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Abstract 23 

Diabetes is a massive global problem, with growth especially rapid in developing regions, which can lead to several 24 

damaging complications. Among the most impactful of these are diabetic retinopathy, the leading cause of blindness 25 

among working class adults, and cardiovascular disease, the leading cause of death worldwide. However, diagnosis is 26 

often too late to prevent irreversible damage caused by these linked conditions. This study describes the development of 27 

an integrated test, automated and not requiring laboratory blood analysis, for screening of these conditions. First, a random 28 

forest model was developed by retrospectively analyzing the influence of various risk factors (obtained quickly and non- 29 

invasively) on cardiovascular risk. Next, a deep-learning model was developed for prediction of diabetic retinopathy from 30 

retinal fundus images by a modified and re-trained InceptionV3 image classification model. The input was simplified by 31 

automatically segmenting the blood vessels in the retinal image. The technique of transfer learning enables the model to 32 

capitalize on existing infrastructure on the target device, meaning more versatile deployment, especially helpful in low-33 

resource settings. The models were integrated into a smartphone-based device, combined with an inexpensive 3D-printed 34 

retinal imaging attachment. Accuracy scores, as well as the receiver operating characteristic curve, the learning curve, and 35 

other gauges, were promising. This test is much cheaper and faster, enabling continuous monitoring for two damaging 36 

complications of diabetes. It has the potential to replace the manual methods of diagnosing both diabetic retinopathy and 37 

cardiovascular risk, which are time consuming and costly processes only done by medical professionals away from the 38 

point of care, and to prevent irreversible blindness and heart-related complications through faster, cheaper, and safer 39 

monitoring of diabetic complications. As well, tracking of cardiovascular and ocular complications of diabetes can enable 40 

improved detection of other diabetic complications, leading to earlier and more efficient treatment on a global scale.  41 

Keywords: Diabetic Retinopathy Screening, Smartphone Ophthalmology, Cardiovascular Risk, Point-of-Care Screening, 42 

Machine Learning, Computer Vision 43 
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 44 

1. Introduction 45 

Approximately four hundred and twenty million people worldwide have been diagnosed with diabetes mellitus, and this is 46 

predicted only to increase. Of those with diabetes, approximately one-third are expected to be diagnosed with diabetic 47 

retinopathy (DR), a chronic eye disease that can progress to irreversible vision loss, and the leading cause of blindness 48 

among working-class individuals (Facts About Diabetic Eye Disease, 2015). Early detection, which is vital for effective 49 

prognosis, relies on skilled readers and is both labor and time-intensive, which limits who can be helped. Skilled readers 50 

perform prognosis by analysis of swelling in the retina that threatens vision, of evidence of poor retinal blood vessel 51 

circulation, or of abnormal vessels or tissue in the retina [4]. Moreover, the manual nature of DR screening methods 52 

creates inconsistency among readers [4].  53 

 54 

Xie et al. [15] found that patients with proliferative diabetic retinopathy have an increased risk of incident cardiovascular 55 

disease (which can manifest in abnormalities in ocular blood vessels), meaning that these patients must be followed up 56 

with more closely to prevent cardiovascular disease. Due to this connection, simultaneous monitoring has several 57 

advantages to improve early detection and risk prediction of incident cardiovascular disease.  58 

 59 

Cardiovascular disease is the leading cause of death in the world, for both men and women. In the U.S., 1 in every 4 60 

deaths is due to cardiovascular disease. Although cardiovascular disease is a leading cause of deaths globally, many do not 61 

act on risk factors and warning signs although about half (47%) of Americans have at least one significant risk factor [7]. 62 
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  63 

For these extremely prevalent problems, current methods (detailed below) of risk detection/prediction are costly, slow, 64 

inaccessible, and often inconsistent. Due to the emergence of more accessible machine learning, machine learning and 65 

deep learning are being applied to various medical problems as well. Thus far application of these methods to automate 66 

prediction of diabetic retinopathy and cardiovascular risk, while accurate, have been resource-intensive and 67 

computationally costly, creating an inability to apply these methods on devices in low-resource settings. As well, these 68 

tests have been separated (see “Discussion” section for further comparison). This study aimed to apply various machine 69 

learning/deep learning algorithms to more cheaply, quickly, accessibly, and consistently monitor diabetic retinopathy and 70 

cardiovascular disease in a comprehensive test.  71 

A recent publication by EyePACS [3] revealed the use of retinal fundus images in the prediction of diabetic retinopathy. 72 

