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Abstract

Malaria is a life-threatening disease which has caused enormous public health challenge.
A mathematical model describing the dynamics of malaria between the human and vector
population is formulated to understand the important parameters in the transmission and
develop effective prevention and control strategies. We analysed the model and found that the
model has a disease-free equilibrium (DFE) which is locally and globally asymptotically stable
if the effective reproduction number can be brought below unity. Our model shows that the
infectivity of mildly infected children and adults amplifies the disease burden in a population.
It was shown that the model does not undergo the phenomenon of backward bifurcation
so long as the recovered children and adults do not lose their acquired immunity and if
the infection of mildly infected adult is not high enough to infect susceptible mosquitoes.
However, control strategies involving mosquito reduction through high rate of application
of insecticide will serve as an effective malaria control strategy. It is further shown that
whenever the effective reproduction number is greater than unity the model has a unique
endemic equilibrium which is globally stable for the case when there is loss of acquired
immunity in children and adults. Numerical simulations show that the presence of all the
control strategies is more effective in preventing mild malaria cases in adult and children as
compared to severe malaria cases in adult and children.
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1 Introduction

Malaria poses a substantial public health problem with about 228 million cases worldwide and
405,000 deaths globally [1]. Majority of this malaria burden up to 93% occur in Africa of which 85%
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is within the sub-Saharan Africa, of which Nigeria bears 25% of this burden. Hence, the country
with the highest malaria burden [1]. Children under 5 years of age are the most affected and an
increasing re-emergence of some severe clinical manifestation in adults is likely [1-3]. Malaria is a
life-threatening disease that is transmitted through the bites of infected female anopheles mosquito
(vector). After entering a human, the parasites transform through a complicated life-cycle in the
liver and bloodstream. A stage in the life cycle developed into gametocytes, which spreads through
a susceptible mosquito that bites the infectious human [3]. After approximately 10 to 15 days the
mosquito takes her next blood meal and can infect a new person. After a human gets bitten, the
symptoms appear in about 9-14 days. Clinical symptoms such as fever, pain, chills and sweats may
develop a few days after infected mosquito bites. The infection can lead to serious complications
affecting the brain, lungs, kidneys and other organs [3-5]. Since malaria increases morbidity and
mortality, it continues to inflict major public health and socioeconomic burdens in developing
countries. Malaria control even in countries with relatively low malaria endemicity proves to be
a significant challenge. The complexity of the disease control process, the cost of the control
programme and resistance of the parasite to anti-malarial drugs, and vectors to insecticides, are
some of the challenges [3, 4, 6]. The rate of acquisition of immunity to severe malaria depends on
age distribution of humans and the level of exposure to infections [7, 8]. Recently, the international
community has increased its focus on eradicating malaria burden worldwide [1].

The battle towards the eradication and or control of malaria would have to take a collabo-
rative approach to be achieved. Partly involving the role of mathematicians and their modelling
approach in studying the dynamics of malaria, giving an insight into the interaction between the
host and vector population and how to control its transmission. This is a collaborative work aimed
at constructing a vector-borne compartmental model in a heterogeneous population incorporating
mosquito reduction strategy, personal protection strategy, vaccination as control strategies and
immune compartments in both children and adult population. This work considers all of these
control strategies, which were not completely captured in previous report [8—10].

2 Model Formulation

A mathematical model for endemic malaria is formulated in a heterogeneous population with
two human populations consisting of adults and children. The vector (mosquito) population is
considered in this work where N4(t), N¢(t) and Ny (t) denote the total number of adults, children
and vectors at time ¢, respectively. As specified in (Table 2.1), the total population of human and
vectors is divided into the following mutually exclusive epidemiological classes, namely, suscepti-
ble adults (S4(t)), adults with asymptomatic malaria (E4(t)), adults with malaria at mild stage
(Iap(t)), adults with severe malaria (I45(t)), adults treated of malaria (R4(t)), immune adults
(R(t)), susceptible children (S¢(t)), children with asymptomatic malaria (E¢(t)), children with
mild malaria (Icp(t)),children with severe malaria (Iog(t)),children treated of malaria (R¢a(t)),
immune children (Q(t)), susceptible vectors (Sy(t)), vectors with parasite at latent stage(Ey (1)),
vectors with parasite([y (t)), Hence, we have that in,
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Na(t) = Sa(t) + Ea(t) + Lans(t) + Las(t) + Ra(t) + R(t)
Nec(t) = Sc(t) + Ec(t) + Lom(t) + Ies(t) + Re(t) + Q(1)
Np(t) = Na(t) + No(t)

