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Abstract 

Background: Alcohol use disorder (AUD) and schizophrenia (SCZ) frequently co-occur, and 

recent genome-wide association studies (GWAS) have identified significant genetic correlations 

between them.  

Methods: We used the largest published GWAS for AUD (total cases = 77,822) and SCZ (total 

cases = 46,827) to systematically identify genetic variants that influence both disorders (in either 

the same or opposite direction of effect) as well as disorder-specific loci.  

Results: We identified 55 independent genome-wide significant SNPs with the same direction of 

effect on AUD and SCZ, 8 with robust effects in opposite directions, and 98 with disorder-

specific effects. We also found evidence for 12 genes whose pleiotropic associations with AUD 

and SCZ are consistent with mediation via gene expression in the prefrontal cortex. The genetic 

covariance between AUD and SCZ was concentrated in genomic regions functional in brain 

tissues (p = 0.001).  

Conclusions: Our findings provide further evidence that SCZ shares meaningful genetic overlap 

with AUD, and suggest that genetic variants with an effect on both disorders are expressed in 

brain tissues. 
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Introduction 

Schizophrenia (SCZ) and alcohol use disorder (AUD) are serious psychiatric disorders1. 

AUD is more common in individuals with SCZ (prevalence of 20-30%2,3, compared to ~6% in the 

general population4) and a diagnosis of both is associated with greater psychiatric comorbidity5, 

more clinical complications6, and a lower likelihood of sustained medication adherence7 than 

either disorder alone. Both SCZ and AUD are moderately to highly heritable (twin-h2 for SCZ = 

81%8, AUD = 49%9), and genome-wide association studies (GWAS) have consistently found 

positive genetic correlations of AUD with SCZ (e.g., rg = 0.34, p = 3.7e-21)10. Further, polygenic 

risk scores (PRS) for AUD are significantly associated with SCZ risk10 and vice versa11. In 

contrast, the genetic correlation between SCZ and measures of typical alcohol consumption is 

weak (e.g., drinks/week: rg = 0.01, p = 0.6712), suggesting that SCZ might share substantial 

genetic liability only with the psychopathological aspects of disordered drinking13 and not alcohol 

consumption per se.  

Despite the substantial genetic correlation between AUD and SCZ, there is little known 

regarding the underlying pleiotropic mechanisms in terms of the specific risk alleles, genes, and 

molecular pathways involved. Although recent studies have begun to elucidate the contributions 

of pleiotropic loci to shared genetic variance amongst disorders and complex traits14,15, these 

efforts have not included AUD, one of the most common psychiatric disorders. In addition to loci 

with a similar direction of effect on both disorders, modern cross-disorder GWAS methods can 

also identify divergent variants, i.e., those that are pleiotropic for two disorders but whose effect 

alleles operate in opposite directions, conferring risk for one disorder and protective effects for 

the other (e.g., potassium ion response genes that distinguish SCZ from bipolar disorder16). The 

identification of such variants is fundamental to identifying the pathways that contribute to 

diagnostic boundaries.  

The current study outlines the nature of the shared genetic underpinnings of AUD and 

SCZ by conducting cross-disorder analyses of large genome-wide datasets of both European- 

and African-ancestry individuals (see Figure 1 for overview). We conducted ancestry-specific 

cross-disorder meta-analyses to systematically identify pleiotropic loci with significant 

convergent and divergent effects on both SCZ and AUD, and loci specific to each disorder. We 

also linked pleiotropic variants to gene expression data from the frontal cortex in an effort to 

prioritize the genes that are more likely to be causal. Because the extent to which the correlation 

between AUD and SCZ is attributable to salient functional categories remains unknown, we 

partitioned the genetic covariance between AUD and SCZ into relevant annotations.  
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Methods and Materials 

Samples  

Alcohol Use Disorder 

For the European-ancestry subset, we utilized GWAS data from the largest available 

AUD meta-analysis17 (N = 313,959; Ncases = 57,564). This study meta-analyzed AUD GWAS 

data from the Million Veteran Program (MVP), where case status was derived from International 

Classification of Diseases (ICD) codes of alcohol-related diagnoses in electronic health records 

(EHR) data, and the Psychiatric Genomics Consortium (PGC) alcohol dependence GWAS18 

with cases based on DSM-IV diagnoses.  