Research has shown that many other aspects of health may be predicted via the analysis of retinal fundus images (age, sex, 73 

systolic BP, and smoker % among others), which are all risk factors of cardiovascular disease.  74 

Although there exist fairly accurate automated tests to predict groups at risk of cardiovascular disease (for example Pooled 75 

Cohort and Framingham), these tests are time-consuming, resource-intensive, and invasive. This is due to the fact that 76 

several risk factors in the analysis are determined in a blood test, which often take much time to return results, are costly, 77 

and are often not available in low-resource areas [11, 12]. For this reason, the current method of assessing cardiovascular 78 

risk is not suitable for effective continuous monitoring on a large scale. The gap for a more accessible and easily 79 

performable test is the one this study desired to fill, by creating a smartphone-based, easily administered test through the 80 

analysis of both risk factors (via user input) and of retinal fundus images.  81 
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Current methods of diagnosing diabetic retinopathy (D.R.) require a retinal fundus image which must be taken in a 82 

properly equipped facility by a trained professional using a device that can cost ~$5,000. The image must then be 83 

processed by a professional reader, which is very time-consuming (up to 7 weeks). The current method is slow, 84 

inconvenient, expensive, and inconsistent (due to manual reading), and is thus ineffective for early detection and response 85 

before damage is irreversible [4]. In developing nations, where diabetic retinopathy is most damaging, the current solution 86 

cannot be implemented effectively.  87 

Currently, there exist solutions to automate prediction of diabetic retinopathy from retinal fundus images via deep learning 88 

[4, 14], however current approaches either falter in accuracy or are too computationally resource intensive to be 89 

implemented on most mobile devices (see Discussion section for further explanation).  90 

This study sought to construct an inexpensive, convenient, and consistent device for rapid retinal imaging and diagnosis, 91 

which can also be implemented effectively in low-resource settings. Two specific goals of this study are high accuracy in 92 

the prediction of cardiovascular risk without incorporating features that require laboratory blood analysis to determine, 93 

and a computationally light infrastructure leveraging existing models on the smartphone to enable both rapid and complex 94 

analysis on a mobile device. These are especially relevant in low resource settings (implementation in these settings with 95 

regard to adoption and technology availability is discussed further in “Conclusions”). 96 

Because cardiovascular disease accounts for 1 in 3 deaths in the US [7], and diabetic retinopathy is a leading cause of 97 

vision impairment and blindness worldwide [8], this study has enormous potential for societal impact.  98 

2. Materials and Methods  99 

2.1 Cardiovascular Risk Factors Model  100 
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Eleven input features (which could be taken non-invasively, quickly, and easily) and one output feature (the risk 101 

classification) were chosen from the University of California Irvine (UCI) Heart Disease Dataset [9]). The raw data came 102 

in the form of a spaced list of numbers, with random indents. VBA allowed this data to be structured in a .csv file. The 103 

final step was to use Pandas to convert the .csv to a python NumPy array, which could be used in the model. The “SciKit-104 

learn” library was used to build models for this task. In order to choose a model structure, the pre-optimization testing 105 

accuracies (using the default parameters from Sci-Kit Learn) of several model types versatile on relatively small datasets 106 

were measured. Accuracy was measured by randomly isolating 20% of the dataset, allowing the model to train on the 107 

remaining 80%, and measuring the classification accuracy of the model on the 20% left for testing samples which the 108 

model had not yet seen. The 3 top performing structures (Random Forest, Classical Naive Bayes, K-Nearest Neighbors) 109 

are compared in Figure 1. The accuracy of the Random Forest model in this preliminary test was the highest, so the 110 

Random Forest Model was chosen for this task. The other models (Naïve Bayes, K-NN) were the 2nd and 3rd highest 111 

performing models and are depicted only for the sake of comparison; they have no further role in this study.  112 

