 

hand and pronate, open hand and supinate, pronate and close hand, supinate and close hand, pronate and open 230 

hand, and supinate and open hand. For one combination movement, the first degree-of-freedom moved to its 231 

intended position with a 0.7-s rise time, 5.2-s hold, and 0.7-s return to resting position. The second degree-of-232 

freedom moved to its intended position 0.4 s after the first degree-of-freedom reached its intended position 233 
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with a 0.7-s rise time, 3.0-s hold, and 0.7-s return to its rest position. In total, one combination training trial 234 

consisted of 6.6 s. The third training period took 5 minutes.  235 

To compare individual and combination training paradigms, the training sets were merged into two sets 236 

of equal duration before being used to train the decoder (so that any improved performance would not be due 237 

to the decoder training on more data). The first and second training periods were combined to produce an 238 

individual-movement-only set. The second and third training periods were combined to produce a set with 239 

individual and combination movements. After merging the datasets, the mKF, CNN, and MLP were trained on 240 

the kinematic and EMG data for proportional control.  241 

Modified Clothespin Relocation Task 242 

In the modified clothespin relocation task (Fig. 1b), participants transferred three large clothespins from 243 

a horizontal bar to a vertical bar on the side of the dominant hand, referred to as the “inside-out” task [70]. The 244 

task was chosen for several reasons: its simplicity allows the user to quickly learn and master the task, mitigating 245 

effects due to learning; its short duration allows several trials to be completed rapidly, which was necessary for 246 

comparing 12 decoders; and, it necessarily requires simultaneously active degrees-of-freedom, typical of many 247 

daily activities. We have used this task with the DEKA LUKE Arm previously [71].  248 

Participants started a timer with the prosthetic hand, transferred a single clothespin, and stopped the 249 

timer with the prosthetic hand. A trial was considered failed when a clothespin was dropped. Participants were 250 

instructed that the success rate (proportion of successfully transferred clothespins) and the transfer time would 251 

be recorded. There was no time limit for the task. Participants completed nine trials (three sets of three) with 252 

each decoder. The order of the control paradigm was randomized among subjects to prevent an order effect. 253 

After completing nine trials with a particular decoder, participants completed the NASA Task Load Index (TLX) 254 

subjective workload survey [72]. 255 

Participants completed the task for 12 total decoders, including each possible combination of training 256 

paradigm (individual and combination), algorithm (mKF, MLP, and CNN), and output type (raw and smoothed).  257 

Analysis 258 
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 We compared the effect of training paradigm and smoothing filter for each algorithm with α = 0.05. The 259 

data were significantly non-normal for several conditions (Shapiro-Wilk test [73]), so nonparametric statistics 260 

were used. Median completion times for successful trials were calculated for each condition for each participant 261 

(N = 10 participants). The number of drops was calculated for each condition for each participant. For the 262 

training paradigm comparison, the data were aggregated to compare individual and combination trainings with 263 

Wilcoxon’s signed-rank test [74] for each algorithm; each group contained both smoothed and raw output types 264 

(N = 20; two medians for each participant). For the output type comparison, the data were aggregated to 265 

compare raw and smoothed outputs with Wilcoxon’s signed-rank test for each algorithm; each group contained 266 

both individual and combination trainings (N = 20; two medians for each participant). Because the hypotheses 267 

were pre-planned, no correction for multiple comparisons was applied [75]. 268 

 We compared the extent that the algorithms predicted simultaneously active degrees-of-freedom. 269 

Because this was a post-hoc analysis, we did not have digital markers indicating when a clothespin trial was 270 

started. Instead, we examined the proportion of time an algorithm predicted hand movement and wrist rotation 271 

simultaneously, divided by the total time the hand or wrist was active. We determined the threshold for “active” 272 

movements by the range of movements needed to complete the clothespin task. The wrist needed to rotate a 273 

minimum of 35% of its movement window to place the clothespin, and the hand needed to close a minimum of 274 

20% of its movement window to hold the clothespin. We counted only simultaneous movements over 1 s in 275 

duration to exclude potentially sporadic predictions that were likely not part of the task completion. We used 276 

the median proportion of time each algorithm predicted simultaneous movements for the algorithm 277 

comparisons. The medians across participants were distributed normally (Shapiro-Wilk test [73], so we 278 

conducted a one-way ANOVA [76] to determine if there were significant differences among the algorithms. If 279 

the ANOVA revealed differences, individual comparisons were made using Tukey’s Honestly Significant 280 

