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ABSTRACT 40 

Background: The Human Leukocyte Antigen (HLA) gene locus plays a fundamental 41 

role in human immunity, and it is established that certain HLA alleles are disease 42 

determinants.  43 

Methods: By combining the predictive power of multiple in silico HLA predictors, we 44 

have previously identified prevalent HLA class I and class II alleles, including 45 

DPA1*02:02, in two small cohorts at the COVID-19 pandemic onset. Since then, newer 46 

and larger patient cohorts with controls and associated demographic and clinical data 47 

have been deposited in public repositories. Here, we report on HLA-I and HLA-II alleles, 48 

along with their associated risk significance in one such cohort of 126 patients, including 49 

COVID-19 positive (n=100) and negative patients (n=26).  50 

Results: We recapitulate an enrichment of DPA1*02:02 in the COVID-19 positive 51 

cohort (29%) when compared to the COVID-negative control group (Fisher’s exact test 52 

[FET] p=0.0174). Having this allele, however, does not appear to put this cohort’s 53 

patients at an increased risk of hospitalization. Inspection of COVID-19 disease severity 54 

outcomes reveal nominally significant risk associations with A*11:01 (FET p=0.0078), 55 

C*04:01 (FET p=0.0087) and DQA1*01:02 (FET p=0.0121).  56 

Conclusions: While enrichment of these alleles falls below statistical significance after 57 

Bonferroni correction, COVID-19 patients with the latter three alleles tend to fare worse 58 

overall. This is especially evident for patients with C*04:01, where disease prognosis 59 

measured by mechanical ventilation-free days was statistically significant after multiple 60 

hypothesis correction (Bonferroni p = 0.0023), and may hold potential clinical value.  61 
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 3 

INTRODUCTION 62 

 63 

Modern history has been plagued by deadly outbreaks, from the recurring influenza 64 

(e.g. Spanish, Asian, Hong Kong, Avian) and HIV/AIDS viral pandemics, to bacterial 65 

and protist infections causing tuberculosis and malaria. Since the early 2000s, we have 66 

faced another threat: novel coronavirus infections causing severe respiratory illnesses 67 

such as SARS, MERS and today, coronavirus disease 2019 − COVID-19 [1]. The 68 

SARS-CoV-2 coronavirus responsible for the COVID-19 respiratory disease is of 69 

particular concern; not only does SARS-CoV-2 spread quickly, the symptoms of its 70 

infection, when exhibited, are very similar to that of the cold and flu making it difficult to 71 

diagnose, trace and contain. Further, infected individuals are affected differently. For 72 

instance, older men (≥65 years old) with pre-existing medical conditions, such as 73 

diabetes, appear at increased risk of progressing into the more severe phase of the 74 

disease, yet SARS-CoV-2 infections affect all other age groups evenly except 75 

occasionally in children and adolescents [2]. Most peculiar is that a high proportion of 76 

individuals who tested positive for SARS-CoV-2 are asymptomatic – as high as 43% 77 

recorded in Iceland, a rate that appears to vary depending on jurisdictions and 78 

populations [3-5]. As of now, the disparity in patient response to SARS-CoV-2 infection 79 

is still eluding us.  80 

The most efficient way to combat pathogens has been through the use of our 81 

own defense mechanism: our acquired immunity. This is done by vaccination 82 

campaigns that effectively prime our immune systems at the population level before we 83 

even encounter pathogens. But design of effective vaccines must consider interactions 84 
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with host immune genes. The Human Leukocyte Antigens (HLA) are a group of such 85 

genes encoding surface receptors that bind short peptide epitopes derived from 86 

endogenous (class I) or exogenous (class II) antigens, including viral antigens, and they 87 

facilitate killer or helper T cells to set off an appropriate immune response. The 88 

magnitude of this response varies between patients as populations and individuals have 89 

different composition of HLA genes and variable T cell repertoires. As such, HLA 90 

induces a bias, which is responsible for documented host susceptibility to disease [6]. 91 

Some of the notable associations between HLA and disease are observed in AIDS 92 

patients, with certain HLA alleles conferring protection [7]. In other cases, HLA has been 93 

implicated with autoimmune diseases and diabetes [8-11]. The exact underlying 94 

mechanisms behind these associations are unclear, but there is mounting evidence that 95 

bacterial and viral infection may be the trigger for some [10] and that HLA plays a critical 96 

role in the viral infection cycle, including viral entry into host cells [12].   97 

