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Genetic Underpinnings of Regional Adiposity Distribution in African Americans: 

Polygenic Risk Score Assessments from the Jackson Heart Study  

 

Abstract 

Background: African ancestry individuals with comparable overall anthropometric measures 

to Europeans have lower abdominal adiposity. To explore genetic underpinning of different 

adiposity patterns, we investigated if genetic risk scores for well-studied adiposity phenotypes 

also predict other adiposity measures in 2420 African American individuals from the Jackson 

Heart Study. 

Methods: Polygenic risk scores (PRS) for BMI, WHR adjusted for BMI (WHRBMIadj), 

WCBMIadj, and body fat percentage (BF%) were calculated using GWAS significant variants from 

mostly European ancestry studies. Associations between each PRS and adiposity measures were 

examined using multivariable linear regression.  

Results: The BMI-PRS was found to be a positive predictor of BF% (β=0.005 per allele, 95% 

CI: 0.002, 0.008) and subcutaneous adiposity (β=0.004, CI: 0.002, 0.008).  The BF%-PRS was 

associated with subcutaneous (β=0.022, CI: 0.010, 0.032) but not visceral adiposity; neither BMI 

nor BF%-PRS were predictors of central obesity measures.  Other PRS were not associated with 

BF%.  

Conclusion: These analyses suggest: (a) genetically driven increases in BF% strongly 

associate with subcutaneous but not visceral adiposity; (b) BF% is strongly associated with BMI 

but not central adiposity associated genetic variants. How these variants may contribute to 

observed differences in adiposity patterns between African and European ancestry individuals 

requires further study. 
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Introduction:  

 

Despite wide adoption of BMI, a measure that correlates well with numerous health risk 

factors1, there are limitations to this metric2; notably, it does not differentiate between variation 

in fat and lean mass. This can lead to imprecise categorization of obesity3, and hence misleading 

inferences for cardiometabolic outcomes4, a major drawback given that obesity-health outcome 

associations are differentially mediated by bodily composition, with adipose tissues more 

prominently linked with adverse outcomes5. Both total adiposity6 and regional fat distribution7 

are significant risk factors for cardiovascular diseases, particularly visceral adiposity8. 

Since body fat is linearly associated with BMI in sedentary populations9, a proportion of 

genetic variants associated with overall body mass expectedly overlap with loci linked to body 

fat percentage10. However, this BMI-fat mass link is known to exhibit phenotypic variability 

across ethnicities11, which extends to regional distribution of fat tissue as well: in African 

ancestry (AA) individuals with comparable BMI metrics to those with European ancestry (EA), 

distribution of visceral adiposity is lower 12,13. Paradoxically, the prevalence of cardiometabolic 

diseases in AA’s, compared to EA’s with similar BMI distributions is higher14; beyond 

environmental factors15, genetics may also play a significant role in this and merits a thorough 

examination.  

Despite evidence for AA-specific variants associated with BMI17, most SNPs are found to be 

the same as those first reported in EA individuals18. But evidence for generalization of variants 

associated with other adiposity traits to AAs, including measures of central obesity is limited19, 

and no study has examined replicability of body fat percentage associated variants to AA’s. 

Since genomic loci associated with body fat percentage are suggested to be more closely aligned 

with multiple cardiometabolic disease risks than BMI20, assessing if genetic variants associated 
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with adiposity patterns, particularly body fat percentage (BF%) in EA, can be extrapolated to AA 

individuals is an important question, potentially providing suggestive evidence of variants which 

may contribute to differential distribution of adiposity traits in AA’s, and by extension may 

contribute to disparities in health risk profile.  

The objective of this this study was to assess the utility of known variants associated with 

anthropometric and adiposity measures discovered in predominantly EA populations to predict 

BF%, subcutaneous adiposity tissue (SAT), visceral adiposity tissue (VAT), and SAT:VAT ratio 

(VSR) among AA individuals from Jackson Heart Study (JHS). We also characterized the 

association of variants with evidence of directional replicability and nominal significance in JHS 

for their originally reported adiposity measure to other adiposity measures, allowing us to 

examine the relationships between adiposity measures.  

 

Methods 

 

Study Population 

The Jackson Heart Study (JHS) (n=5306) is a community based prospective observational 

cohort study among non-institutionalized African Americans recruited from the three counties 

that comprise the Jackson metropolitan area in Mississippi. Baseline observations were obtained 

between 2000-2004, with second and third visits occurring in 2005-2008, and 2009-2012 

respectively.  