Difference procedure [77].  281 

Phase Two: Algorithm Comparison 282 

Training Paradigm 283 
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  In the second phase, we extended the degrees-of-freedom from two to five to assess the algorithms’ 284 

performance in more complex, biologically realistic conditions. Users controlled the following degrees-of-285 

freedom: flexion/extension of the thumb, flexion/extension of the index finger, flexion/extension of the middle, 286 

ring, and little fingers (which are mechanically coupled on the DEKA LUKE Arm), flexion/extension of the wrist, 287 

and pronation/supination of the wrist. Study administrators coached the participants through a single trial of 288 

each movement type before each training period. The training for phase two consisted of four distinct training 289 

periods, each 5 minutes long, for a total of 20 minutes. 290 

Nine participants (30 ± 14 years [mean ± SD]; seven right-handed, two left-handed; seven male, two 291 

female) with some prior prosthesis experience (2-3 hours) mimicked the prosthesis through movements of 292 

individual degrees-of-freedom. Six participants from phase one had completed the phase one study; however, 293 

not all the previous participants were able return for the phase two study. The remaining three had completed 294 

other prosthesis studies with our group. Movements consisted of a 0.7-s rise time, 5.2-s hold time, 0.7-s fall time 295 

(for a total of 6.6 s per movement). Participants mimicked four trials on each degree-of-freedom. For the second 296 

through fourth training periods, combination movements were introduced.  297 

The second period consisted of grasp movements (simultaneous flexion of the thumb, index, and 298 

middle, ring, and little degrees-of-freedom) combined with wrist movements (flexion, extension, pronation, and 299 

supination). Participants completed the first grasp movement alone, with a 0.7-s rise time, 5.2-s hold time, and 300 

0.7-s fall time (6.6 s total). Participants then completed grasp and wrist combination movements, where both 301 

the grasp and wrist movement were simultaneously active in the middle portion of a trial (Fig. 2b). In these 302 

combination trials, the grasp movement rose to its intended position in 0.7 s, held for 5.2 s, and returned to its 303 

original position in 0.7 s. The wrist movement started 0.4 s after the first movement reached its intended 304 

position, moved to its intended position with a 0.7-s rise time, held for 3.0 s, and returned to its original position 305 

in 0.7 s. These combination movements were completed for each wrist movement (wrist flexion, extension, 306 

pronation, and supination). Then, they were completed in the reverse order, where the wrist movement 307 

occurred first, and the grasp movement occurred part-way through the wrist movement. We chose to complete 308 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 23, 2020. ; https://doi.org/10.1101/2020.10.21.20217026doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.21.20217026


Page 15 of 40 
 
the movements in both orders due to the CNN convolving over time. Participants completed four trials of each 309 

sequence, resulting in 36 total trials.  310 

Periods three and four repeated the second period; however, the grasping movement was replaced with 311 

opening the hand (extending the thumb, index, and middle, ring, and little digits) and a pinch movement (flexing 312 

thumb and index digits), respectively. After merging the datasets from the four training periods, the mKF, CNN, 313 

and MLP were trained on the kinematic and EMG data for proportional control.  314 

Activities-of-Daily-Living  315 

 In the second phase, participants completed four tasks representative of activities of daily living in the 316 

following order: moving a fragile egg, using a zipper, pouring, and folding a towel (Fig. 3). A time limit was 317 

specified for each task. The order of the three decode algorithms (mKF, CNN, and MLP) was randomized for each 318 

participant to avoid order effects, with the same random order being used within each of the four tasks. After 319 

completing a task with each algorithm, participants ranked the algorithms in order of preference. Examples of 320 

the tasks are included in the supplementary material (Additional file 1: Video 1). Each task is now discussed in 321 

greater detail. 322 
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 323 

Fig. 3 Phase two: Activities of daily living represent realistic prosthesis use. (a) The fragile egg task tests precision 324 

control and tests the proportionality of a decode algorithm. (b) The zipper task requires stable pinching and 325 

simultaneous wrist rotation. (c) The pouring task requires stable grasping with smooth wrist rotation. (d) The 326 

folding task requires two-handed object manipulation and stable grasps during positional changes. 327 

Fragile Egg Task 328 

 In the fragile egg task, participants moved a mechanical “fragile egg” [78], [79] horizontally 15 cm from 329 

one side of a 6.25-cm vertical barrier to the other within a 45-s time limit, beginning on the side of the dominant 330 

hand. This task evaluated the dexterity provided by each decode algorithm in that if too much force was applied, 331 

the mechanical egg would “break” and emit an audible click. The participants were instructed to use a two-332 

finger pinch to pick up the mechanical egg. The breaking force for these experiments was set at about 20 N, and 333 

the device mass was about 615 g (0.03 N/g).  334 

For each trial, participants started a timer with the prosthetic hand, transferred the mechanical egg, and 335 

stopped the timer with the prosthetic hand. A trial was considered failed if the mechanical egg was broken or 336 

(a) 

(d) (c) 

(b) 
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dropped. Participants were instructed that both the success rate (the proportion of trials in which transfer was 337 

successful) and the transfer time would be recorded. When introduced to the task, participants were given two 338 

minutes of practice with each decode algorithm to decrease the learning effects in the recorded trials. 339 