Since the beginning of the pandemic, worldwide reports have emerged on HLA 98 

associations with COVID-19, including our own [13-19]. Using publicly available 99 

metatranscriptomic sequencing data made available at the pandemic onset, we had 100 

demonstrated the utility of a high throughput in silico method for characterizing the HLA 101 

types of COVID-19 patients from bronchoalveolar lavage fluid and blood samples and 102 

reported on prevalent alleles, including the DPA1*02:02P - DPB1*05:01P HLA-II 103 

haplotype observed in 7 out of the 8 of patients from two small cohorts. Here, using 104 

public RNA-seq sequencing data from a larger COVID-19 patient cohort with clinical 105 

outcomes and demographics data [20], we report on HLA alleles with potential 106 

diagnostic (DPA1*02:02) and prognostic (A*11:01 and C*04:01) value in 126 107 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 31, 2020. ; https://doi.org/10.1101/2020.10.27.20220863doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.27.20220863
http://creativecommons.org/licenses/by/4.0/


 5 

hospitalized patients with (n=100) and without (n=26) COVID-19 and present our 108 

findings in light of available demographic characteristics using hospitalization and 109 

disease severity metrics.  110 
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METHODS 111 
 112 

We downloaded Illumina NOVASEQ-6000 paired-end (50 bp) RNA-Seq reads from 113 

libraries prepared from the blood samples of 126 hospitalized patients, with (n=100) or 114 

without COVID-19 (n=26) (ENA project: PRJNA660067, accessions: SRX9033799-115 

SRX9033924). This data is part of a large-scale multi omics study from the Department 116 

of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA, with 117 

aims to analyze COVID-19 Severity and clinical as well as demographics data was 118 

made available by the study authors [20] (GEO accession GSE157103). On each 119 

patient RNA-Seq dataset, we ran HLA prediction software OptiType [21] (v1.3.4), 120 

seq2HLA [22] (v2.3), and HLAminer [23] (v1.4 targeted assembly mode with defaults) 121 

as described [19]. We tallied HLA class I (HLA-I) and class II (HLA-II, supported by 122 

Seq2HLA and HLAminer only) allele predictions and for each patient we report the most 123 

likely HLA allele (4-digit resolution), indicating HLA predictor tool support (Additional 124 

file 1, tables S1 and S2).  125 

Looking at class I and II alleles predicted in 10% or more of COVID-19 positive 126 

patients (class I, n=17; class II, n=11) we calculated Fisher’s Exact Test (FET), first 127 

testing for enrichment in COVID-19 positive vs. negative patients (R function fisher.test, 128 

alternative = "greater"). For those same alleles (found in ≥10% patients) and inspecting 129 

only the COVID-19 positive cohort, we tested for the probability of patient 130 

hospitalization, as measured by the Intensive Care Unit (ICU) metric reported by the 131 

original study authors, using FET. We looked further into the risk of hospitalization in 132 

COVID-19 patients with vs. without these alleles using the Kaplan-Meier (KM) estimator 133 

(R library survival), plotting the probability of remission using the “hospital-free days 134 
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post 45 day followup (days)” (HFD-45) metric reported by the study author as a proxy 135 

for disease severity, with lower HFD-45 numbers indicating worse outcomes. Similarly, 136 

we ran the KM estimator using another metric of disease severity, “ventilator-free days”, 137 

which captures the most severe cases with COVID-19 patients suffering respiratory 138 

deterioration and requiring mechanical ventilation.  On each set we calculated the log-139 

rank p-value (R library survminer) and corrected for multiple hypothesis testing 140 

(Bonferroni correction) using the number and patient abundance rank of class I (n=17) 141 

or class II (n=11) HLA alleles observed in 10% or more of COVID-19 patients. We also 142 

inspected the combined influence of HLA alleles and patient demographics data (age, 143 

sex, ethnicity) on the hospitalization (ICU negative vs. positive) outcomes of COVID-19 144 

patients, using odds-ratio calculations (R function fisher.test, and applying Haldane 145 

correction [24] on zero values, when necessary).  146 
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 8 

RESULTS 147 
 148 

We collated the HLA class I and class II predictions of three in silico HLA predictors 149 

derived from the RNA-seq samples of a recent [20] COVID-19 positive patient cohort 150 

(n=100) with control patients (n=26) who tested negative for COVID-19 (Additional file 151 