Ny (t) = Sv(t) + Ev(t) + Iv(t)

Figure A: Flow diagram of malaria model

Susceptible adults contact malaria with disease force of infection rate
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Susceptible children contact malaria at a rate
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Susceptible vectors acquire the gametocytes from infected humans at a rate
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Susceptible children and adults are recruited at rates A¢, A4 while the susceptible mosquitoes are
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recruited at a rate Ay (Table 2.1). Also, susceptible adults and children are vaccinated at rates
Y4, Yo respectively. We assume that fraction ¢4, ¢¢ of adults and children with asymptomatic
malaria progress to the mild stage of infection (at rates 74, yo respectively) while remaining frac-
tion 1 — ¢4, 1 — ¢, of adults and children progress to the severe stage of infection (at rates v, yo
).

Let 84, Bc, By represent transmission probability per contact for adults, children and susceptible
mosquitoes. Infected adults at mild and severe stages of infection progress to class of recovered
adults at rates o4, T4 respectively, while infected children at mild and severe stages of infection
progress to class or recovered children at rates, oo, 7¢ respectively.

The parameters d4as, 045, 0o, 0cs , represent the disease induced death rates for adults and
children at mild and severe stage respectively. dy represent the death rate of mosquitoes from in-
secticide. The parameters 6 represent the fraction of recovered adults who develop immunity after
recovery while 1 — 6 represent the remaining fraction of recovered adults who become susceptible
after treatment. by is the mosquito biting rate while ¢ is the rate of insecticide treated nets (ITN)
compliance, w represent the rate at which recovered adults revert to either the immune or sus-
ceptible adult class while we is the rate at which recovered children revert to susceptible children
class. Vectors at latent stage become infectious at the rate vy . The parameters 14, nc represent
the infectivity modification parameters in adults and children. 7 is a modification parameter that
indicates that children exposure rate is different from that of adults. That is, children protected
from mosquito bites are less likely to get malaria infections. We assume that the infection in the
mild classes might not be high enough to infect susceptible mosquitoes or is at the same level as
the infectious individual giving 0 < ng,ma < 1.
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The model equations are given below

Sa=Ax— (Ya+p1a)Sa — AaSa+ (1 —O)wR4 + aSe
Ex=MaSa— (ya+ pa)Ea

Lane = YadaEa — (04 + Sanr + xa + pa)Lan

Ias = (1= ¢a)yaBa+ xalar — (T4 + 6as + f1a)las

Ra=o0alan + Talas — (w+ pa)Ra+ aRe
R=wlRs+ VsS4 — paR+aQ
Sc = Ac — (Yo + a+ pc)Se — AeSc + weRe
Ec = XeSe — (vo + pe)Ec (1)
Ien = vodcEc — (0c + Som + xc + pe)lom
Ios = (1= ¢ )vcEc + xclom — (To + dcs + pe)les
Re = oclon + 7eles — (wo + a+ pe)Re
Q = vcSc — (a+ pe)Q
Sy = Ay — A\vSy — (6v + py) Sy
Ey = M\Sy — (9w + 0y + puv)Ey
Iy = ywEy — (0v + pv) Iy

2.1 Basic Properties

Since the model monitors both human and mosquito population during malaria epidemic, it
is important to prove that all the state variables of the model are non-negative for all time (¢) for
the model (1) to be epidemiologically meaningful. That is, the solutions of the model (1) with

positive initial data will remain positive for all time ¢ > 0 . Model (1) is basically divided into
two regions, thus D = Dy x Ds.