For BMI and WC genome-wide association tests, we used phenotypic observations from visit 

1 to maximize sample size (N=3020); for other traits, we used phenotypic measures from visit 2 

for the same purpose (N=2554). However, for polygenic risk score regression analyses, we 

exclusively used phenotypic observations from visit 2. In our analyses, 10 participants were 
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excluded due to pregnancy during the visit 2 examination, and 124 were excluded for missing or 

biologically implausible recording. The total sample size used was n=2420 individuals.  

 

Genotyping  

It was performed with Affymetrix 6.0 SNP Array (Affymetrix, Santa Clara, Calif). Outliers 

based on principal components, sample swaps, duplicates, and one of each pair of monozygotic 

twins were excluded. Variants with a minor allele frequency ≥ 1%, a call rate ≥ 90%, and a 

Hardy Weinberg equilibrium (HWE) p-value >10-6 (n=832,508 variants) were used for 

imputation to 1000 Genomes Project population SNP reference panel (Phase 3, Version 5), using 

Minimac3 on the Michigan Imputation Server. Only SNPs with an imputation r2>0.9 were 

selected for polygenic risk score analyses.  

  

Polygenic Risk Scores  

Use of polygenic risk scores (PRS) to predict complex traits21, closely related phenotypes22, 

and the same phenotype across different populations23 has been validated. Both weighted (i.e. 

adjusting for variant’s effect size on phenotype) and unweighted (frequency counting) methods 

have been employed for estimation of PRS24. Although the weighted method can lead to reduced 

mean square error for prediction in some cases25, the main applications for polygenic scores, 

namely association testing and prediction, do not appear to differ substantially between two 

methods. In addition, an unweighted score is more robust against error in estimating the effect 

sizes arising from limited samples, “winner’s curse bias”26, and confounding by demographic 

structure27. Therefore, we used an unweighted PRS approach.  

 At each locus (SNP), participants were assigned a dosage value between 0-2 inclusively 

based on the estimated number and frequency of phenotype increasing alleles under an additive 
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genetic effect model, and the PRS value for each individual reflects the summation of risk alleles 

across all selected loci.  

 

SNP Risk Sets 

To construct SNP sets used for PRS calculation, we utilized both the European  Bioinformatic 

Institute repository (ebi.ac.uk/gwas), and PubMed for extraction and validation of SNPs linked to 

anthropometric measures including body mass index (BMI), waist to hip ratio adjusted for BMI 

(WHRBMIadj), waist circumference adjusted for BMI (WCBMIadj), and body fat percentage (BF%). 

Most variants originate from EA studies, some from large multi-ethnic research. PRS derived 

from only AA-specific variants for target phenotypes were judged to be underpowered due to 

low numbers available, as well as PRS calculated from SNPs associated with VAT, SAT and 

VSR.   

We conducted linkage disequilibrium (LD) analysis using the LDlink (ldlink.nci.nih.gov). If a 

pair or a group of SNPs were in LD with one another (R2
≥0.2), we prioritized sentinel variants 

from larger and more recent studies and selected a single SNP to ensure independence of variants 

and avoid double counting the same functional locus (site). This set of LD-pruned variants was 

then used to calculcate PRS. 

 

Anthropometry Measures 

WC was measured at the umbilicus level using a non-elastic tape measurer and rounded to the 

nearest centimeter; hip circumference (HC) was measured at the level of the widest 

circumference over the greater trochanter.  WHR was obtained by dividing WC over HC.  

 

Adiposity Measures 
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A variety of different techniques for assessment of body composition exist28. For overall 

BF%, bioimpedance is a widely adopted method29. Under this technique, BF% is calculated 

based on the measured resistance of the adipose tissue as the person lays supine with electrodes 

placed on the arm and/or leg; bare foot-to-foot bioimpedance was conducted using the Tanita 

Body Fat Monitor (Tanita Corp, Tokyo). BF% was estimated using a programmed algorithm that 

incorporates bioimpedance readings with a height, weight, age and sex-specific equation and 

additional adjustment for physical activity levels. 

To estimate visceral and subcutaneous adipose volumes, the study employed computed 

tomography (CT) technique at visit 2, where the heart and lower abdomen regions were scanned 

with 16-channel mutidetector CT machine (Lightspeed 16 Pro, GE Healthcare, Milwaukee, WI). 