Participants attempted 15 trials with each decode algorithm. Immediately before the recorded trials 340 

commenced, participants were given one final practice trial with the given decode algorithm. A verbal warning 341 

alerted the participants when there were 15 s remaining. After attempting the 15 recorded trials with a 342 

particular algorithm, participants completed a NASA-TLX survey.  343 

Zipper Task 344 

 In the zipper task, participants closed a horizontally mounted zipper within a 30-s time limit, beginning 345 

on the side of the dominant hand. Timed-out trials were reported as 30 s. The zipper task tests precision 346 

grasping with combination wrist movements. For a trial to be successful, the zipper must have closed by at least 347 

6.5 cm, as indicated with a mark. We modified the base of the zipper so that the handle would not lie less than 348 

45 degrees from being flat because the shape of the prosthetic fingers prevented gripping the zipper when lying 349 

flat. For each trial, participants started a timer with the prosthetic hand, closed the zipper, and stopped the 350 

timer with the prosthetic hand. Participants were instructed that both the number of releases (times the zipper 351 

slipped from their grasp) as well as the time would be recorded. When introduced to the task, participants were 352 

given three practice trials with each decode algorithm in order to decrease the learning effects in the recorded 353 

trials. Participants attempted five trials with each decode algorithm. Immediately before the recorded trials 354 

commenced, participants were given one final practice trial with the given decode algorithm. After attempting 355 

the five recorded trials with a particular algorithm, participants completed a NASA-TLX survey. 356 

Pouring Task 357 

 In the pouring task, participants poured rice from an aluminum can into a cup within a 1-min time limit. 358 

The rice-filled can was placed on the side of the dominant hand, and the empty cup was placed near the midline. 359 

This task assessed the ability of the decode algorithms to maintain a grasp during wrist rotation. For these 360 

experiments, the aluminum can was filled with 200 g of rice. 361 
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For each trial, participants started a timer with the prosthetic hand, poured the rice from the can (7.6 362 

cm diameter, 11.3 cm tall) to the cup (8.6 cm diameter, 11.7 cm tall), and stopped the timer with the prosthetic 363 

hand. Participants were instructed that the amount of rice (in grams) successfully transferred to the cup as well 364 

as the transfer time would be recorded. The participants were not allowed to use their native hand to stabilize 365 

the cup, and if the can was dropped the trial was considered unsuccessful. When introduced to the task, 366 

participants were given three practice trials with each decode algorithm in order to decrease the learning effects 367 

in the recorded trials. Participants attempted five trials with each decode algorithm. Immediately before the 368 

recorded trials commenced, participants were given one final practice trial with the given decode algorithm. 369 

After attempting the five recorded trials with a particular algorithm, participants completed a NASA-TLX survey. 370 

Folding Task 371 

In the folding task, participants folded a small hand towel (39 cm by 58 cm) twice using a pinch grasp 372 

within a 1-min time limit. The first fold was done from short-end to short-end. The participant could then use 373 

their non-dominant native hand to rotate the towel 90 degrees for the second fold, which was also from short-374 

end to short-end. For both folds, participants were instructed not to use the edge of the table to facilitate 375 

grasping the towel. Additionally, they were not to use their native hand to guide the end of the towel into the 376 

prosthesis. Ideally, participants simultaneously grasped the short edge of the towel with their native hand and 377 

the prosthesis. 378 

For each trial, participants started a timer with the prosthetic hand, folded the towel twice, and stopped 379 

the timer with the prosthetic hand. Participants were instructed that the number of releases (times the towel 380 

slipped from their grasp) and the time would be recorded. When introduced to the task, participants were given 381 

three practice trials with each decode algorithm to decrease the learning effects in the recorded trials. 382 

Participants attempted five trials with each decode algorithm. Immediately before the recorded trials 383 

commenced, participants were given one final practice trial with the given decode algorithm. After attempting 384 

the five recorded trials with a particular algorithm, participants completed a NASA-TLX survey. 385 

Analysis 386 
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We compared algorithms for each metric within each task with α = 0.05. The data were significantly 387 

non-normal for several conditions (Shapiro-Wilk test [73]), so nonparametric statistics were used. Median 388 

completion times for successful trials were calculated for each condition for each participant (N = 9 participants). 389 

For the pouring task, the task was considered successful if the total amount transferred was greater than 199.9 g 390 

(no spill). For each metric, a Kruskal-Wallis test [80] was used to determine if there were differences among the 391 

decode algorithms. If the Kruskal-Wallis revealed differences, paired comparisons were made using Wilcoxon’s 392 

signed-rank test [74]. Because the hypotheses were pre-planned, no correction for multiple comparisons was 393 

applied [75]. Post-hoc, we decided to compare aggregate user preferences. We grouped the user preferences 394 

for each task and performed a Kruskal-Wallis test across algorithms. As this was an unplanned comparison, we 395 

corrected the pairwise comparisons with the Dunn-Sidak correction for multiple comparisons [81]. 396 