2.1.1 Boundedness

Lemma 1. The region D = Dy X Dy. of system (1) is positively invariant with non-negative
initial conditions in R

Proof: The rate of change of the total human population is given as

dNy,

o Aa+Ac — puaNa — peNe — (SanLans + 9aslas + dcmlon + dcsleos)

dN,

dith <Aa+Ac—paNa—pcNe (2)
dNj,

<A Ao — up N,
dt_A+C UniVh
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Table 2.1: Description of the variables and parameters of the Malaria model

Variable | Description
Sa, Sc | Population of susceptible adults and children
E4, Ec | Population of adults and children with asymptomatic malaria
Ianr, Icas | Population of infected adults and children at mild stage
I4s,Ics | Population of infected adults and children at severe stage
R, Rc | Population of recovered adults and children
R, ) | Immune adults and children
Sv, By, Iy | Susceptible, Exposed and Infected Mosquitoes
Parameter | Description
A4, Ac | Recruitment rate into the population of adults and children respectively
Ay | Vector recruitment rate
la, tic, o | Natural death rate for humans (adults & children), mosquitoes respectively
Ba, Be, Py | Transmission probability per contact for adults, children and susceptible mosquitoes
Y4, Yo, | Rate at which exposed adults and children revert to the mild stage of infection
¢ a,0¢ | Fraction of exposed adults and children who progress to the mild stage of infection
d0an, 0as | Disease induced death rates of adults at mild and severe stage
dcm, 0cs | Disease induced death rates of children at mild and severe stage
Oy | Death rate of mosquitoes from insecticide
o4, Ta | Treatment rates for adults at mild and severe stage
oc, Tc | Treatment rates for children at mild and severe stage
0 | Fraction of recovered adults who develop immunity after recovery
w | Rate at which recovered adults revert to either the immune or susceptible adult class
wf | Acquisition of immunity in adults
w(1 —0) | Loss of immunity in adults
a | Growth and maturation rate
¥4, Yo | Vaccination rate for adults and children
we | Rate at which recovered children revert to susceptible children class
vy | Rate at which exposed mosquitoes become infectious
by | Mosquito biting rate
g, 0 <e <1 | Efficacy of insecticide treated nets(ITN)
q | Rate of ITN compliance
n | modification parameter
na, Nc | Infectivity modification parameters in adults and children
X4, Xc | Rate at which infected adults and children at mild stage progress to the

severe stage of infection

Where p;, = min {pa, pc}
A standard comparison theorem [11] can then be used to show that

A A
Ni(t) = N,(0)e " + Aatic (1 — e_“ht> ;

Hh


https://doi.org/10.1101/2020.10.28.20221267
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.10.28.20221267; this version posted November 3, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

In particular, if

Asg+ A
N, (0) < At Ac
Hh
then,
A A
Nu(t) < PATRC T a0
Hn
The rate of change of the total vector population is given as
AN
TV = AV — (5‘/ + Mv)Nv.
t
By standard comparison theorem,
dNy
—— < Ay — uy N
P Hv Ny
Solving gives
A A
N,(t) < =4 (NV(O) — V> e Ht
2% 2%
In particular, if
A
Ny (0) < =
2%

then,
A
Ny(t) < =Y, forallt>0.
0%
: . P Ay
Then either the solution enters D in finite time or Ny (t) approaches — as ¢ — oco. Thus, the

region D = Dy x D, is positively invariant so that no solution path leaves through any boundary
of D. Thus the feasible solution of the human population is in the region

Ag+ A
D, = {(SA;EA7]AM7]AS;RA7R7 Se,Ec,Icwm, Ios, Ro, Q) € R 1 Ny, < AC}

Hhn
and the feasible solution of the vector population is in the region
3 Ay
Dy =3 (Sv, By, Iy) € Ry : Ny < .
1%

Hence it is sufficient to consider the dynamics of the model (1) in the region . In this region, the
model can be considered as being mathematically and epidemiologically well posed. Hence, the
solution set of model (1) are contained in D .
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2.2 Positivity of Solutions

We assumed that the initial conditions of the model are non-negative and we also showed
that the solution of the model is also positive.

Lemma 2. Let the initial data for the model be

SA(O) > 0, EA(O) > O,IAM(O) > O,IAS(O) > 0, RA(O) > 0, R(O) > 0, 50(0) > O,Ec(()) > 0,

Icp(0) > 0,165(0) > 0, Re(0) > 0,Q(0) > 0,S5,(0) > 0, Ey(0) > 0, Iy,(0) > 0, then the solutions
(SA, EA, [AM> IAS, RA, R, Sc, Ec, ICM, [Cs, Rc, Q, Sv, Ev, [V) Of the model (Z) with initial data
will remain positive for all time t > 0 .