Abdominal imaging slices covering the lower abdomen from L3 to S1 were used to quantify both 

VAT and SAT30, such that 24 adjacent 2-mm thick slices centered on the lumbar disk space at L4 

to L5 were used for quantification of both types of adiposity; 12 images before the center of L4 

to L5 disk space and 12 images after that space30.  

 

Statistical Analysis 

To facilitate comparison across different phenotypes, we performed inverse-normal 

transformations prior to analysis. Genome-wide association analyses were completed for target 

traits to assess if known loci for anthropometric and adiposity traits discovered in EA 

populations are directionally (i.e. allele-effect direction) and statistically significantly replicable 

in the JHS cohort variants with genome-wide significance level (Supplementary Table 1). We 

used EPACTS 3.2.631 to perform GWAS analyses, adjusting for age, sex, and a genetic 

relationship matrix using the EMMAX test; additionally, BMI was incorporated as covariate in 

WHR and WC analyses.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 1, 2020. ; https://doi.org/10.1101/2020.10.27.20220517doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.27.20220517


 

We calculated PRS under three separate but complementary scenarios using the following 

configurations:  (a) set of all known loci (LD-pruned) reported at genome-wide significance 

(<5×10-8) in multi-ethnic or European studies regardless of replicability in JHS; (b) the subset of 

risk loci with evidence of directional replication in the JHS-GWAS results; and (c) a more 

restricted subset of risk loci with evidence for both directional replication as well as nominal 

statistical significance (p<5×10-2) in JHS results (Supplementary Table 2). PRS for BMI, 

WHRBMIadj,WCBMIadj, and BF% were first tested against their respective phenotypes in JHS to 

ensure the validity of constructed predictors (Supplementary Table 3). 

Phenotype-specific PRS obtained under various approaches were then tested for cross-

sectional associations with phenotypic measures. Both multivariable linear regression and mixed 

model32 were employed to investigate the associations between PRS and adiposity measures, 

with age, sex, and the top 10 ancestry principal components as covariates; additionally, family 

ID was utilized as random component in mixed models. Both offered similar results; linear 

results were more robust and hence chosen for simplicity. 

Some loci associated with obesity traits and/or fat distributions33 are known to be sex-specific. 

Although we performed gender-stratified analysis, given the sex imbalance in this sample 

(36.9% males), results for the females largely mirrored the combined findings, while the male-

only analysis lacked precision; therefore we chose to report the sex-combined analysis.   

Finally, to characterize the association between EA-established variants for anthropometric 

traits with evidence of transferrability to AA (i.e. statistically significant in JHS-GWAS), and 

type of adiposity (BF%, SAT, VAT, VSR), we constructed heatmap plots to investigate if 

genetic variations underpinning obesity traits are closely correlated with overall body fat change 

or aligned to specific adiposity patterns.   
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Statistical results, plots, and heatmaps plots were obtained using RStudio (V 1.1.463), 

gplots34, and “R Color Brewer” packages35, respectively.  

 

Results  

 

Population characteristics and adiposity measures  

Table 1 provides a descriptive distribution of demographic, anthropometric and adiposity 

traits in the JHS population. Using the standard BMI cutpoints of ≥25 and ≥30 for overweight 

and obesity respectively, the majority of participants were either overweight (31.5%) or obese 

(54.2%). The mean WC and BF% also indicate a high prevalence of excess adiposity.  

Spearman correlation of anthropometric and adiposity measures (Supplementary Table 4) 

illustrated a high degree of correlation of BMI with WC (r= 0.82), but much weaker correlation 

with WHR (r=0.16). BMI is also highly correlated with SAT (r=0.83) and BF% (r=0.70), but not 

as strongly with VAT (r=0.49).  

 

Association with Polygenicc Risk Scores 

For BF% phenotype, the BF%-PRS was found to be a significant positive predictor under all 

scenarios (β=0.023 (p=8.96×10-9), and 0.024 (p=8.24×10-9)) per increase of 1 risk allele under 

approaches 1 and 2, respectively. The BMI-PRS was found to be positively predictive of BF% in 

all scenarios (β=0.005 (p=2.19×10-3), 0.015 (p=3.00×10-15), 0.040 (p=2.41×10-12)). However, the 

PRS for WCBMIadj was only a borderline signficant predictor of BF% under approach 2 

(β=0.005(p=4.12×10-2)), and WHRBMIadj-PRS were not associated with BF% under any 

approach.  
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For the SAT phenotype, the BMI-PRS were positive predictors under all three approaches 

(β=0.004 (p=2.39×10-2), β=0.016 (p=6.49×10-11), and β=0.048 (p=2.55×10-10)); the BF%-PRS 

were also associated with SAT under the first two approaches (β=0.022 (p=3.99×10-5), and 

β=0.021 (p=2.18×10-4)). For the other two phenotypes, the association was only significant under 

approach 2 for WCBMIadj , and approach 1 for WHRBMIadj, indicative of poor predictive 

applicability of known EA central obesity associated SNPs for SAT among AA’s.   