We meta-analyzed two published GWAS ourselves to create the African-ancestry 

subset: the MVP Phase 1 GWAS of AUD10 (N = 56,648; Ncases = 17,267), and the PGC GWAS18 

(N = 5,799; Ncases = 2,991). We used METAL19 (which combines  genome-wide summary 

statistics across multiple samples) to generate the African-ancestry summary statistics by meta-

analyzing the GWAS data from the MVP Phase 1 AUD and PGC alcohol dependence GWAS 

using an inverse variance-weighted fixed-effects model, excluding SNPs with INFO score < 0.8 

and/or minor allele frequency < 0.01 within each sample. 

 

Schizophrenia 

For the European-ancestry sample, we used the PGC Phase 2 + CLOZUK (a sample of 

individuals with schizophrenia who were treated with clozapine) SCZ GWAS meta-analysis20 

(total N = 105,318; Ncases = 40,675). We used the summary statistics from the Genomic 

Psychiatry Cohort (GPC) SCZ GWAS21 (N = 10,070; Ncases = 6,152) for the African-ancestry 

cross-disorder analysis.  

 

Analysis 

Cross-disorder association analysis  

 We used “Association analysis based on SubSETs” (ASSET)22 to combine the genome-

wide association data for AUD and SCZ (separately by ancestry), using the two-tailed meta-

analysis approach to obtain a single cross-disorder association statistic, correcting for sample 

overlap. Unlike traditional meta-analysis approaches, ASSET takes into account SNPs with 

significant effects on multiple disorders even if the effects on the traits are in opposite directions. 

Default parameters were applied using the “h.traits” function, and we used LD Score 

Regression23,24 (LDSC) to obtain a rough estimate of sample overlap, which we accounted for in 

the additional covariance term. We then separated the ASSET results into four subsets: a 
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“convergent” subset (effect allele with the same direction of effect for both disorders), a 

“divergent” subset (effect allele with opposite directions of effect on the disorders), a subset of 

SNPs with AUD-specific effects, and a subset of SNPs with effects only on SCZ (Supplemental 

Figure 1).  

In the European-ancestry sample, we then uploaded the subset results (i.e., convergent, 

divergent, AUD-only, and SCZ-only SNPs from ASSET output) to FUMA v1.3.6a25 for 

annotation and identification of genome-wide significant risk loci and independent lead SNPs. 

We further subset these convergent and divergent loci to exclude top lead SNPs with p > 0.05 in 

either individual disorder GWAS, to create a more conservative set of cross-disorder variants 

with at least nominal significance in both disorders (although the full subsets were used for 

gene-set and pathway analyses). 

In the African-ancestry samples, which were smaller and accordingly lacked power for 

more extensive analyses, we focused on the overall set of pleiotropic cross-disorder variants, 

rather than parsing the pleiotropic variants into subsets with convergent and divergent effects. In 

addition, as much of the data required for follow-up analyses described below were restricted to 

European-ancestry individuals, these follow-up analyses were not conducted on the African-

ancestry cross-disorder summary statistics.  

 

Gene, gene-set, and pathway analyses  

In the European-ancestry samples, gene-based analyses in MAGMA (v1.08)26 were 

conducted on the subset results (i.e., convergent and divergent SNPs from ASSET output) via 

the FUMA25 platform. These analyses included gene-set analyses using curated gene sets and 

GO terms from MsigDB27 (an online collection of annotated gene-sets), gene-property analyses 

based on tissue expression data from GTEx28 v8 (a repository of expression data by brain 

region from autopsies of 960 donors), and data visualization (more details in Supplemental 

Materials).  

 

SMR eQTL analyses and differential gene expression analyses  

To examine whether the effects of pleiotropic variants with convergent effects on AUD 

and SCZ may be mediated by gene expression patterns, we conducted a summary data-based 

Mendelian randomization29 (SMR) analysis on a set of expression quantitative trait loci (eQTL) 

data in the prefrontal cortex (meta-analyzed to combine data from ROSMAP30, 

PsychENCODE31, and COGA-INIA datasets32; total N = 1,986). SMR is a Mendelian 

randomization-based analysis that integrates GWAS summary statistics with eQTL data to test 
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whether the effect size of a SNP on the phenotype of interest is mediated by gene expression.  