Proof:

t = sup {t S0 Sa(0) > 0,EA(0) > 0, L1n(0) > 0,145(0) > 0, Ra(0) > 0,R(0) >
0,5¢(0) >0,
Ec(0) > 0,1ca(0) > 0,1c5(0) > 0, Ro(0) > 0,Q(0) > 0,Sy(0) >0, Ev(0) >0, I,(0) > 0} >0

From the first equation in model (1)
SA =Ay - ("LbA —i—/LA)SA —AaS4 + (1 — 9>WRA + aSc

which implies _
Sa>Ag— (Ya+pa+Aa)Sa

Using integrating factor method, we have

Z{SA(t) exp ((1/)A + pa)t + /Ot1 )\A(T)d7'> } = Ajexp ((1/)A + pa)t + /Ot1 )\A(T)d7>
Saltr)esp (Wa+ua)t+ [ Aa()dr) = $4(0) 2 [ Asesp (@a+pat+ [ Aa(r)ar)
Sa(ty) > Sa(0)exp (—(?/)A + pa)t — /0t1 )\A(T)d7'>

+ exp (—(?/M + pa)t — /0t1 )\A(T)d7> X /Otl Aa

exp (WA + pa)y + /Oy )\A(T)d7_>] dy >0

Similarly, it can be shown that all state variables of the model remain positive for all time ¢ > 0
Ea(t) > 0,1ap(t) > 0,145(t) >0, Ra(t) >0, R(t) > 0,Sc(t) >0, Ec(t) > 0,
Iop(t) > 0,1cs(t) > 0, Ro(t) > 0,Q(t) > 0,Sy(t) >0, Ey(t) > 0,Iy(t) > 0 for all time ¢ >0 .
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3 Analysis of the Model

3.1 Local stability of the disease-free equilibrium(DFE)

The disease-free equilibrium of the model (1) is given by

&J = (SZ,E:‘,IZM,IZS,R:Z,R*,SE,EE,IEM,IES,RZ,Q*,S:,E* I*>

v U

Ay (Yetatpe)+ale 0.0.0.0 YAAA(Yetatpe)+alc](atpe)+adeAc(Pa+ia)

| (Watpa)(Wetadtpic) 1AW atpa)(atpe)(etodtpic) ’
e 0,0,0,0 Yele A0 0
(Vetatpe)? 7070 700 (atpue) (Yetatpie) ? Sptpin? 7

(3)
Using the next generation operator method previously described [12],the local stability of &, can
be established, it follows that matrices, F' and V for the new infection terms and the remaining
transition terms are respectively given by

(1—e9)BabsSy

0 0 0 0 0 0 0 ¥

A

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
(1—£q)Beby S
F— 0 0 0 0 0 0 0 qT

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

BubunaSy  BubySy BvbunneSy  BubunSy
0 b BhS () BbmS AhiS
0 0 0 0 0 0 0 0
and
ko 0 0 0 0O 0 O 0
—Yada ks 0 0 0O 0 O 0
—(I—=da)va —xa K 0 00 0 0
v _ 0 0 0 kr 0O 0 0 0
- 0 0 0 —YePe ks 0 O 0
0 0 0 —(1—=0¢)Y Xe ko O 0
0 0 0 0 0 0 Kk O
0 0 0 0 0 0 —v ks
where,

ki = (Ya+pa), ke = (ya+ pa), ks = (04 + danr + xa + pa), ks = (T4 + das + p1a)
ks = (W pa) ke = (Yo +a+ pc), kr = (vo + pe)ks = (0 + dom + xo + pe), ko = (T + dcs + o)
ko = (we + a4+ pe), kin = (Ov + pyv), k12 = (W + 0y + ), kis = (6v + pv ), ke = (pv + o)
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It follows that the effective reproduction number of model (1) denoted by R is given by

Re = p(FV™') = /Ry(Ra+Re) , Where (4)
By by ST e
_ 4
A (42)
(1 —eq)by SiBaval(l — da)ks + da(naks + xa)]
Ra= N akoksk, (4b)
(I =eq)bySt.Bovenl(1 — do)ks + dc(noke + X))
Re = (4c)
N0k7k’8/{59

The result below follows from Theorem (2) in [12].