  113 

Figure 1. The accuracies of Random Forest, Classical Naïve Bayes, and K-Nearest Neighbor compared. Using a “voting” 114 

system, random forest classifiers can quickly learn on data and accurately validate predictions, leading to a higher 115 

efficiency and end performance.  116 

 117 
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The dataset was split randomly into training and testing sets (20% for testing, the rest is left for training). The optimized 118 

model was built in python with the “SciKit-learn” library and used n=100 estimators (the tree “nodes”), arrived at through 119 

iterative testing of each model in a range of 600 values of n. To measure the optimized testing accuracy of the model in a 120 

low-bias manner, the technique of k-fold cross validation was used. This technique creates k unique sets of training and 121 

testing data (where k is an integer, meaning the number of folds). To evaluate this model, k=10 folds were created, 122 

meaning 10 untrained copies of the model were trained and tested on unique, randomized splits of the original dataset. 123 

Over these 10 folds, the model structure reached an overall test accuracy of ~82%, which was higher than the goal 124 

accuracy and is comparable to other similar tests (discussed further in Discussion section).  125 

2.2 Diabetic Retinopathy Model  126 

Transfer Learning is the retraining of the final layers of a pre-trained and tested complex deep learning network, which 127 

results in a comparable accuracy, efficiency, and loss, to building the model from scratch. It requires much less training 128 

data, computational power, model size, and training time.  129 

The pretrained model chosen was Inception v3, which showed higher preliminary accuracies than model structures as 130 

VGG and MobileNet. Inception v3 is a model trained to recognize images of 1000 different objects (classes). In transfer 131 

learning, the final “output” layer was retrained to return diagnosis of diabetic retinopathy via Google’s Tensorflow.  132 

The dataset chosen was the EYEPacs retinal fundus image dataset [13], a widely-used dataset published as part of an open 133 

competition which contains about 45,000 retinal fundus images and their corresponding grades.  134 

Due to the complexity of the eye, our initial approaches to feed the raw images into a transfer deep learning network 135 

yielded low accuracies of below 60%, indicating need for revision. 136 
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Medically, experts diagnose diabetic retinopathy and other conditions in the eye through the observation of blood vessels. 137 

So, the model can safely treat all but the blood vessels as “noise” for the identification of diabetic retinopathy. To simplify 138 

the input data and remove this “noise,” automatic vessel segmentation was used.  139 

To validate the improvement that automatic vessel segmentation could have, the transfer learning model was tested on the 140 

DRIVE database [2], which has images which were manually vessel segmented and their corresponding diagnosis of 141 

diabetic retinopathy (graded by medical professionals). The model reported accuracy scores of almost 97%, showing the 142 

potential of this method.  143 

However, the problem which still remained was the automatic “conversion” of retinal fundus images to segmented ones. 144 

Due to the complexity of the problem and the plethora of research already done on the many existing datasets, an open 145 

source contrast model (like that described in [1]) was transfer learned for this task on parts of the STARE database [6].  146 

This model was tested on the datasets DRIVE [2], STARE [6], and HRF [5], which combined have hundreds of image 147 

pairs. The model’s predictions closely mirrored the segmented images.  148 

There is a visible bias for the lower values in the dataset because the higher levels are just much rarer in the world. 149 

However, if one class is overrepresented, especially in deep learning, the model can overfit and predict in accordance with 150 

the dataset rather than the image content. 151 

A solution is increasing the number of data points at the higher levels. This is achieved by conducting data augmentation. 152 

Simple data augmentation is the inversion of images or the addition of noise to create new data and also create model 153 

“tolerance” for distortion. This was performed for the 3/4 class images through a simple python script. Figure 2 shows the 154 

effect of data augmentation on a fundus image.  155 
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 156 

Figure 2. Left – Original Retinal Fundus Image, Right – Augmented Retinal Fundus Image with orientation changed, 157 

distortion added, alpha and relative exposure changed, and spots removed (Retinal Image from EYEPacs Dataset in [13], 158 

described above).  159 

The final model architecture is shown in Figure 3.  160 

 161 

Figure 3. Final Model Architecture, with Automatic Vessel Segmentation and Inceptionv3 transfer learning. The model, 162 

when tested on the EYEPACS dataset using the 10-fold cross validation method described earlier, recorded a testing 163 

accuracy of ~81%, which is highly respectable (see Discussion section for further comparison).  164 