SMR does not require raw eQTL data to build the weights. We excluded variants with pleiotropic 

effects significantly different from what would be expected under a causal model using the 

HEIDI-outlier method33 (excluding SNPs with HEIDI-outlier p < 0.05). 

We also examined whether genes mapped to pleiotropic loci by MAGMA (with p < 0.05) 

were significantly enriched for genes showing differential expression (p < 0.05) in the prefrontal 

cortex using two comparisons in independent samples: we compared gene expression in 65 

individuals with alcohol dependence and 73 healthy controls32, and 258 individuals with SCZ 

and 279 controls34 (details in Supplemental Note) using Fisher’s exact test35.  

 

Genetic correlations and partitioned covariance 

We used LDSC23,24 to estimate the genetic correlations (rg) between AUD, SCZ, and two 

negative control traits (height and chronic ischemic heart disease). We compared the genetic 

correlations between AUD and SCZ, and DPW and SCZ using a block jackknife method 

implemented through LDSC to test the null hypothesis that rg(AUD, SCZ) minus rg(DPW, SCZ) = 

0. 

We also used LDSC applied to Specifically Expressed Genes (LDSC-SEG36) to estimate 

the enrichment of AUD and SCZ across 13 specific brain regions (annotations defined using 

GTEx37 gene expression data). 

We used GeNetic cOVariance Analyzer (GNOVA)38 to partition the genetic covariance 

(𝜌𝑔) between AUD and SCZ into salient annotation categories. These included 1) functional vs. 

non-functional areas of the genome (GenoCanyon39 annotations, defined by integrating 

genomic conservation measures and biochemical annotation data to generate a functional 

potential score for each genetic variant), 2) tissue- and regional-specific functionality 

(GenoSkyline40,41 annotations, which are tissue-specific functional regions defined by integrating 

high-throughput epigenetic annotations, 3) GTEx v637 brain region annotations from LDSC cell-

type specific analyses), and 4) minor allele frequency quartiles. We excluded the MHC region 

(chr6:26000885 - chr6:33999991) from both the LDSC-SEG and GNOVA analyses due to the 

long-range and complex LD in this region. 

In sensitivity analyses conducted on individuals of European ancestry in the UK Biobank 

(from the Neale lab GWAS: https://www.nealelab.is/uk-biobank), we calculated the genetic 

correlation and partitioned genetic covariance between AUD, SCZ, and two negative control 

traits: height (N = 360,388) and chronic ischemic heart disease (CHD; N = 361,194; Ncases = 

12,769). 
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Results 

Identifying pleiotropic variants, genes, and pathways in individuals of European ancestry  

The cross-disorder analysis of AUD and SCZ in European-ancestry individuals identified 

numerous significant pleiotropic loci: after genome-wide clumping via FUMA25, there were 55 

independent risk loci (with 60 lead SNPs) with convergent effects and 44 risk loci (56 lead 

SNPs) with divergent effects (i.e., effect allele with opposite effects on AUD and SCZ; 

Supplemental Figure 1, Supplemental Tables 1-3). We also identified disorder-specific loci 

through ASSET: 90 with SCZ-only effects, and 8 with AUD-only effects (Supplemental Tables 

4-5). MAGMA gene-based analyses identified 119 significant genes from the convergent subset 

and 105 genes from the divergent subset (Supplemental Figure 2, Supplemental Tables 6-7).  

As ASSET22 searches for and determines the most likely subset for each SNP (i.e., 

classifying SNPs as having an effect only on AUD, only on SCZ, or on both disorders), some of 

the pleiotropic SNPs identified by ASSET were only significant in one of the single-disorder 

GWAS. For a more conservative description of pleiotropic loci of divergent effect, we further 

considered only the 8 loci where the top lead SNPs had opposite effects but p < 0.05 for both 

AUD and SCZ (Supplemental Table 3; the convergent lead SNPs already had p < 0.05 for both 

disorders). In the convergent subset, the strongest association was on chromosome 11 (lead 

SNP rs6589386, cross-disorder p = 5.7e-18; AUD p = 7.1e-12, SCZ p = 1.6e-8). The strongest 

divergent signal was on chromosome 4 (lead SNP rs13135092, cross-disorder p = 2.9e-31; 

AUD p = 4.9e-18, SCZ p = 7.9e-16), located in an intron of SLC39A8. Importantly, although 

rs13135092 is pleiotropic for both AUD and SCZ, the same effect allele (A) increases risk for 

AUD and decreases risk (i.e., is protective) for SCZ.  