Lemma 3. The DFE & of model (1) is locally asymptotically stable (LAS) if R < 1, and
unstable if Rp > 1

The threshold quantity Rg, is the average number of malaria cases generated by a typically
infected individual introduced into a completely susceptible population. The expression R¢ is the
number of secondary infections in children introduced by one infectious mosquito, while the ex-
pression R 4 is the number of secondary infections in adult introduced by one infectious mosquito.
The biological significance of lemma 3 is that malaria can be adequately controlled in a community
with children and adults if the quantity Rg can be reduced to a value less than unity (Rg < 1)

3.2 Analysis of the Control Reproduction Number

The threshold quantity, will be used to determine the effect of the control parameters Rg
on the eradication of malaria in the population. For the sake of mathematical tractability in
the analysis of our malaria transmission model, we shall work with the square of the reproduction

number since our conclusion will not be altered if the actual expression of the reproduction number
is used [13, 14]. From (4) , we have

~ BvbvAvyv (1 —eq)byAaBaya(l — da)

lim R2 = >0 5a
A0 Niki1k12k13N aky kaky ( )
. Byby Avyy (1 — eq)by Aufavadana
lim R2 = >0 5b
TATHOO Niki1ki2k13Nakykoks ( )
. By by Avyy (1 — eq)by AcBeyen(l — ¢c)
lim R2 = 0 5
001Lnoo Nyki1ki2k13Nekekr kg ~ ( C)
by A 1 —¢eqg)by A
lim R2 — By by Avyy (1 — eq)bv AcBeyendenc -0 (5d)
TC—00 Nyki1ki2k13Nokekrks
lim R% =0 (5e)
6‘/‘)00

. It therefore follows that control programme that results in high treatment rates and ITN com-
pliance (04,74, 0¢, T, 8, — 00) can lead to effective malaria control if these result in the respective
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right-hand sides of (5a-5d) being less than unity. From (5¢), a near total eradication of malaria
is achievable. This implies that focusing on reducing mosquito population through high rate of
application of insecticide will serve as an effective malaria control strategy. Thus, differentiating
the square of the reproduction number, R%, given in (4) partially with respect to the parameters
(04, Ta,00,Tc) , further reveals the effect of these parameters on malaria control in the community.
Thus,

ORY _ BrbvAvov(l — eq)byAaBavada(l — da)[na(ra + das + pra) + x4l

o4 Nhk11k12k13k1NAk2k3k4 <0 (Ga)
373129 _ BvbvAvv (1 — eq)bv AuBayal(l — ¢a)ks + paxal <0 (6b)
0T Nhk11k12k13k1NAk2k3k4

ORE _ BrbvAvav(l — eq)bvAcBovendelne(te + dos + puc) + xcl <0 (6¢)
800 Nipki1ki2ki3ke N, k?7k‘s/€9
OR%E _ BvbvAvv (1 — eq)byAcBeyenl(l — ¢c)(oc + dom + Xo + pe) + doxcl <0 (6d)
Otc Npky1ki2kiske N, k7k8k9

3.3 Assessing the Impact of the Mild Classes

Differentiating the square of the reproduction number, R% , given in (4) partially with respect to
the parameters (na,n.) [13, 15] gives

OR%, ¢A5Abv/\v%/(1 — Q)b AaBaya(ta + das + f1a)

>0 Ta

ona Nyki1kigkiski N akoksky ( )

IR, 5V5VAV’YV(1 — £q)bv AcBovende(te + dos + o) -0 (7)
one Nyki1ki2kiske Nokrkgko

This means that the square of the effective reproduction number, R% | is an increasing function
of the parameters (14, 7.). Thus, the disease burden of malaria in the community will increase as
the infectivity of mildly infected children and adults increases. However, taking the limit of R%
as (na,n. — 1) implies that the infectivity of mildly infected children and adults is the same as
that of the severely infected adults and children. Thus,

(1—eq)byAaBaval(1—d4)k3+da(kstxa)]

By by Avyy N s k1 koksk
li 7?,2 _ ARTR2RIR4 0 8
namest B T N keyykrokns +(1_5Q)bVACBC”YC[(1—¢C)k3+¢0(k9+>{0)] ~ (8)
N pkekrkgko

This implies that, as the infectivity of the mildly infected children and adults increases, the disease
burden increases thereby increasing the number of malaria infected individuals in the community:.
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3.4 Existence of Endemic Equilibrium Point (EEP) of the Model

Lemma 4. The model (1) has a unique endemic(positive) equilibrium for the special case when
w=wc =a =0 whenever R > 1

See Appendix for the proof of Lemma 4.