2.3 Smartphone Implementation and Prototype  165 

The App and User Interface were coded/designed in the IDE XCode, in the Swift language.  166 
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Since the models were written in languages and with libraries not iOS native, the models were converted to CoreML, the 167 

iOS native construction for machine learning, using another library called coremltools. After this conversion, the app 168 

could make full use of the models. The next step was designing a professional and clean User Interface (UI) and User 169 

Experience (UX), which was achieved using the versatile XCode IDE.  170 

While each individual model had been tested, the comprehensive test had yet to be evaluated. 171 

The model was tested in multiple trials, on 50 random data collections from the UCI Heart Disease Dataset (each data 172 

collection consists of 12 values – 11 risk factors and 1 risk value). The UCI Heart Disease Dataset does not include retinal 173 

fundus images, so an image from the EyePACS dataset was inputted based on the D.R. classification of severity in the 174 

UCI collection.  175 

Overall, the test had an accuracy of 80% over 50 collections. When the classification was made binary for each model, as 176 

it will likely be in a real-world implementation, the accuracy was 96%.  177 

Because retinal fundus images are typically taken on an expensive and immobile machine (see Figure 4), a more mobile 178 

and cheaper version needed to be developed to fit the smartphone application.  179 

 180 

Figure 4.Traditional Retinal Imaging Machines, costing around $5,000.  181 
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For this purpose, a 3D-printed smartphone attachment was designed and built. This attachment fits to the smartphone 182 

camera and is adjustable. As well, it is lightweight, compact, user-friendly (with some basic instruction), versatile, and 183 

inexpensive (about 100 times lower cost). The attachment can use the phone’s native flash for lighting or any other 184 

coaxial light source. 185 

 186 

Figure 5. The left image shows the device camera view from a retinal fundus image (device tested on and image taken 187 

from real retina, background replaced with white). The right image shows the 3D-printed device fitted to the smartphone, 188 

which is the device configuration (lens was removed).  189 

 190 

Figure 6. The app takes some basic risk factors as input for the models.  191 

2.4 Evaluation 192 

Although an important way to gauge model performance is simply model accuracy, there are several other, more 193 

descriptive ways to do so which ensure the model performs on multiple fronts.  194 
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Receiver Operating Characteristic (ROC) curve  195 

ROC curves show the ability of a model to distinguish between classes. An ROC curve is created by varying the threshold 196 

between classifications and measuring the “True” or correct positive portion versus the “false” or incorrect positive 197 

portion. A good ROC curve means that the “overlap” between the classes is small (or the model is more “sure” in its 198 

predictions), especially important in medical computing problems.  199 

The distance between the ROC curve and the centerline signifies the amount of distinctness the model assigns to each 200 

class (a high distance is more “sureness” and less class overlap).  201 

In an ROC curve, the AUC ROC (Area under the ROC curve) is the best measure of model performance. An excellent 202 

model has an AUC ROC near to 1 (a horizontal line at TPR = 1), meaning it has a very high measure of separability. A 203 

poor model has an AUC ROC near to 0 (a horizontal line at TPR = 0), meaning it has the worst measure of separability. 204 

When the AUC ROC = 0.5, the model has no distinctive capability.  205 

Learning Curve (Test and Training Accuracies against Proportion of Data Set)  206 

A learning curve is a visualization of how training and test accuracies vary when the size of the dataset changes, as the 207 

model gains more experience. The learning curve is useful in that it shows how adding more data may or may not benefit 208 

the model, telling the researcher if pursuing more data will in fact be useful. It also is an indicator of overfitting and 209 

underfitting. The learning curves for both models are below (Figure 8).  210 

The most important performance measure discerned from the learning curve is fit. There are two possible problems related 211 

to fit: overfit and underfit.  212 
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Overfit occurs when a model’s predictive ability corresponds too closely to a particular dataset and may therefore fail to 213 

fit additional data or generalize to future observations reliably. Overfit is analytically when accuracy substantially drops 214 

with new data, such as in the testing set. If the curve for training (red) is not convergent with the testing line (green), the 215 

model has overfit, because the testing accuracy will never reach the training accuracy even with a large enough dataset.  216 