MAGMA competitive gene-set analyses identified 2 significant GO terms in the 

convergent subset of variants, one related to DNA binding (GO: 0043565, p = 1.3e-6) and one 

related to neuronal differentiation (GO: 0045664, p = 1.9e-6; Supplemental Table 8). There 

were no significant gene-sets identified for the divergent subset). 

Both the convergent and divergent subsets of variants showed enrichment in all 13 brain 

tissues in MAGMA gene-property analyses, and the divergent subset also showed enrichment 

in pituitary tissues. (Supplemental Figure 3).  

 

Cross-disorder variants in African ancestry individuals 

In the African-ancestry cross-disorder analysis, there was limited power to identify 

pleiotropic loci, with results appearing to be primarily driven by the larger AUD GWAS (e.g., the 
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one genome-wide significant SNP that ASSET identified as being pleiotropic had p > 0.05 for 

SCZ). 

 

Integration of eQTL data and differential gene expression in EUR-ancestry samples 

Of the 22 genes that survived Bonferroni correction (for the number of genes tested; 

pSMR < 1.16e-5), SMR analyses identified 12 convergent genes whose cross-disorder 

associations with AUD and SCZ were consistent with mediation via gene expression in the 

prefrontal cortex (PFC; the remaining 10 genes with pSMR < 1.16e-5 had pHEIDI < 0.05, indicating 

pleiotropy outlier status; Figure 2; significant results in Supplemental Table 10; full results in 

Supplemental Table 11).  

Neither the genes with variants of convergent nor divergent effect were enriched in 

specific differential gene expression analyses of postmortem PFC tissue of individuals with SCZ 

(Ncases = 258) vs. controls or of AUD (Ncases = 65) vs. controls. 

 

Genetic covariance and correlation  

 There were significant positive genetic correlations (rg) between AUD and SCZ (rg = 

0.392, p = 1.2e-42). In sensitivity tests, the negative control measure of chronic ischemic heart 

disease was not significantly correlated with AUD but height showed a small negative 

correlation (rg = -0.093, SE = 0.021, p = 7.54e-6). SCZ showed a nominal genetic correlation 

with heart disease (rg = -0.063, SE = 0.029, p = 0.032), but none with height.  

 LDSC-SEG analyses that partitioned heritability enrichment by tissue-specific gene 

expression revealed significant enrichment for SCZ in three of 13 brain regions: the cortex, 

frontal cortex, and anterior cingulate cortex (FDR q-values < 2e-5), and for AUD in the anterior 

cingulate cortex (FDR q-value = 0.007; Supplemental Figure 4).  

The genetic covariance (𝜌𝑔) of AUD and SCZ was significantly attributable both to 

functional regions of the genome (p = 1.0e-8), including those specifically functional in brain 

tissues (p = 0.001; see Figure 3a, Supplemental Table 12) and non-functional regions (p = 

1.5e-19; Supplemental Table 13), as well as all minor allele frequency quartiles except the 

lowest frequency quartile (p = 2.9e-5 - 3.9e-9; Supplemental Table 14). While the point 

estimate of genetic covariance was highest in genes functional in immune tissues (𝜌𝑔 = 0.017), 

this estimate had a relatively large standard error (0.007) and did not reach significance after 

multiple testing corrections. There were no significant findings when partitioning the genetic 

covariance between AUD and height or SCZ and heart disease into tissue-specific categories 

with GNOVA. 
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Because the genetic covariance of AUD and SCZ was significantly concentrated in brain 

tissues, we partitioned it further into specific brain regions, using the 13 GTEx brain region 

annotations provided by LDSC-SEG36. We found significant concentrations of genetic 

covariance in all 13 brain regions tested, with the greatest concentrations in the anterior 

cingulate cortex (p = 7.6e-12), frontal cortex (p = 3.3e-9), cortex (p = 1.2e-7), and amygdala (p = 

3.1e-9; Supplemental Table 15, Figure 3b).  