3.5 Bifurcation Analysis of the Model

It is important to explore the existence of bifurcation as this will go a long way in determining the
parameter that will hinder the possibility of eradicating malaria transmission if the reproduction
number is less than one. The centre manifold theorem is used here to investigate possibility of
the existence of backward bifurcation as described [14, 16, 17].

Lemma 5. The transformed model (2) will undergo a backward bifurcation if the bifurcation
coefficient a is positive

See Appendix for the proof of Lemma 5.

3.6 Global Asymptotic Stability of DFE

Lemma 6. The DFE of the model (1) is globally asymptotically stable (GAS) in D whenever
Rep <1

See Appendix for the proof of Lemma 6.

3.7 Global Asymptotic Stability of EEP

Lemma 7. The EEP of the model (1) is globally asymptotically stable (GAS) in D whenever
Reg>1

See Appendix for the proof of Lemma 7.
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4 Analysis of Control Strategies

To effectively study the behavioral pattern of malaria transmission, some important parameters of
the model are explored here to quantify the effectiveness of malaria intervention strategies. We now
carry out numerical analysis to investigate the relative importance of the parameters of our model
in disease transmission and how best to tackle malaria outbreak and reduce malaria mortality.
In particular, we target intervention strategies using parameters such as mosquito recruitment
rate (Ay), mosquito death rate (dy), mosquito biting rates (by), rate of ITN compliance (q),
vaccination rates (14,1¢) and treatment rates (o4, 74, 0c, 7¢). Theoretical values are used to
represent parameter values and initial conditions in our simulations since they are similar to
comparable parameters for other mosquito-transmitted diseases [13, 14].

Table 4.1: Description of parameter values

Parameter Values Range References
Ay 235 100 — 500 Estimated
Ac 156 100 — 500 Estimated
Ay 16667 7000 — 40000 Estimated

1 1 1 :
HA 70%365 76x365 68365 [13]

1 1 1 :

e 18.60x365 1188365  22.32x3065 [1]
v : gl 151,191
B4, Bo 0.017, 0.14 0.01 — 0.27 B
By 0.356 0.072 — 0.64 B
Y, Y 0.134, 0.122 0.067 — 0.20 B
Oa, OV, Yo | 0.5 0.1-1.0 Assumed
Oans Oas 0.00021, 0.0046 0.0 — 0.00041 8]
dcm, Ocs 0.0003454,0.00671 | 0.000135 — 0.00817 [10]
Sy 0.5 0.25 — 0.75 [13]
OA, TA 0.0099, 0.014 0.0014 — 0.017 8]
oc, TC 0.0082, 0.011 0.0014 — 0.017 [8]
0 0.4 0.1-1.0 Assumed
w 0.0243 0.0025 — 0.067 [10]
a Tox 3 TEx3 — BRI [13]
we 0.046 0.0025 — 0.067 Estimated
W 0.18 0.020 — 0.33 B
by 0.5 0.1—1.0 [13]
e 0<e<1 |05 0.2—1.0 [9]
q 0.53 0.1325 — 0.6625 [9]
n 0.5 0.1—-1.0 Assumed
Na, Nc 0.5 0.1-1.0 Assumed
YA, XC 0.091, 0.11 0.067 — 0.20 B
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4.1 Mosquito-Reduction Strategy

The use of indoor residual spraying (IRS) and DDT reduce the average lifespan(dy )of mosquitoes
and mosquito recruitment rate/birth rate (Ay )respectively. The following three levels of mosquito-
reduction strategies are considered for simulation [13, 15]