In addition, if the curves greatly reduce in concavity with higher and higher values, the model is struggling to generalize 217 

to more data and noise, which is underfit.  218 

Feature Importance 219 

Feature importance is an important visualization for models with a possible medical application, largely because both 220 

physicians and patients need to trust the model, and also because feature importance analysis can reveal new insight on the 221 

condition or biological system. This graph can be used to inform patients and physicians about why the model made a 222 

specific prediction and to inform patients how to improve their risk classification, with the most important risk factors 223 

being age, rest heart rate, and classification of severity of diabetic retinopathy.  224 

3. Results 225 

3.1 Receiver Operating Characteristic (ROC) curve  226 

Figure 7 shows the Receiver Operating Characteristic (ROC) curves for each model. 227 
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 228 

Figure 7. ROC curves for each model. The independent variable is the threshold value, and the dependent variable is the 229 

relationship between TPR and FPR.  230 

The Mean AUC ROC (in 5-fold cross validation) of the cardiovascular risk factors model was 0.90 with 95% C.I. +/- 231 

0.11, and the Mean AUC ROC (also in 5-fold cross validation) of the diabetic retinopathy model was 0.982 with 95% C.I. 232 

+/- 0.002.  233 

Note: The data was dichotomized for this curve (because of the nature of the ROC measuring two-class distinction), so 234 

these curves demonstrate the models’ distinction purely between at risk or not at risk.  235 

3.2 Learning Curve   236 

Figure 8 shows the Learning Curve for each model. 237 

 238 
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Figure 8. Learning curves for each model, with training indicated by the red curve (orange for D.R. model) and testing or 239 

cross-validation by the green (blue for the D.R. model). The independent variable is the data set portion, and the 240 

dependent variable is accuracy.  241 

For the cardiovascular risk factors model, the shared point of convergence with more data shows the growth potential with 242 

more data. The cap is about 90%, which is extremely well-performing. With the dataset at hand, the model has not overfit 243 

but would benefit from more data. The model also has not underfit, which is positive and shows the potential of the model 244 

to generalize even better with more data.  245 

For the diabetic retinopathy model on the EyePACS dataset, the model has not overfit and the point of convergence is 246 

roughly the same, which shows the model is almost at peak generalization. The model has seemed to underfit slightly, 247 

likely due to the complexity of the problem and the number of distinct images, along with the fact that the model was 248 

transfer learned.  249 

3.3 Model Visualization  250 

The feature importance graph is in Figure 9 for the cardiovascular risk factors model, with risk factors associated with 251 

their relative importance to the model prediction. 252 

 253 
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Figure 9. Relative importances of the chosen cardiovascular risk factors, represented graphically. Results obtained post-254 

training of the random forest model.  255 

4. Discussion 256 

As stated in the introduction section, there exist deep learning approaches for automatic classification of diabetic 257 

retinopathy in retinal fundus images. The average AUC ROC of the transfer-learned model presented in this study is 0.982 258 

(95% C.I., 0.980-0.984). In a study done by Google researchers classifying the same EYEPacs dataset in [13] using deep 259 

learning, an AUC ROC of 0.991 (95% C.I., 0.988-0.993) was determined [14]. In a separate study using deep learning to 260 

classify the same dataset, an AUC ROC of 0.951 (95% C.I., 0.947-0.956) was measured [17]. The model in [14] had a 261 

slightly higher AUC ROC, while that measured in [17] was significantly lower. Both models, upon trial, were not able to 262 

be implemented on the smartphone device used in this study along with several other recent smartphone models without 263 

cloud processing support due to resource needs of the complexities of the trained structures. Along with not being able to 264 

run analysis, trackage of energy and storage usage revealed significant feasibility issues on mobile devices upon trial. The 265 

model presented in this study freezes most of the trained layers in the original Inception v3 network, reducing resource-266 

intensive complexity and allowing efficient prediction on a variety of smartphones in a rapid manner (with an average 267 

processing time of 4 seconds). In contrast to the more resource intensive models presented in [14, 17], many current 268 

smartphone-enabled approaches to automated diabetic retinopathy detection via deep learning methods have reported 269 