For the VAT and VSR phenotypes, the patterns of association were even more inconsistent. 

While BMI-PRS were predictors of VAT under approach 2 and 3, but only negatively associated 

with VSR under approach 3. For WCBMIadj-PRS, the association with VAT barely reached 

nominal significance with approach 2, and with VSR under approach 3. For WHRBMIadj-PRS, the 

association with VSR was only nominally significant under approach 2, but never with VAT. 

BF%-PRS were not predictive of either VAT or VSR under any configuration.  

 

Association with Individual SNPs 

Since PRS were summary statistics of risk alleles and do not illustrate the scale and 

association of each risk allele may vary when compared to other variants, we performed separate 

multivariate regression tests with individual variants. We used 20, 10, 15, and 4 risk allele SNPs 

which were nominally significant in BMI, WCBMIadj, WHRBMIadj, and BF% GWAS results in 

JHS, to characterize individual variants’ association with BF%, SAT, VAT, and VSR ratio, 

respectively; each SNP represents an independent (funcitonal) locus within the genome. 

On the heatmap (Figure 1.), the primary clustering of adiposity pattern variables on the x-axis 

separate different types of fat. The primary clustering of the SNPs on the y-axis separate group 

of SNPs that are associated with increase in BF%, BMI, WCBMIadj, and WHRBMIadj (Figure 1A 

through 1D, respectively). A clear  majority of risk alleles associated with increased BMI and 
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BF% are positively associated with SAT and overall BF%. Among WCBMIadj-increasing alleles, 

the majority are positively associated with VAT and VSR. However, WHRBMIadj-increasing 

alleles appear to be poor predictors of adiposity type in this cohort given no discernible pattern 

(Figure 1D).  

 

Discussion 

 

In this study we characterized the associations between genetic risk scores for BMI, WCBMIadj, 

WHRBMIadj, and BF% with body fat composition phenotypes, including overall BF%, VAT, 

SAT, and VSR among AA individuals in the JHS cohort.  

Both BF%-PRS and BMI-PRS were significant and positive predictors of BF% in AA’s; this 

illustrates that similar to most BMI-linked SNPs18, most known BF% associated loci, 

predominantly observed in EA individuals20,, are likely transferrable to AA’s. Furthermore, 

BMI-associated loci have cross-phenotypic effects on body fat20; the significant association 

between BMI-PRS and BF% measures in our analysis may also be indicative of transferrability 

of similar biological mechanisms from EA’s to AA’s, though the causal SNPs at most of these 

loci are unknown.   

However, WCBMIadj and WHRBMIadj-PRS were not consistently associated with BF% in 

adjusted analyses which suggests that BF% does not assess adiposity distribution and therefore is 

unlikely to associate with SNPs for BMI-adjusted central obesity measures. Whether such a poor 

association between central obesity associated SNPs and BF% is specific to AA’s or similarly 

generalizable to other groups as well require further studies. Examination of individual  SNPs 

that exhibited nominally significant associations to BF%, BMI, WCBMIadj, and WHRBMIadj in this 

cohort (Figure 1) shows that larger proportions of BMI and BF% associated SNPs cluster with 
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BF% and subcutaneous adiposity measures. Though WCBMIadj- associated SNPs cluster with 

visceral and VSR measures, the pattern is less evident; WHRBMIadj- associated SNPs, in contrast, 

do not appreciably cluster with any of the adiposity traits.  

Significant associations between SAT measures and BMI and BF%-PRS may suggest that 

genetic and/or molecular mechanisms underpinning the variation in subcutaneous adiposity in 

AA’s are comparable to EA’s; however, similarly it is early to suggest that SAT associated loci 

in EA populations36 may likewise underpin subcutaneous fat configuration in AA’s before well-

powered GWAS for SAT in AA’s would become available.  