1. Low mosquito-reduction strategy

Ay = 33334/day; oy = 0.25 /day

2. Moderate mosquito-reduction strategy

Ay = 16667 /day; 6y = 0.5 /day

3. High mosquito-reduction strategy
Ay = 8334/day; 6y = 0.75 /day
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Figure 1: Simulation of the Malaria model (1) for various control levels of the mosquito reduction
strategy. (la). New cases of adult population with mild malaria. (1b). New cases of adult
population with severe malaria. (1c). New cases of children population with mild malaria. (1d)
New cases of children population with severe malaria. The parameter values used are in Table2.1
with

q = O,QﬂA = O,wc = 0,51/ = 0,0'A = 0,0’c :O,TC = O,TA :O,

Fig (1a) and (1c) indicate a decreasing pattern in both adult and children population with mild
malaria while varying the recruitment rate of mosquitoes whereas Fig (1b) and (1d) show that
adult and children population with severe malaria increase to a maximum value before they start
decreasing gradually while varying mosquito recruitment rate.
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Figure 2: Simulation of the Malaria model (1) for various control levels of the mosquito reduction
strategy. (2a). New cases of adult population with mild malaria. (2b). New cases of adult
population with severe malaria. (2c). New cases of children population with mild malaria. (2d)
New cases of children population with severe malaria. The parameter values used are in Table 2.1
with q = O,L/JA = O,L/JC ZO,O'A :0,0'C :O,TC = O,TA = 0,

Fig (2a) and (2c) indicate a decreasing pattern in both adult and children population with
mild malaria irrespective of the level of mosquitoes insecticide spray applied whereas Fig (2b) and
(2d) show that high effectiveness mosquito reduction strategy lead to a considerable reduction in
the number of severe malaria cases in adult and children population compared to the moderate-

effectiveness level [13, 15].
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4.2 Personal Protection Strategy

Personal protection involving the use of ITN (g)reduces the exposure rate of humans to mosquitoes
which in turn reduces biting rates (by) and the transmission of parasites between humans and
(by) mosquitoes. We consider the following three levels [13];

1. Low personal protection strategy
q = 0.133/day; by = 0.75 /day

2. Moderate personal protection strategy
q = 0.265/day; by = 0.50 /day

3. High personal protection strategy
q = 0.53/day; by = 0.25 /day
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Figure 3: Simulation of the Malaria model (1) for various control levels of the mosquito reduction
strategy. (3a). New cases of adult population with mild malaria. (3b). New cases of adult
population with severe malaria. (3c). New cases of children population with mild malaria. (3d)
New cases of children population with severe malaria. The parameter values used are in Table 2.1
with

¢A = 0,¢C = 0,(5\/ = O,JA = O,JC = O,TC = O,TA :O,

In Fig (3a) and (3d),mild malaria cases in adult reduces faster within a shorter period as compared
to mild malaria cases in children whereas Fig (3b) and (3c) show that with high personal protection
strategy (use of insecticide treated nets) the number of severe malaria cases in adult and children
population increase considerably to a level before decreasing gradually.
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Figure 4: Simulation of the Malaria model 1 for various control levels of the mosquito reduction
strategy. (4a). New cases of adult population with mild malaria. (4b). New cases of adult
population with severe malaria. (4c). New cases of children population with mild malaria. (4d)
New cases of children population with severe malaria. The parameter values used are in Table2.1
with q = O,L/JA = O,L/JC :0,5\/ = 0,0‘A :0,0'C :O,TC = O,TA =0

In Fig (4a) and (4c), mild malaria cases in adult reduces faster within a shorter period as compared
to mild malaria cases in children except when the biting rate is low in children population whereas
Fig (4b) and (4d) show that when there is low personal protection strategy (high biting rate)the
children population with severe malaria will increase more compared to the moderate-effectiveness
level and high-effectiveness level.

4.3 Vaccination Strategy

1. Low vaccination strategy

4 = 0.25/day; e = 0.25/day
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2. Moderate vaccination strategy
Ya = 0.5/day; e = 0.5/day

3. High vaccination strategy
Ya = 0.75/day; e = 0.75/day
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Figure 5: Simulation of the Malaria model (1) for various control levels of the mosquito reduction
strategy. (ba). New cases of susceptible adult population. (5b). New cases of susceptible children
population. (5c). New cases of immune adult population (5d) New cases of immune children
population. The parameter values used are in Table 2.1 with ¢ = 0,0y = 0,04 = 0,00 = 0,7¢ =
0, TA = 0

In Fig (5a) and (5b), susceptible adult and children population reduces faster due to vaccina-
tion whereas Fig (5¢) and (5d) show that vaccination increases the immune adult and children
population.
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4.4 Combined Strategy