1, Tables S1 and S2). Due to the limiting short read length (paired 50 bp) we chose to 152 

first report on OptiType [21] and seq2HLA [22] class I and class II predictions, and count 153 

the additional allele support from seq2HLA and HLAminer [23]. In all, we identify 17 and 154 

11 HLA class I and class II alleles predicted in 10% or more of COVID-19 patients, 155 

respectively (Tables 1 and 2). There were many more alleles predicted (133 class I and 156 

101 class II in the COVID-19 positive cohort), but too few patients are represented at 157 

lower cut-offs to compute meaningful statistics. First, we looked at the statistical 158 

enrichment (Fisher’s Exact Test - FET) of each allele in the COVID-19 positive set, 159 

compared to the COVID-19 negative control group. We find HLA-I A*30:02 and HLA-II 160 

DPA1*02:02 allele enrichments nominally significant (FET p = 0.0417 and p = 0.0174) 161 

at the 5% level (Tables 1 and 2). However, when Bonferroni correction is applied for 162 

the number of HLA class I allele tests or when the abundance rank is factored in for 163 

A*30:02, the test is not significant (n=17, Bonferroni p = 0.7080; n=10, Bonferroni p = 164 

0.4165, respectively). For HLA-II DPA1*02:02, Bonferroni correction finds the test 165 

insignificant at the a=0.05 level for the number of hypothesis, but significant for the 166 

allele abundance rank (n=11, Bonferroni p = 0.1916; n=2, Bonferroni p = 0.0348). 167 

 COVID-19 positive patients could be further stratified into those who were 168 

hospitalized and admitted to the Intensive Care Unit (Tables I and 2, ICU+), and those 169 

who were not (Tables 1 and 2, ICU-). When computing FET statistics, we find HLA-I 170 
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A*11:01 and C*04:01 and HLA-II DQA1*01:02 significant at the a=0.05 level (Tables 1 171 

and 2; p = 0.0078, p = 0.0087 and 0.0121, respectively) but none remain significant 172 

after Bonferroni correction. The Overmyer study authors [20] reported important disease 173 

severity metrics (HFD-45 and days without needing mechanical ventilation), which we 174 

used to assess the remission probability of COVID-19 patients having a specific allele 175 

using Kaplan-Meier estimation. We find patients of the Overmyer cohort with either 176 

A*11:01 (Figure1a), C*04:01 (Figure 1b) or DQA1*01:02 (Figure 1c) to be at a 177 

significant increased risk of hospitalization (log-rank p = 0.0099, p = 0.0082 and p = 178 

0.0097). When applying multiple test corrections to account for allele abundance rank, 179 

only C*04:01 (n=5, Bonferroni p = 0.0410) and DQA1*01:02 (n=2, Bonferroni p = 180 

0.0194) remained significant at the a=0.05 level. When looking at patients needing 181 

mechanical ventilators, a severe outcome in COVID-19 disease progression, we only 182 

find patients with C*04:01 to be at a statistically significant increased risk (Figure 1d, 183 

log-rank p = 0.0019). Multiple hypothesis test correction retains the statistical 184 

significance of this allele when factoring both the number of HLA-I alleles tested and 185 

C*04:01 abundance rank (n=17, Bonferroni p = 0.0023; n=5, Bonferroni p = 0.0095). 186 

Looking at the influence of the aforementioned alleles in combination with simple 187 

demographics (sex, age and ethnicity), we find that of the Overmyer cohort patients with 188 

the DPA1*02:02 allele, those with a white ethnic background and females appear at an 189 

increased risk of testing positive for COVID-19 (Figure 2; odds ratio [OR] = 6.33 [5.33–190 

7.34], FET p = 0.0491 and OR = 7.33 [6.18-8.48], FET p = 0.0326, respectively). The 191 

association with gender is also observed in alleles A*11:01, C*04:01 and DQA1:01:02, 192 

putting female COVID-19 patients of this cohort at an increased risk of hospitalization 193 
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for the class I alleles (Figure 2; OR = 12.09 [10.41-13.76], FET p = 0.0105 for both) and 194 

male COVID-19 patients at increased risk for DQA1*02:02 (Figure 2; OR = 2.74 [2.69-195 

2.79], FET p = 0.0481). For patients with the latter HLA-II allele, minorities and younger 196 

individuals (<65 years old) are also more at risk of hospitalization (Figure 2; OR = 4.08 197 

[2.85-5.32], FET p = 0.0222 and OR = 3.62 [2.42-4.83], FET p = 0.0240, respectively). 198 