comparatively low accuracies. For example, in [10], a set of patients with known type 2 diabetes underwent imaging for 270 

mobile analysis. Out of these, the presence of diabetic retinopathy was only correctly detected automatically in 68.6% of 271 

patients. In comparison, the model presented in this study conducts this binary classification with 96% accuracy, and a 272 

classification of severity with above 80% accuracy. In a screening setting (with a binary classification), the device 273 

presented in this study is more effective than current methods.  274 
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Currently, automated cardiovascular risk prediction requires risk factors which are obtained via a blood test. A goal of this 275 

study was to remove this requirement to make risk assessment more accessible and rapid. In [11], a machine learning 276 

model was constructed to predict and identify people at risk of cardiovascular disease using 473 variables, including risk 277 

factors related to blood assays, diet and nutrition, health and medical history, family history, sociodemographic factors, 278 

psychosocial factors, physical activity, lifestyle, and physical measures. Predictive performance was assessed using the 279 

area under the receiver operating characteristic curve (AUC-ROC), which was reported to be 0.774 with a 95% 280 

Confidence Interval of 0.768-0.780. This improves on previous methods such as the Framingham score [12], however it 281 

requires many risk factors which are difficult to obtain in most regions globally. This prevents effectiveness on a large 282 

scale, especially in low-resource settings, meaning many people do not understand their risk. The model presented in this 283 

study replaces many of these risk factors with a consideration of the retinal fundus image of the patient and reports a mean 284 

AUC-ROC of 0.9 (95% CI ± 0.11). This is a statistically significant improvement. However, it is important to consider 285 

that the model presented in [11] was evaluated on data from many more participants. It is likely that the predictive 286 

performance of the model presented in this study will decrease with such a large representation, and future testing on a 287 

larger sample size must be conducted to more properly compare the models and evaluate the ability of the model 288 

presented in this study to generalize to other sub-populations. The UCI dataset is relatively small (about 1000 samples), 289 

however due to the screening nature of this application, the high cross validation accuracy, and the high AUC ROC 290 

reported above, the model remains effective in improving understanding about cardiovascular risk in an accessible, non-291 

invasive, and quick way.  292 

Xie et al. [15] found that patients with proliferative DR have an increased risk of incident cardiovascular disease, meaning 293 

that these patients must be followed up more closely to prevent cardiovascular disease. Current methods for the 294 

monitoring cardiovascular risk and diabetic retinopathy are separated, while the device presented in this study integrates 295 
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monitoring of the cardiovascular and ocular complications of diabetes, leading to improved early intervention and 296 

treatment to prevent irreversible blindness and cardiovascular disease which can lead to death. Also, due to its improved 297 

convenience, cost, speed, and non-invasiveness compared to current methods, this device has the potential to make a much 298 

broader impact, especially in developing regions and on a global scale.  299 

5. Conclusions  300 

The new test demonstrates performance in several metrics which compare to or surpass those of cutting-edge 301 

technologies. Current devices and tests for diabetic retinopathy require expensive machines and trained doctors, whereas 302 

this device is much cheaper (the retinal imaging attachment costs about $30 to print), also indicating large economic 303 

profitability which would accelerate the application of this device. As well, the test is much faster (a few seconds for this 304 

test versus 2-7 weeks for current methods), meaning that early intervention is improved and that much more frequent 305 

monitoring is possible, which is lacking currently.  306 

Current tests for cardiovascular risk (even automated ones) require a blood test which is expensive, invasive (which can be 307 

unsafe, especially for elderly patients or for those in regions where contamination rates are high), and time-consuming. All 308 

of these limit effective early treatment and make continuous monitoring impossible. This device instantaneously and 309 

cheaply predicts cardiovascular risk without the need for an inconvenient and invasive blood test. As well, current tests for 310 

these conditions are independent and infrequent, while in reality they should be tracked together with high frequency, due 311 

to their fundamental connectivity.  312 

Implementation in Developing Regions 313 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.24.20218933doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.24.20218933
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

   

 