 397 

Results 398 

Phase one: Comparing Latching Filter and Training Type  399 

Latching Filter Comparison 400 

The latching filter generally reduced the number of dropped clothespins but sometimes increased the 401 

clothespin transfer time (Fig. 4a-c). For the MLP, dropped clothespins were significantly reduced from 3 to 1 (p < 402 

0.01; Fig. 4a). For the CNN, dropped clothespins were significantly reduced; however, the median values were 403 

both 1 (p < 0.05; Fig. 4a). The latching filter significantly decreased transfer times from 11.0 s to 7.4 s for the 404 

MLP (p < 0.01), but significantly increased transfer times for the CNN and mKF from 6.9 s to 7.2 s (p < 0.05) and 405 

7.8 s to 10.1 s (p < 0.001), respectively (Fig. 4b). The latching filter significantly reduced subjective workload for 406 

the MLP from 54 to 41 (p < 0.05) but had no significant effect on subjective workload for the CNN and mKF (Fig. 407 

4c).  408 

Training Type Comparison 409 
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Training with combination movements generally improved the outcomes for the clothespin relocation 410 

task (Fig. 4d-f). Training with combination movements significantly reduced dropped clothespins for the MLP 411 

from 2.5 to 1 (p < 0.05; Fig. 4d). For the CNN, dropped clothespins were significantly reduced; however, the 412 

median values were both 1 (p < 0.05; Fig. 4d). Training with combinations significantly reduced the median time 413 

needed to transfer a clothespin for CNN and MLP from 8.3 s to 6.7 s (p < 0.05) and 11.8 s to 7.9 s (p < 0.001), 414 

respectively (Fig. 4e). Combination training significantly reduced the subjective workload for the CNN, from 44 415 

to 32 (p < 0.01; Fig. 4f). Training type had no significant effect on the subjective workload for the mKF and MLP; 416 

however, both were reduced with combination training (Fig. 4f). 417 
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 418 

Fig. 4 Phase one: The latching filter (LF) improves prosthesis control, sometimes at the cost of speed, and 419 

combination training improves control accuracy and speed. (a) The latching filter significantly reduced dropped 420 

clothespins for the MLP and CNN. (b) The latching filter significantly increased transfer time for the mKF and 421 

CNN, and significantly reduced transfer time for the MLP. (c) The latching filter significantly reduced the 422 

subjective workload for the MLP, evidenced by a lower NASA Task Load Index (TLX) score. (d) Combination 423 

training significantly reduced dropped clothespins for the MLP and CNN. (e) Combination training significantly 424 

reduced transfer times for the MLP and CNN. (f) Combination training significantly reduced the subjective 425 
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workload for the CNN, evidenced by a lower NASA Task Load Index (TLX) score. In these comparisons, the 426 

variable being compared contains aggregate data from the variable not being compared (e.g., in LF comparisons, 427 

each group contains both single and combination training types). Boxplots show median (red line), inter-quartile 428 

range (blue box), and most extreme, non-outlier values (1.5 x inter-quartile range; black whiskers). 429 

Simultaneous Movement Analysis 430 

 Simultaneous movements were significantly above zero for all three decoders (p < 0.001, all). The 431 

proportions of simultaneously active degrees-of-freedom were significantly different between algorithms (p < 432 

0.01). The MLP had significantly more simultaneous movement than the CNN (16.6% ± .5% and 9.0% ± 0.6%, 433 

respectively [mean ± SEM]; p < 0.01). The mKF had significantly more simultaneous movement than the CNN 434 

(15.6% ± 0.5% and 9.0% ± 0.6%, respectively [mean ± SEM]; p < 0.05).  435 

Phase Two: Comparing Algorithms 436 

Fragile Egg Task 437 

 Preferences for the fragile egg task were significantly different for the different decode algorithms (p < 438 

0.01; Fig. 5e). The CNN was significantly preferred over the MLP (median ranks 1 and 3, respectively; p < 0.05). 439 

Similarly, the mKF strongly trended toward being preferred over the MLP (median ranks 2 and 3, respectively; p 440 

= 0.05). Subjective workload also significantly differed among algorithms (p < 0.05; Fig. 5b). The CNN had 441 

significantly lower workload than did the MLP (51, 74, respectively; p < 0.01). The mKF had significantly lower 442 

workload than did the MLP (51, 74, respectively; p < 0.05). There were no significant differences in success rate 443 

across the algorithms; however, the mKF and CNN were generally more successful than the MLP (Fig. 5c). There 444 

were no significant differences in completion time across algorithms, although the mKF generally performed 445 

faster than the CNN and MLP (Fig. 5a). 446 

Zipper Task 447 

 Preferences for the zipper task differed significantly among algorithms (p < 0.05; Fig. 5e). The CNN was 448 

significantly preferred over the MLP (median ranks 1 and 3, respectively; p < 0.05). There were no significant 449 

differences in completion time (Fig. 5a), but the median completion time for the mKF was the fastest. 450 
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Inadvertent releases and subjective workload for the decodes did not significantly differ among algorithms (Fig. 451 