In this cohort, we also find patients with A*11:01 in the younger age group (<65 years 199 

old) at increased risk of hospitalization (Figure 2; OR = 9.54 [8.14-10.94], FET p = 200 

0.0184) whereas for those with C*04:01, it appears a white ethnic background and a 201 

more advanced age (≥65 years old) may be predisposing to ICU hospitalization (Figure 202 

2; OR = 14.25 [12.24-16.26], FET p = 0.0053 and OR = 9.66 [8.27-11.05], FET p = 203 

0.0188, respectively).  204 
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DISCUSSION 205 

 206 

We have previously identified the DPA1*02:02 class II allele as being prevalent in two 207 

other and independent cohorts, with patients of undisclosed ethnic background, but 208 

hospitalized in Wuhan, China [19]. Of populations with reported allele frequencies and 209 

an appreciable sampling size (≥100 individuals), only Hong Kong Chinese and 210 

Japanese have DPA1*02:02 allele frequencies (55.8% and 43.5%, respectively; [25,26]) 211 

above its observed frequency (29.0%) in the COVID-19 positive cohort analyzed herein. 212 

The frequency of this allele in other qualifying populations tends to be generally lower, 213 

including in South African (Worcester, 15.6%), Norwegians (14.0%), Mexico Chiapas 214 

Lacandon Mayans (6.7%), United Kingdom Europeans (4.3%) and Spain Navarre 215 

Basques (2.2%). We note that the ethnic background of the Overmyer et al [20] cohort 216 

is heterogeneous, and white individuals (of unknown ancestry) represent 45.1% and 217 

(11/29) 37.9% of the COVID-19 positive cohort and its DPA1*02:02 subset, 218 

respectively. In contrast, Asians represent only a minority of the cohort (1.9%) and 219 

DPA1*02:02 subset (1/29~3.4%). It is important to note that, in the Overmyer cohort, 220 

DPA1*02:02 is not statistically associated with increased risk of hospitalization. The 221 

significant enrichment of this allele in the COVID-19 positive vs. negative cohorts (FET 222 

p= 0.0174) across all individuals, but also when looking only at females (FET p= 0.0326) 223 

or white individuals (FET p= 0.0491), and not any other demographics, may prove an 224 

important disease marker, which would need to be validated with additional datasets 225 

and in independent studies. 226 
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There are reports of disease associations with DPA1*02:02, DQA1*01:02, 227 

C*04:01 and A*11:01, but they are few. Of note, the association of all aforementioned 228 

alleles with narcolepsy [10,11] and a known trigger for this auto-immune disease 229 

includes upper-airway infections and influenza vaccinations [27-32]. Susceptibility to 230 

narcolepsy may in fact be an indirect effect of HLA class I and the HLA class II DP 231 

isotype in response to viral and bacterial infections, including from influenza and 232 

streptococcus [10,27,33,34]. It has since been reported that HLA-A*11 may be a 233 

susceptibility allele to influenza A(H1N1)pdm09 infection in some populations [35] while 234 

another report implicates HLA-I allele C*04:01 with high HIV viral loads [36]. Further, it 235 

was recently demonstrated that MHC class II DR, DQ and DP isotypes play a role in 236 

mediating the cross-species entry of bat influenza viruses in vitro in human/animal cell 237 

lines and in mice where engineered MHC-II deficiency made them resistant to upper-238 

respiratory tract infections [12]. It is therefore not a stretch to envision an involvement 239 

from these HLA class II isotypes in controlling the cellular entry of a broader range of 240 

viral agents in vivo.  241 

 In a recent study examining HLA susceptibility based on SARS-CoV-2 derived 242 

peptide (epitope) binding strengths [37], the HLA-I allele A*11:01 was in silico predicted 243 

to bind a large number of SARS-CoV-2 derived peptides (n=750) with varying affinity 244 

[IC50 range 4.95 – 498.19, median = 149.62, mean = 182.28], and has been 245 

experimentally validated to bind SARS-CoV-2 peptide GLMWLSYFV (Tables S4 and S7 246 

in Nguyen et al. [37]). In contrast, C*04:01 was only predicted in silico to bind six SARS-247 

CoV-2 peptides and at higher IC50 ranges [167.65 – 469.30, median = 291.06, mean = 248 
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299.01] (Table S7 in Nguyen et al. [37]) suggesting a more limited ability to present 249 

epitopes to T cells and mount an appropriate immune response.  250 

There have been a number of reports published on HLA alleles − COVID-19 251 

associations this past year, and on cohorts from many jurisdictions including China [18], 252 