 

Discussion 

 The prevalence of AUD is elevated in those with SCZ, relative to the general population. 

Recent large GWAS of AUD document robust genetic correlations between AUD and SCZ17. 

Utilizing a subset-based meta-analytic approach, our cross-disorder analysis of AUD and SCZ 

identified loci with either the same or opposite direction of effects on AUD and SCZ; 55 

convergent loci and 8 divergent loci had lead SNPs that were p < 0.05 in both individual 

disorders. The genetic covariance between AUD and SCZ was concentrated in genes functional 

in the brain, and eQTL analyses of the convergent subset of variants (i.e., those with the same 

direction of effect on both disorders) identified 12 genes whose association with AUD and SCZ 

may be mediated via gene expression in brain tissues.  

AUD and SCZ were robustly genetically correlated. In contrast, prior studies have found 

that SCZ is uncorrelated with measures of typical alcohol consumption (e.g., with drinks/week, rg 

= 0.01, p = 0.6712), especially when alcohol frequency of use alone is considered42. Genetic 

correlations with indices that encompass heavy episodic drinking, such as the consumption sub-

scale of the Alcohol Use Disorders Identification Test (AUDIT-C), are also lower (rg = -0.0003 -

0.04)10,13 than those noted for AUD. A recent study has implicated that indices of socioeconomic 

status may influence genetic correlations between measures of substance use and 

psychopathology43; however, even after co-varying for SES, the genetic correlation between 

alcohol frequency and SCZ remained non-significant. The genetic correlation between alcohol 

quantity and SCZ remained significant and relatively unchanged (rg = 0.14-0.16), but markedly 

lower than the AUD-SCZ genetic correlation. This suggests that SCZ shares genetic variation 

primarily with the psychopathological aspects of problem drinking and AUD, even after 

accounting for socioeconomic measures.  

 The top divergent SNP, rs13135092, in an intron of SLC39A, showed strong 

associations with both AUD (p = 4.9e-18) and SCZ (p = 7.9e-16), with the A allele exerting a 

risk-increasing effect on AUD and a protective effect on SCZ. Comparison of summary statistics 

for over 4,756 traits44 indicated that the A allele was also associated with greater alcohol 
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consumption, greater risk-taking, higher waist-hip ratio, lower bioelectrical impedance (i.e., 

greater adiposity) and higher systolic blood pressure, consistent with the direction of genetic 

association between these measures and AUD. However, the A allele was also associated with 

increasing cognitive performance, higher intelligence and with higher educational attainment – 

while the direction of these effects is consistent with the “protective” effect of the A allele on risk 

for SCZ, it contradicts prior research showing an inverse genetic correlation between 

educational attainment and AUD. Given the convergent direction of associations with AUD and 

alcohol consumption, as well as aspects of risk-taking and cardio-metabolic traits, but divergent 

direction of associations with SCZ as well as cognition, we speculate that the A allele of this 

SNP may be related to milder AUD, typified by positive reward-related drinking and impulsivity 

that is effectively regulated by enhanced cognitive functioning.  

Our top convergent SNP, rs6589386 is intergenic and an eQTL for DRD2 in cerebellar 

hemisphere tissue; this gene has been implicated for both AUD and SCZ across recent GWAS. 

In addition to AUD and SCZ, this variant has been implicated in GWAS of neuroticism, 

subjective well-being, alcohol consumption, and cigarette smoking. 

Linking cross-disorder associations to eQTLs in the prefrontal cortex (PFC) suggested 

that the effects of pleiotropic variants on AUD and SCZ may be mediated by expression levels 

of several genes (Figure 2). Several of the identified genes were previously implicated in 

GWAS of metabolic traits (including NAT8, TRPS1 (up-regulated), BAG5, PPP1R13B (down-

regulated)), immunological traits (e.g., RERE, TRPS1, both up-regulated) and psychiatric 

phenotypes (e.g., up-regulated: LRP8, down-regulated: PPP1R13B). Although these findings 

may not be limited to gene expression in the PFC, the limited data currently available do not 

permit examination of whether these findings extend to other brain regions.  