19 

In communities around the world, these improvements mean that more people can easily understand and act on heart 314 

problems, saving lives across the world. Especially in developing nations, understanding complications in the heart is vital 315 

to a healthy life, and this technology shows potential to massively improve the ability of people in low-resource 316 

communities across the globe to detect and treat problems in their heart.  317 

These combined, along with increased convenience and ease of use, increase the ability of this device to improve 318 

treatment for diabetic retinopathy and cardiovascular disease in developing nations. Additionally, the device facilitates 319 

continuous monitoring and remote analysis with the cloud, meaning that doctors can improve early intervention and 320 

administration of treatment even if they are not in the same region as the patient. By tracking and monitoring the 321 

progression of diabetes as it manifests in the eye and in the cardiovascular complications, we can improve early detection 322 

and intervention to detect and mitigate the complications of diabetes, even beyond the two focused on in this work. On a 323 

broader scale, this has special potential to improve the quality of medical care in developing nations with a shortage of 324 

doctors.  325 

Smartphone adoption is currently relatively low in many developing regions and can vary wildly. In these settings, aid 326 

organizations can utilize this application on standard smartphones in order to screen large populations. For individual 327 

monitoring, donation to local doctors and hospitals who prescribe the devices to patients is the most effective strategy. 328 

Because 3D-printing is not yet widely accessible in developing nations, at first the attachments would be cheaply printed 329 

by aid organizations and their partners for deployment in low-resource communities. We have built collaborations with 330 

such aid organizations as OneWorld Health and Microsoft 4Afrika to explore deployment of our devices in low-resource 331 

regions across Africa. 332 
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As such, the device would, at least initially, be most effective in an assistive and screening role, conveying information 333 

and prediction to doctors to enhance treatment and ability to respond early before damage is irreversible.  334 

Limitations  335 

Despite promising results, the device has limitations which must be addressed.  336 

The field of view (FOV) of the smartphone retinal imaging attachment is limited compared to professional retinal 337 

cameras, resulting in lower descriptiveness and lower resulting accuracy. However, this can be mitigated by introducing 338 

lower-quality images into the training set, which was done in this study but should be furthered. As well, the models need 339 

to be further tested on these lower FOV retinal images to determine the extent of the lowering of accuracy.  340 

Due to this limitation, currently the device is most effective as an assistive aid to be paired with a test by a professional 341 

machine, if it is necessary. However, the device is still effective for continuous monitoring and early detection to signal 342 

the need for further testing if the condition is severe.  343 

Furthermore, although there was a high number of images used, they may not represent external complications which 344 

affect diagnosis, lowering model accuracy. This is especially true for the cardiovascular risk factors models, as the number 345 

of samples (~1000) was much lower than that for the diabetic retinopathy model. More data is needed for both models to 346 

improve the device in this aspect, to ensure that the models do not falter when introduced with an unknown complication.  347 

Finally, some features in the dataset used were self-reported (such as years smoker, approx. cigarettes per day, and family 348 

history of diabetes), and may be biased or incorrect. Although this limitation much be acknowledged, it is inherent to most 349 

health-related datasets and is compensated for by other predictive factors.  350 
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Nonetheless, the device shows promising results and a real potential to greatly improve monitoring and early detection of 351 

diabetic retinopathy and related cardiovascular risk, improving treatment and allowing intervention before damage is 352 

irreversible in the form of complete blindness or even death. Additionally, the convenience, rapidity, non-invasiveness, 353 

and low cost of this point-of-care device allows widespread implementation in developing nations to improve the 354 

accessibility to and quality of medical care.  355 

 356 

6. Future Directions 357 

6.1 Model Improvement 358 

Due to the constraint of the lack of stronger computational capabilities for this study, model size and computational power 359 

needed were important factors in determining the correct approach, which naturally came at the cost of some accuracy. 360 

With extended computational resources and more time to train, this constraint would be eased, and higher model 361 

performance could be achieved. This will ensure maximum accuracy and efficiency before the models are tested in the 362 

real world. A higher number of datapoints will yield a more generalizable and therefore helpful model, so a goal of this 363 

study moving forward is the acquisition, validation, and use of more data.  364 

  365 

6.2 Preliminary Trial Feedback 366 

Another point of future work after the above steps is the gathering of data from preliminary assistive clinical trials in a 367 

closed setting where the patients are aware of the testing. This would measure the performance in a real-world system 368 

where real-world factors and noise come into play, and the effect on model performance as well as overall performance 369 

could be quantitatively as well as qualitatively measured. Potential problems with the test, the app, either model, the 3D-370 
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printed imaging attachment, or the deployment would be exposed and corrected before more widespread deployment. 371 