5d, 5b, respectively).  452 

Pouring Task 453 

 The pouring task was generally perceived as less difficult than the fragile egg and zipper tasks (Fig. 5b). 454 

There were no statistical differences for any of the recorded metrics (time, success rate, preference, and 455 

subjective workload). The MLP was preferred by a few participants, in contrast to the fragile egg and zipper 456 

tasks where it was never preferred (Fig. 5e). Participants had high success rates for the pouring task across 457 

algorithms and rarely spilled (Fig. 5c); we report only on whether the task was completed without spills or drops. 458 

Completion times were similar among algorithms (Fig. 5a).  459 

Folding Task 460 

 The folding task was generally perceived as less difficult than the fragile egg and zipper tasks (Fig. 5b) 461 

and did not result in any significant differences for the recorded metrics. More participants seem to prefer the 462 

CNN for this task (Fig. 5e) even though the trend suggests they inadvertently released the towel more than with 463 

the mKF or MLP. The CNN and MLP may also perform faster than the mKF (Fig. 5a).  464 

Aggregate Preferences Across Tasks 465 

 Aggregated across tasks, user preferences were significantly different (p < 0.05; Fig. 5e). Users preferred 466 

the CNN over the MLP (median ranks 1 and 3, respectively; p < 0.01), and the mKF trended toward being 467 

preferred over the MLP when aggregated across tasks (median ranks 2 and 3, respectively; p = 0.07).  468 
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 469 

Fig. 5 Phase two: subjective user-focused metrics reveal differences that objective performance-based measures 470 

may not. (a) Completion times did not significantly differ for any of the tasks. The mKF was generally faster for 471 

tasks perceived as more difficult, and slower for tasks perceived as less difficult. (b) The mKF and CNN were 472 
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significantly easier to use than the MLP for the fragile egg task, as evidenced by a lower NASA Task Load Index 473 

(TLX) score. (c) mKF and CNN outperform MLP in fragile egg task, although the difference was insignificant. All 474 

algorithms had high success in the pouring task. (d) All algorithms performed well and did not significantly differ 475 

in the zipping and folding tasks. (e) The CNN was significantly preferred over the MLP, aggregated across tasks. 476 

The mKF trended towards significance over the MLP across all tasks. The CNN was significantly preferred over 477 

the MLP for the fragile egg and zipper tasks. Boxplots show median (red line), inter-quartile range (colored 478 

boxes), and most extreme, non-outlier values (1.5 x inter-quartile range; black whiskers). 479 

Algorithm Training and Prediction Times 480 

 On average, the mKF trained in 0.7 s, the MLP trained in 47 s, and the CNN trained in 135 s in phase one. 481 

The threshold optimization averaged 155 s in phase one. In phase two, the mKF trained in 2.7 s, the MLP trained 482 

in 193 s, and the CNN trained in 262 s. The threshold optimization took 480 s in phase two. For testing, the mKF 483 

took 0.6 ms, the MLP took 1.4 ms, and the CNN took 3.0 ms. The latching filter took 0.027 ms to modify the 484 

algorithm output. Detailed training and testing results are included in Table 1. 485 

Table 1. Overview of Training and Prediction Times 

   Algorithm Training Testing 

 Phase One Phase Two  

 Individual Combination Combination  

Decoder Component Mean ± SD (s) Mean ± SD (s) Mean ± SD (s) Mean ± SD (ms) 

mKF 0.68 ±   0.04 0.71 ±   0.05 2.68 ±   0.87 0.619 ± 0.192 

MLP 45.43 ±   5.15 49.32 ±   8.61 192.83 ±   6.24 1.388 ± 0.151 

CNN 155.97 ± 29.25 114.11 ± 37.26 261.73 ± 38.00 2.953 ± 6.922 

Optimized Threshold 151.33 ± 12.98 157.94 ± 19.54 480.17 ± 43.68 N/A 

Latching Filter N/A N/A N/A 0.027 ± 0.048  

     

 486 

Discussion 487 

 In this two-phase study, we demonstrate the importance of using diverse training sets that include 488 

combinatorial movements; the value of smoothing the algorithm output; and the efficacy of linear and nonlinear 489 
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continuous decode algorithms for restoring functional ability to prosthesis users. To our knowledge, no study 490 

has attempted to compare real-world functional improvements of continuous prosthesis control using multiple 491 

algorithms, training paradigms, and output smoothing from the same participants. 492 

In phase one, we found that training on combination movements improves functional performance and 493 

that a latching filter [48] can reduce jitter albeit with some cost in speed. In phase two, we found that a linearly-494 

based decode algorithm (the mKF) can perform similarly to nonlinear deep-learning techniques (the CNN and 495 