 Difference in patterns of visceral adiposity in AA’s37, with significantly lower levels of VAT 

in BMI-adjusted analysis is already noted13 that suggests a favorable visceral adiposity profiles 

compared to EA’s38. Due to limited availability of GWAS on VAT or VSR phenotypes36, with 

none in a well-powered AA cohort, it is therefore premature to suggest whether observed 

differences are primarily genetically driven. AA individuals with comparable visceral fat 

measures to EA’s have been shown to have higher levels of inflammation biomarkers39, which 

may strengthen the view that genetic mechanisms underpinning visceral fat variation in AA’s 

could be dissimilar to EA’s. Similar dilution has been observed for closely related phenotypes in 

some prior multi-ethnic analyses40. Larger studies in AA populations are  needed to assess these 

different propositions.   

It is the first study to examine the relationship between adiposity PRS, including BF%, 

WCBMIadj and WHRBMIadj, and adiposity traits in AA’s. This is one of relatively few available 

assessments examining if the genetic architecture underpinning adiposity traits (other than BMI) 

in AA individuals can be inferred from EA studies. In addition to increased SNP numbers used 

for PRS calculations that improved precision, utilization of several PRS with different risk set 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 1, 2020. ; https://doi.org/10.1101/2020.10.27.20220517doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.27.20220517


 

configurations made it possible to examine associations under comparative scenarios, 

minimizing potential sources of bias in estimates.  

Results of this assessment pertain only to adults. Many genetic variants associated with 

obesity traits are age-dependent41. For example, in one prior study, there was no associaiton 

between BMI-PRS and BF% in <5 years olds42; thus, extrapolation of results from this study to 

younger age categories in AA individuals may be unwarranted. This limitation is likely to be 

extended to WCBMIadj and WHRBMIadj associated SNPs since they also exhibit interaction with 

age43.  

We could not account for differential associations of dimorphic or sex-specific vairants 

because of smaller male numbers. Bioimpedance have limitations44, where the method slightly 

underestimates BF% in highly obese males 45. However, we do not expect this limitation to 

substantially bias our results since only 6% of males had BMI measures >40 in this dataset. 

Finally, the cross-sectional nature of the assessment restricts causal inferences. 

 In conclusion, these analyses illustrate that BMI and BF% associated loci initially explored in 

predominantly EA populations are generally transferrable to AAs. Our results suggest that total 

gain in fat mass in AA’s, at least for gains in fat mass mediated by genetic factors,  may be 

mostly through subcutaneous rather than visceral adiposity, but a comparable assessment in other 

populations, including Europeans, would be required to make firm conclusions. Absence of 

association between anthropometric PRS, particularly WCBMIadj and WHRBMIadj, and adiposity 

traits may imply that the latter phenotypic measure are likely driven by genetic variants which 

influence overall adiposity versus central obesity.  
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Table 1. Baseline characteristics of the study participants.  

Variable Total (N=2420) 
Male, N. (%), Unit 892(36.9%), N 
AGE, Mean (SD), Unit 60.0(12.4), Year 
BMI, Mean (SD), Unit 32.2(7.2), Kg/m2 

BMI Categories  
Underweight, N. (%) 26(1.1%) 
Normal Weight, N. (%) 244(10.1%) 
Overweight, N. (%) 762(31.5%) 
Obese, N. (%) 1312(54.2%) 
Missing, N. (%) 76(3.1%) 

Hip Circumference, Mean (SD), Unit 114.7(14.9), cm 
Waist Circumference, Mean (SD), Unit 102.9(16.2), cm 
Waist/Hip, Mean (SD), Unit 89.8(8.8), ratio×100 
Adiposity Composition   

Fat Mass, Mean (SD), Unit 76.3(33.5), kg 
VAT, Mean (SD), Unit 839.4(383.1), cm3 

SAT, Mean (SD), Unit 2335.8(1014.7), cm3 
Body Fat Mass, % 38.2(9.9), Fat/Total Body Mass × 100 

VAT: Visceral Adipose Tissue, SAT: Subcutaneous Adipose Tissue 
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Table 2. Associations between phenotype-PRS (columns), and measures of adiposity (rows). 
Betas are reported for standardized inverse normalized values, followed by their respective p-
values. Nominally statistically significant results (p<5.00×10-2) are in bold font.  