Specifically, the ability of the 3D-printed retinal imaging attachment to image a variety of distinct eyes would be 372 

evaluated. Currently, testing of this device, while present, has not been systematic to different conditions and sub-373 

populations. This would lead to further improvement of the application based on real-world feedback. As well, both 374 

physicians and patients can slowly begin to gain trust in the system in a no-cost environment, also advancing the use of 375 

machine learning and point-of-care technologies in medicine in general.  376 

 377 

6.3 Integration with Acetone Sensor 378 

The device presented in this work intends to improve detection and monitoring of diabetic retinopathy and cardiovascular 379 

risk. Both of these conditions are related to diabetes; diabetic retinopathy is a direct complication of diabetes and diabetes 380 

has clearly been shown to be a prime risk factor for cardiovascular disease by several published studies, including [16]. In 381 

an effort to further improve early detection of diabetic retinopathy and cardiovascular disease, a novel saliva acetone 382 

sensor and accompanying smartphone app have been developed separate from this study (depicted in Figure 10). 383 

 384 

Figure 10. Left – Computer rendering of acetone sensor design, with Finger Pump and Sensing Chamber marked. Middle 385 

– Acetone sensor printed in Polydimethylsiloxane substrate. Right – Smartphone application to automatically take and 386 

analyze images. 387 

 388 
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Acetone is well-known to be directly connected to the blood glucose levels of a patient (the traditional marker for 389 

diabetes). The sensor detects acetone through observation of a chemical reaction involving acetone (Figure 11) which 390 

produces a color change in the sensing chamber. By reading the red absorbance of the sensing chamber, acetone 391 

concentration can be determined (Figure 12). Spikes in the saliva concentration of acetone are good indicators of diabetic 392 

progression and thus of diabetic complications. 393 

 394 

  395 

Figure 11. Hydroxylamine sulfate in the substrate reacts with acetone in the saliva sample, lowering the pH and triggering 396 

a color change in the pH indicator Thymol Blue.  397 

 398 

Figure 12. Predictive curve and equation to convert red absorbance of sensing chamber to sample acetone concentration.  399 

 400 

The implementation of this sensor, integrated with the work in this study, may improve the ability of doctors to predict 401 

diabetic complications and respond early. While initial results are promising, the device and application are currently 402 

undergoing more comprehensive evaluation to measure sensitivity, accuracy, and potential issues.  403 

 404 

Acknowledgement of Role of Funding Source 405 

No external funding source to declare. 406 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 27, 2020. ; https://doi.org/10.1101/2020.10.24.20218933doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.24.20218933
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

   

 

24 

 407 
7. Summary 408 

The goal of this work was to create an integrated test, automated and not requiring laboratory blood analysis, for screening 409 

for diabetic retinopathy and cardiovascular risk. First, a random forest model was developed by retrospectively analyzing 410 

the influence of various risk factors (obtained quickly and non- invasively) on cardiovascular risk. Next, a deep-learning 411 

model was developed for prediction of diabetic retinopathy from retinal fundus images by transfer learning the 412 

InceptionV3 model and pre-processing the images via automatic vessel segmentation. The models were integrated into a 413 

smartphone-based device, combined with an inexpensive 3D-printed retinal imaging attachment. Accuracy scores, as well 414 

as the receiver operating characteristic curve, the learning curve, and other gauges, were promising. This test is much 415 

cheaper and faster, enabling continuous monitoring for diabetes and its complications. It has the potential to replace the 416 

manual methods of diagnosing both diabetic retinopathy and cardiovascular risk, which are time consuming and costly 417 

processes only done by medical professionals away from the point of care, and to prevent irreversible blindness and heart-418 

related complications through faster, cheaper, and safer monitoring of diabetes. Tracking of cardiovascular and ocular 419 

complications of diabetes can also enable improved detection of other diabetic complications, leading to earlier and more 420 

efficient treatment on a global scale.  421 

 422 
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