MLP). From a clinical perspective, the mKF may be preferable sometimes due to reduced algorithm training time 496 

and computational resources required for real-time control. Phase two demonstrates how patient-centric 497 

outcomes (user preferences and subjective workload) elucidated differences among algorithms when 498 

performance metrics alone could not. 499 

 Adding combination movements to the training data benefited the participants two-fold: they 500 

completed tasks faster and with greater control. The improved speed and control seem to preferentially benefit 501 

nonlinear algorithms (MLP, CNN) by producing more consistent control among participants, whereas the mKF 502 

was relatively consistent in both conditions. In terms of speed, the MLP benefited the most from the 503 

combination movement training; however, it was also the slowest in the single-movement training paradigm 504 

and had the most room for improvement. In terms of subjective workload, results from combination training 505 

suggest that nonlinear approaches benefited most from combination training; however, the difference was 506 

significant only for the CNN. Perhaps combination trainings introduce nonlinearities that preferentially benefit 507 

nonlinear neural networks. 508 

The latching filter generally enhanced control at the cost of speed. We were surprised how little the 509 

latching filter benefited the mKF relative to the CNN and MLP. The latching filter uses a hyperparameter that 510 

adjusts the level of “latching” (and inherent speed) of kinematic changes. The latching filter uses the 511 

hyperparameter to preferentially dampen small changes in the decoder estimates (which are assumed to be 512 

inadvertent movements) while allowing gross movements to occur with little or no dampening [48]. Our piloting 513 

and informal use of these algorithms in lab suggest nonlinear approaches generally predict kinematic positions 514 
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similar to the data used for training and thus move to heavily trained positions quickly and unimpeded by the 515 

latching filter (e.g., rest, full flexion); in contrast, the Kalman filter predicts kinematics better dispersed 516 

throughout the kinematic range, which may be due to a relatively low Kalman gain [30] that places more value 517 

on past estimates than current measurements and decreases responsiveness. Thus, gross movements could be 518 

slowed by a low Kalman gain and the latching filter as they are initiated. We expect that the hyperparameter 519 

setting favored the nonlinear algorithms, as raw decoder output from the nonlinear algorithms likely moved 520 

between extreme positions (e.g., open hand to closed hand) faster and were not slowed as much by the latching 521 

filter when gross movement was intended. We expect that optimizing the hyperparameter could improve speed 522 

and control for the mKF especially, but also the CNN and MLP; however, such an optimization is beyond the 523 

scope of this study. The lack of improvement in dropped clothespins with the mKF might also have occurred 524 

because its control was different than the other two decoders, and so the participants did not become as 525 

accustomed to its responsiveness. 526 

In phase two, we examined the decode algorithm’s performance using combination training and the 527 

latching filter in a high-degree-of-freedom setting (five; increased from two in phase one). With the reduced 528 

experimental condition count in this phase, we were able to thoroughly investigate the algorithms’ performance 529 

across a broader range of functional tasks. This phase also included a larger, more diverse training dataset, 530 

which we anticipated might preferentially benefit nonlinear algorithms.  531 

We chose tasks representative of daily life that probe qualitatively different aspects of prosthesis 532 

control. The fragile egg task, generally judged most difficult by participants, requires precise movements and 533 

tests the decoder’s proportionality. The zipper task, also judged difficult by participants, requires consistent 534 

precision pinching with simultaneous wrist rotation. The fragile egg tasks and zipper tasks, which test precise 535 

movements, could be more difficult if the task were occluded by the bypass socket or prosthesis itself. However, 536 

a similar occlusion may occur in the real world. We did not have any participants comment on the difficulty of 537 

the tasks as being due to occlusion. The pouring task necessitates smooth wrist rotation during stable grasping. 538 

The folding task requires two-handed object manipulation and grasp stability with positional changes which 539 
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often degrade control performance [59]. We found the variety of the tasks to be useful, but the tasks were 540 

easier for the participants than pilot experiments suggested and, in some cases, resulted in floor and ceiling 541 

performance effects. The tasks would need to be more difficult to better elucidate performance differences 542 

among the algorithms in the future. 543 

In part because of these floor and ceiling effects, user preferences provided strong evidence for 544 

identifying the “best” algorithm. Whereas many performance metrics varied only slightly, user preferences 545 

showed greater differences among algorithms. Aggregated across tasks, preferences indicated the CNN was 546 

preferred over the MLP, and the mKF also trended toward being preferred over the MLP. As testing multiple 547 

algorithms in the same experimental sessions allowed users to rank their preferred algorithms, we see 548 

incorporating user preferences as a strength of the study. Translating research practices to the clinic requires 549 

patient-centric, data-driven approaches. Although performance differences may be small among algorithms, our 550 

findings show that differences in user experience exist across the participants, providing additional evidence 551 

toward clinical translation. Subjective workload also provided useful information on user experience, showing 552 

that the CNN and mKF were easier to use during the fragile egg task. From the user’s perspective, subjective 553 

workload may be the difference between adopting or abandoning a prosthesis; while two prosthetic systems 554 

may be capable of similar performance, the most intuitive, easy-to-use prosthesis will certainly be preferred. 555 