Italy [13,14,16] and the UK [17]. Wang et al. [18] compared the HLA allele frequencies 253 

between a cohort of 82 Chinese individuals and a control population of bone marrow 254 

donors previously studied by the same group. Novelli and co-workers [14] HLA typed a 255 

cohort of 99 Italian COVID-19 patients, and associated the observed allele frequencies 256 

with the HLA types in a reference group of 1,017 Italian individuals also previously 257 

studied by the same group. Correale et al. [13] and Pisanti et al. [16] followed a different 258 

strategy; these two independent studies leveraged population scale genomics data 259 

retrieved from the Italian Bone-Marrow Donors Registry and the National Civil 260 

Protection Department. They correlated background HLA allele frequency data with 261 

mortality and morbidity rates across Italy to reach at starkly different conclusions on 262 

which HLA alleles may play a role in disease etiology and progression. Disagreement 263 

between these two studies (also distinct from the results of the other Italian study by 264 

Novelli et al.) highlight the importance of large cohorts with matched samples to infer 265 

the patient HLA alleles with better statistical significance. Poulton et al. [17] 266 

characterized the HLA types of 80 COVID-19 patients in the UK on waiting lists for 267 

transplantation, and compared observed allele frequencies in comparison to a cohort of 268 

10,000 deceased organ donors and a separate cohort of 308 SARS-CoV-2-negative 269 

individuals also on waiting lists for transplantation, the latter representing a matched 270 

demographics for the COVID-19 patients in their cohort. Interestingly, this is the only 271 
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study that had any overlap between the alleles they flagged as being statistically 272 

significant and the lists published by other studies cited above. Not surprisingly, the 273 

alleles they listed do not intersect with the alleles identified and presented herein and 274 

the three alleles we published earlier on a very small group of only eight patients. It is 275 

nonetheless intriguing to find little to no HLA allele overlap between these reports, 276 

including with those associated with the 2003 SARS outbreak, a related respiratory 277 

disease caused by coronavirus [15,38,39]. This could be explained, at least partially, by 278 

geographical differences and varying population allele frequencies in those cohorts, 279 

relatively small cohort sizes (<100 patients), differences in experimentation setup and/or 280 

other factors, including comorbidity status, that may be acting independently of HLA.  281 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 31, 2020. ; https://doi.org/10.1101/2020.10.27.20220863doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.27.20220863
http://creativecommons.org/licenses/by/4.0/


 15 

CONCLUSIONS 282 

 283 

Here, we predict HLA-I and HLA-II alleles from publicly available COVID-19 patient 284 

blood RNA-seq samples and identified several putative biomarkers. In a previous study, 285 

we had observed one of these biomarkers (DPA1*02:02), and we postulate that patients 286 

with the allele may have an increased susceptibility for COVID-19. Further, other alleles 287 

(A11*01, C*04:01, DQA1*01:02) may be prognostic indicators of poor outcome. 288 

However, although it is well established that patient HLA profiles play a significant role 289 

in the onset and progression of infectious diseases in general, we caution against 290 

drawing overreaching conclusions from regional, and often limited, observations. We 291 

note that recently published studies associating HLA alleles and COVID-19, by and 292 

large, disagree in their findings. We expect future studies with larger cohort sizes will 293 

help bring a clearer picture of the role of patient HLA profiles, if any, in COVID-19 294 

susceptibility and disease outcomes.  295 
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LIST OF ABBREVIATIONS 296 
 297 
 298 
FET: Fisher’s Exact Test; HFD-45: hospital-free days post 45 day followup (days); HLA: 299 
human leukocyte antigen; ICU: Intensive Care Unit; KM: Kaplan-Meier  300 
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TABLES 478 

 479 

Table 1. HLA-I alleles identified in 10% or more COVID-19 positive patients and 480 

statistical tests of enrichment in the Overmyer et al. [20] COVID-19 positive (vs. 481 

negative) cohort and association with hospitalization. Red font indicates significant 482 

associations (Fisher’s Exact Test) not corrected for multiple hypothesis tests. 483 