Phenotype-
PRS/Adiposity 
trait 

BF% 
β (p-value) 
 (95%CI) 

SAT 
β (p-value) 
 (95%CI) 

VAT 
β (p-value)  
(95%CI) 

VAT: SAT R. 
β (p-value)  
(95%CI)  

PRS 
calculation 
approach 

WHR 

-0.001 (6.55×10-1) 
(0.003, -0.003)  

-0.004 (3.79×10-2, 
 (-0.01, -0.0002) 

-0.001 (5.71×10-1) 
(-0.006, 0.004) 

0.002 (2.57×10-1) 
(-0.001, 0.007) Approach 1 

0.002 (4.09×10-1) 
(-0.003, 0.006) 

-0.006 (5.71×10-2) 
(-0.011, 0.0002) 

0.003 (3.82×10-1) 
(-0.004, 0.009) 

0.006 (1.03×10-2) 
(0.002, 0.012) 

Approach 2 

-0.001 (8.70×10-1) 
(-0.008, 0.020) 

-0.015 (1.30×10-1) 
(-0.029, 0.008) 

0.012 (3.02×10-1) 
(-0.017, 0.025) 

0.009 (2.88×10-1) 
(-0.002, 0.027) Approach 3 

WC 

0.002 (2.16×10-1) 
(-0.002, 0.006) 

0.003 (2.39×10-1) 
(-0.002, 0.008) 

0.001 (6.70×10-1) 
(-0.004, 0.007) 

-0.001 (6.84×10-1) 
(-0.005, 0.004) 

Approach 1 

0.005 (4.12×10-2) 
(0.001, 0.011) 

0.007 (2.11×10-2) 
(0.002, 0.015) 

0.007 (4.46×10-2) 
(0.00, 0.014) 

0.0005 (8.74×10-1) 
(-0.006, 0.006) 

Approach 2 

0.005 (5.98×10-1) 
(-0.009, 0.027) 

-0.004 (6.99×10-1) 
(-0.021, 0.029) 

0.019 (1.48×10-1) 
(-0.004, 0.060) 

0.024 (2.79×10-2) 
(0.000, 0.046) 

Approach 3 

BMI 

0.005 (2.19×10-3) 
(0.002, 0.008) 

0.004 (2.39×10-2) 
(0.001, 0.009) 

0.001 (5.21×10-1) 
(-0.003, 0.006) 

-0.002 (2.23×10-1) 
(-0.006, 0.001) 

Approach 1 

0.015 (3.00×10-15) 
(0.011, 0.018) 

0.016 (6.49×10-11) 
(0.011, 0.021) 

0.011 (5.72×10-5) 
(0.006, 0.017) 

-0.004 (6.95×10-2) 
(-0.008, 0.001) 

Approach 2 

0.040 (2.41×10-12) 
(0.025, 0.047) 

0.048 (2.55×10-10) 
(0.026, 0.057) 

0.028 (9.71×10-5) 
(0.014, 0.049) 

-0.016 (2.59×10-2) 
(-0.019, 0.00) 

Approach 3 

BF% 

0.023 (8.96×10-9) 
 (0.015, 0.031) 

0.022 (3.99×10-5) 
(0.010, 0.032) 

0.011 (5.64×10-2) 
 (-0.003, 0.021) 

-0.001 (2.67×10-2) 
 (-0.021, -0.001) 

Approach 1 

0.024 (8.24×10-9) 
(0.015, 0.032) 

0.021 (2.18×10-4) 
(0.009, 0.031) 

0.001 (1.15×10-1) 
(-0.003, 0.022) 

-0.010 (5.06×10-2) 
(-0.021, 0.0002) 

Approach 2 

-0.005(8.64×10-1) 
(-0.062, 0.052) 

0.027 (1.15×10-1) 
(-0.051, 0.101) 

0.010 (6.25×10-1) 
(-0.104, 0.067) 

-0.018 (2.47×10-1) 
(-0.125, 0.016) 

Approach 3 

WHR: Waist to Hip Ratio, WC: Waist Circumference, BF%: Body Fat Percentage, SAT: Subcutaneous Adipose 
Tissue, VAT: Visceral Adipose Tissue, VAT/SAT R.: VAT to SAT Ratio, β: effect size (change in z-score per 
increase in number of risk alleles)  
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Figure 1. Heatmap plot of association between top phenotype-linked SNPs (represented by phenotype increasing alleles), and adiposity traits. 

These SNPs were used for PRS calculation under approach 3 and represent polymorphisms with evidence of directionally consistent and 

statistically significant associations with their respective traits in JHS-genome wide assessment.  

 

Abbreviations: WHR: Waist to Hip Ratio, WC: Waist Circumference, BF%: Body Fat Percentage, SAT: Subcutaneous Adipose Tissue, VAT: Visceral Adipose Tissue, 

VSR: VAT to SAT Ratio.  
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