We found it surprising that the mKF performed similarly to the nonlinear CNN whereas the MLP 556 

underperformed. Our informal use of the mKF suggests that the mKF performed well because it has a smoother, 557 

more predictable response to input changes, which can improve functional control [53]. We anticipate the CNN 558 

performed well because it used all 528 of the EMG features (versus 48 from the channel selection algorithm for 559 

mKF and MLP) and convolves across time, thus training on more complex data and potentially learning from 560 

temporal characteristics which could be advantageous over the MLP. In [29], the MLP uses the first 16 principal 561 

components as input features, different from our use of 48 selected features, which could be another factor in 562 

its poorer performance. We informally observed that participants struggled to proportionally control the 563 
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prosthesis for the MLP, and it would often close quickly and break the fragile egg, which may indicate a lack of 564 

generalization from the training data.  565 

It is important to note that the purpose of our study was not to provide an exhaustive comparison of the 566 

mKF, CNNs and the MLP per se; rather, our goal was to determine whether combination training sets and the 567 

use of a latching filter would improve these previously published decoders, and which combinations to 568 

recommend for clinical translation. Although one algorithm may perform better under different circumstances 569 

(e.g., the number or type of features provided, training kinematics associated with mirror movements, or the 570 

amount of data in testing and validation sets) exploring all possible variations would have required even more 571 

subject time, which was already limited. Even with the reported experimental variations, most participants were 572 

starting to fatigue and eager to remove the heavy prosthesis by the end of the study—hence there was a 573 

practical limit to the number of decoders and variations in our comparison (e.g., only training type and latching 574 

filter using previously published algorithms).  575 

The training data used are critical for the performance of any decoder. In our study, we used mimicry 576 

training, where the user follows the prosthesis through preprogrammed movements, and the algorithm fits the 577 

feature inputs to the kinematics of the prosthesis. Inherent in this training paradigm is the assumption that the 578 

user perfectly mimics the kinematics of the hand, which inevitably is an imperfect assumption. Imperfect 579 

kinematic and feature data could have been preferentially detrimental to certain decoders (e.g., the MLP may 580 

perform better with cleaner labels). Another method for creating kinematics is to use mirror training, where the 581 

kinematics of the opposite hand are recorded while the user completes bilaterally mirrored movements. This 582 

approach has been shown to provide reliable training data for prosthesis control [82], [83] and could be further 583 

studied in real-world environments. Even though we did not use mirror movements, we aligned our kinematics 584 

and features during channel selection to improve performance. Additionally, some of the training data used 585 

single finger motions not exclusively in use for the tasks. It is possible that the training paradigms could have 586 

been improved for the specific tasks completed in this study; however, in real-world settings the tasks are not 587 

known a priori and therefore a generalizable training dataset is preferable. Recent studies have reported on 588 
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some of the most used grasp types [84], [85]. Based on the findings of these studies, a specific, yet 589 

generalizable, training set could be developed for real-world usage. Another method of improving features could 590 

include optimizing electrode placement. Although beyond the scope of this study, one could use the channel 591 

selection algorithm [69] to find geometric or anatomical patterns in the location of the most useful electrodes. 592 

These patterns could guide electrode placement for advanced prostheses used by persons with transradial 593 

amputation; however, the usefulness of the patterns would vary depending on the level of the amputation.  594 

Our study did not directly measure or restrict compensatory movements. Future work would benefit 595 

from quantifying or restricting compensatory movements. For some tasks (e.g., pouring task), compensatory 596 

movements could make stable grip control more important to the user than the ability to simultaneously 597 

activate multiple degrees-of-freedom. One benefit of the bypass socket [68] used in this study is that the 598 

rotating wrist attachment generally keeps the prosthesis hanging below the user’s wrist, regardless of shoulder, 599 

elbow, or wrist orientation, thus reducing the ability of the user to make compensatory movements and hence 600 

indirectly requiring simultaneous movements. The clothespin inside-out task conducted in phase one is 601 

particularly difficult to complete with compensatory movements. As a post-hoc analysis of the clothespin task, 602 

we found that the mKF and MLP had more simultaneous movements than the CNN, suggesting that they may 603 

have required less compensation. 604 

Reliable, simultaneous movements in position mode could provide the user with a prosthesis experience 605 

like that of the endogenous hand, in which simultaneous movements are natural. In velocity mode, a user may 606 

choose to complete multi-degree-of-freedom tasks sequentially, moving a single degree-of-freedom at a time. 607 