 484 

 485 

  486 

HLA-I  COVID+ 
patients 

ICU- 
patients 

ICU+ 
patients 

COVID- 
patients 

H1:  
Enriched in 

COVID+ 
Fisher’s 

Exact Test 
p-value 

H1:  
Increased risk of 

hospitalization 
Fisher’s Exact 

Test p-value 

A*02:01 30 15 15 12 0.9614 0.5862 
A*24:02 23 12 11 6 0.6161 0.5000 
C*07:02 22 9 13 7 0.7890 0.8865 
C*07:01 18 6 12 7 0.8991 0.9668 
C*04:01 18 4 14 3 0.3231 0.0087 
C*06:02 16 8 8 6 0.8708 0.6071 
B*51:01 16 6 10 2 0.2292 0.9143 
C*03:04 14 4 10 3 0.5171 0.9796 
C*15:02 14 6 8 1 0.1363 0.8060 
A*01:01 13 5 8 7 0.9742 0.8832 
A*03:01 13 7 6 5 0.8680 0.5000 
A*30:02 13 7 6 0 0.0417 0.5000 
B*07:02 12 5 7 5 0.8969 0.8217 
A*30:01 12 8 4 1 0.2016 0.1783 
B*44:02 11 4 7 4 0.8320 0.9001 
A*68:01 11 5 6 0 0.0697 0.7377 
A*11:01 10 1 9 2 0.5320 0.0078 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 31, 2020. ; https://doi.org/10.1101/2020.10.27.20220863doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.27.20220863
http://creativecommons.org/licenses/by/4.0/


 26 

Table 2. HLA-II alleles identified in 10% or more COVID-19 positive patients and 487 

statistical tests of enrichment in the Overmyer et al. [20] COVID-19 positive (vs. 488 

negative) cohort and association with hospitalization. Red font indicates significant 489 

associations (Fisher’s Exact Test) not corrected for multiple hypothesis tests. 490 

 491 

 492 

  493 

HLA-II COVID+ 
patients 

ICU- 
patients 

ICU+ 
patients 

COVID- 
patients 

H1:  
Enriched in 

COVID+ 
Fisher’s Exact 

Test p-value 

H1:  
Increased risk of 

hospitalization 
Fisher’s Exact 

Test p-value 
DPA1*01:03 46 21 25 17 0.9812 0.8421 
DQA1*01:02 40 26 14 10 0.5363 0.0121 
DPB1*04:01 22 9 13 10 0.9726 0.8865 
DPA1*02:02 29 16 13 2 0.0174 0.3299 
DPA1*02:01 22 11 11 6 0.6578 0.5952 
DQA1*05:02 19 9 10 3 0.2824 0.6945 
DPB1*01:01 19 10 9 3 0.2824 0.5000 
DQB1*06:11 11 6 5 3 0.6811 0.5000 
DRB1*13:01 10 7 3 4 0.8689 0.1589 
DQB1*06:02 10 6 4 3 0.7348 0.3703 
DRB1*15:01 10 4 6 2 0.5320 0.8411 
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FIGURES 494 

 495 

Figure 1. HLA alleles associated with higher risk of hospitalization in a COVID-19 496 

positive patient cohort. COVID-19 positive patients were split into two groups per 497 

allele tested, depending on whether they were predicted to have the HLA allele under 498 

scrutiny or not. We ran the Kaplan-Meier estimator (R package survival) using the 499 

Overmyer et al. cohort [20] HFD-45 metric for estimating the remission probability of 500 

patients without or with alleles (a) A*11:01, (b) C*04:01 or (c) DQA1*01:02 and 501 

mechanical ventilator-free days to estimate the statistical significance of the more 502 

severe disease outcome observed in COVID-19 patients with (d) C*04:01. Log-rank p 503 

values were calculated for each (R package survminer) and are indicated on the plots.  504 
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 505 

Figure 2. HLA alleles – demographics combinations with diagnostic (bottom) or 506 

prognostic (top) potential in a COVID-19 cohort. We calculated the odds ratio (OR) 507 

for each HLA-I and HLA-II alleles observed in 10% or more of patients, and plotted OR 508 

and the influence of demographics for HLA alleles showing significant associations 509 

(from Tables 1 and 2). First, looking at the influence of demographic characteristics 510 

such as sex (male/female), age (65 years old or above/less than 65 years old) and 511 

ethnicity (minority/white ethnic background) on the susceptibility of patients with these 512 

alleles to test positive for COVID-19 (lower two panels), and on the risk associated with 513 

ICU hospitalization (upper three panels). Red asterisks indicate significant demographic 514 

characteristics (Fisher’s Exact Test) not corrected for multiple hypothesis tests.  515 
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