While there are limited samples available with measured gene expression in post 

mortem brain tissue, particularly for substance use disorders, we used two independent 

datasets (alcohol dependent and control samples from New South Wales Tissue Resource 

Centre at the University of Sydney, schizophrenia and control samples from the CommonMind 

consortium) to link pleiotropic variants to differential gene expression. We found no evidence for 

enrichment of genes pleiotropically associated with both AUD and SCZ when considering genes 

differentially expressed in the brains of individuals with AUD or SCZ (compared to respective 

controls). However, our lack of findings could be due to limited statistical power in the RNAseq 

whole-genome transcriptome datasets (N = 138 - 537) relative to the GWAS datasets (Ns > 

100,000). 
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 There are several limitations of the current study. First, nearly all gene expression 

reference datasets and other bioinformatic resources have been trained on European-ancestry 

samples. In addition, our African-ancestry samples were under-powered relative to the 

European-ancestry samples, and the SCZ sample more so than the AUD sample. Thus, the  

African-ancestry results were limited to the ASSET cross-disorder analysis, and appeared to be 

driven almost entirely by the larger AUD GWAS. Our motivation for conducting this cross-

disorder analysis is because most cross-disorder GWAS rely on European-ancestry samples, 

generating inequity in downstream analyses of non-European populations. For instance, 

summary statistics from this cross-disorder GWAS could be used to generate polygenic risk 

scores in independent cohorts of African-American participants. Nonetheless, vast increases in 

African ancestry sample sizes are needed for studies of serious psychiatric conditions. Second, 

given the available data, we were limited to studying common genetic variation (minor allele 

frequencies > 1%); thus, there may be rare variants of importance underlying the comorbidity 

between AUD and SCZ that are outside the scope of the current study. Third, in our sensitivity 

analysis, we found a significant negative genetic correlation between AUD and height (rg = -

0.093, SE = 0.021, p = 7.54e-6), which is likely driven in part by the very large sample sizes and 

polygenic nature of both traits, though there is some evidence for this relationship in the 

literature. One previous study found a negative genetic correlation between alcohol 

consumption and childhood height in males45 (rg = -0.23, p = 0.002) and another study found a 

negative correlation between problematic alcohol use and comparative height at age 10 (rg = -

0.09, p = 7.3e-5), though this was not significant when a Bonferroni correction was applied for 

the 715 traits tested17. Finally, while most of the AUD samples were screened for SCZ, some 

individuals among the SCZ samples very likely also had AUD. Unfortunately, there are no data 

currently available on which SCZ samples were screened for substance use disorders, to permit 

an estimation of such a bias.  

 Cross-disorder GWAS provide insights into genetic sources of comorbidity. While prior 

cross-disorder studies have provided foundational results for common psychiatric disorders, 

ours is amongst the first studies to focus on identifying pleiotropic loci for a substance use 

disorder, AUD, and SCZ. To understand the shared biology between substance use disorders 

and other psychiatric disorders, future efforts must include large numbers of individuals with 

AUD or problematic alcohol use rather than simple measures of consumption. 
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Figure 1. Conceptual overview of cross-disorder analysis of alcohol use disorder 
and schizophrenia. 
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Figure 2. Genes in the convergent subset whose association with AUD and SCZ 
may be mediated by gene expression in the prefrontal cortex, analyzed using 
Summary data-based Mendelian Randomization (SMR). Genes in red show up-
regulated gene expression, and genes in blue show down-regulated gene expression. 
The 12 labeled genes are significant after Bonferroni corrections and were not excluded 
as pleiotropic outliers (HEIDI-outlier method p > 0.05) 
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b. 
Figure 3. Stratified genetic covariance between AUD and SCZ. a: stratified by broad 
tissue type. Tissue annotations were defined using the GenoSkyline-Plus annotations. 
Significant tissues are starred. CV = cardiovascular; GI = gastrointestinal. b: stratified 
by 13 brain regions, defined using GTEx v6 gene expression data.  
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