Sequential movements are far less natural and much slower than simultaneous movements if the simultaneous 608 

movements can be completed reliably. Our results suggest simultaneous movements were used for task 609 

completion; however, simultaneous movements alone do not mean the movements were intended. The mKF 610 

and the MLP had significantly more simultaneous movements than the CNN; however, reported user 611 

experiences and our informal observation suggest that the MLP may not have made the simultaneous 612 

movements reliably. The CNN, with less simultaneous movements, may have provided reliable grip control 613 
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which benefited the task and was reflected in user experiences, although successful task performance would 614 

have required greater compensatory movements from the user. 615 

Although common performance metrics were used, direct comparisons with other studies are difficult 616 

due to different experimental conditions (e.g., degrees-of-freedom, physical prosthesis). In [61], where a two-617 

degree-of-freedom, continuous, linear regression-based control strategy was compared with a conventional 618 

control strategy, the participant required about 10 s per clothespin for the horizontal to vertical transfer with 619 

the regression-based approach, whereas the conventional strategy required about 14 s. In [49], the two-degree-620 

of-freedom “proportional simultaneous” control strategy (most similar to what we have termed continuous 621 

control) required about 15 s to move a clothespin up and down (horizontal to vertical then vertical to 622 

horizontal), whereas the conventional strategy required about 29 s. Our median transfer times ranged from 7 s 623 

to 11 s to depending on the decoder, also two-degrees-of-freedom. Classifier approaches [20], [65], [66] on the 624 

clothespin relocation task have ranged from about 10 s to 30 s.  625 

The fragile object task has been performed with various prostheses and fragile objects. Generally, the 626 

ratio between the break force and mass determines the task difficulty; a lower ratio implies greater difficulty. In 627 

the present study, non-amputee participants achieved a 63% median success rate. The break force in the 628 

present experiments was about 20 N, and the device mass was 615 g, resulting in a 0.03 N/g ratio. In a previous 629 

study from our group, an individual with an amputation achieved about 55% success with the mKF on a similar 630 

fragile egg task without sensory feedback [27]. In [86], [87], the success rates without sensory feedback were 631 

38% and 45% with a fragile object that broke at 1.23 N and had a mass of 80 g, a ratio of 0.15 N/g, 632 

approximately five times the ratio of our study. In [88], the success rate was about 86% without sensory 633 

feedback, also using a different fragile object, which broke at 10.7 N and weighed 8 g, a 1.34 N/g ratio 634 

(approximately 45 times the ratio of our study). Transfer times, where reported, were similar among the 635 

aforementioned studies and the present study, ranging from 10 s to 13 s per transfer. 636 

 One goal of this study was to determine the best decoders and training paradigms for a portable take-637 

home system. This study provides strong evidence from real-world functional tasks for using diverse training 638 
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sets as input for a decoder and modifying the decode output with an LF. Selecting between linear and nonlinear 639 

decoders is less clear. Our findings indicate comparable performance between an mKF and CNN, where user 640 

preferences were slightly increased for the CNN. Clinical deployment, however, may favor the mKF, which trains 641 

faster and is less computationally expensive. Furthermore, in a take-home clinical trial where more training data 642 

may be collected over time, aggregation of these datasets may begin to favor deep learning approaches [67] like 643 

the CNN or MLP as technologies continue to improve. Overall, our results provide valuable information toward 644 

the clinical implementation of advanced control strategies for prosthesis users. 645 

Conclusions 646 

 This work compared myoelectric prosthetic control using activities of daily living with 12 continuous 647 

decoders in a two-phase study. In the first phase, comparing training paradigms and decoder smoothing, we 648 

found that training control algorithms with more complex movement patterns (i.e., simultaneously active digits 649 

and/or wrist) improves control accuracy and speed. Our results showed that nonlinear smoothing of the 650 

decoder output can improve accuracy although sometimes at a cost in speed. In the second phase, objective 651 

performance among the mKF, MLP, and CNN was similar for many tasks, but subjective preferences favored the 652 

CNN and mKF. Users’ subjective experiences are a key additional consideration.  653 

 This study was completed to select a decoder for a long-term take-home trial with implanted 654 

neuromyoelectric devices. The results demonstrate the importance of using rich training paradigms and 655 

nonlinear algorithm smoothing to improve continuous prosthetic control. The results also highlight the 656 

importance of user-focused subjective metrics in comparing decoders. Where performance differences could 657 

not effectively select a “best” decoder, user preferences added strong evidence toward selecting the mKF or 658 

CNN. Clinical considerations may favor the mKF as it is faster to train and computationally less expensive than 659 

the CNN. Subjective experiences may be even more important in long-term real-world environments and may 660 

influence voluntary prosthesis use. Overall, the results herein demonstrate the efficacy of continuous decoders 661 

for enabling intuitive prosthetic control of modern bionic prostheses.  662 
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Abbreviations 663 

EMG: electromyography; mKF: modified Kalman filter; MLP: multi-layer perceptron; CNN: convolutional neural 664 

network; sEMG: surface electromyography; TLX: Task Load Index 665 
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