This strategy combines the mosquito reduction, personal protection and vaccination strategy
under the following three control levels;

1. Low Combined Control
Ay = 33334/day; 6y = 0.25/day;q = 0.133/day;by = 0.75/day;va = 0.25/day; e =
0.25/day

2. Moderate Combined Control
Ay = 16667/day; oy = 0.5/day; ¢ = 0.265/day; by = 0.50/day; ¥4 = 0.5/day; e = 0.5/day

3. High Combined Control
Ay = 8334/day; dy = 0.75/day; ¢ = 0.53/day; by = 0.25/day; Y4 = 0.75/day; Ve = 0.75/day
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Figure 6: Simulation of the Malaria model (1) for various control levels of the mosquito reduction
strategy. (6a). New cases of adult population with mild malaria. (6b). New cases of adult
population with severe malaria. (6¢). New cases of children population with mild malaria. (6d)
New cases of children population with severe malaria. The parameter values used are in Table 2.1

In Fig (6a), (6b), (6¢) and (6d), the presence of all the control strategies is more effective in
preventing mild malaria cases in adult and children as compared to severe malaria cases in adult

and children.
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5 Discussion and Conclusion

For decades now, deliberate policies have been formulated to prevent and reduce the transmission
of malaria with some degree of success recorded in some developed parts of the world. In this
paper, we formulated and analysed a mathematical model of malaria in a heterogeneous population
incorporating mosquito reduction strategy, personal protection strategy and vaccination as control
strategies. These control strategies are designed to reduce the contact rates between humans and
mosquitoes. Some epidemiological findings of this study are summarized below:

1. The Disease Free Equilibrium point (DFE) of the malaria model (1) is locally asymptotically
stable (LAS) if R < 1(unstable if Rz > 1) and globally asymptotically stable (GAS) in D
whenever Ry <1

2. The model (1) has a unique endemic(positive) equilibrium for the special case when
w=wec =«a =0 wheneverRp>1

3. The endemic equilibrium point of model (1) is globally asymptotically stable (GAS) if Rp>1

4. The model (1) will undergo a backward bifurcation whenever a stable disease free equilibrium
point coexists with a stable endemic equilibrium point when the associated reproduction
number is less than unity. However, the model (1) does not undergo the phenomenon of
backward bifurcation if w(1 — 0) = we = na = a = 0 Hence, this study shows that the loss
of acquired immunity of recovered adults (w(1 — #)), loss of acquired immunity of recovered
children (w¢) and the loss of likelihood (n4) of adults getting mild infection are the causes
of backward bifurcation in the malaria transmission model. However, the presence of «
in the bifurcation coefficient a indicates that imbalance in growth and maturation from
childhood to adulthood can equally cause backward bifurcation. Hence the model does
not undergo the phenomenon of backward bifurcation so long as the recovered children and
adults do not lose their acquired immunity, if the infection of mildly infected adult is not high
enough to infect susceptible mosquitoes and if there is proper balance in the factors affecting
growth and maturation. These growth factors include heredity, environment, exercise &
health, hormones, nutrition, familial influence, geographical influence, socio-economic status,
learning and reinforcement.

5. From analysis of control reproduction number, focusing on reducing mosquito population
through high rate of application of insecticide will serve as an effective malaria control
strategy.

6. From numerical simulation the following results were obtained
(i) mild malaria cases are easier to control in both adult and children as compared to the

severe cases.

(ii) high mosquito biting rate causes more harm in children population than in adult pop-
ulation.

(iii) the presence of all the control strategies is more effective in preventing mild malaria
cases in adult and children as compared to severe malaria cases in adult and children.
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7. Therefore, more effort should be put in place to prevent severe malaria cases in the population
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Appendix

Proof:(Proof of Lemma 4)
The existence of endemic equilibrium of model (1) for the special case when w = we = a =0 is
established as follows.
Let the EEP of the model be

& = (S5, B T, s RYL R S5, B8 Iy, Is, R Q. Sy B2 I). . The equa-
tions in (1) with w = we = o = 0 is solved in terms of the forces of infection at the steady state
to give
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AS T kokska(a + pa +N57) T kokskaks(a + pa 4+ AY)’ kokskskspn(Va + pa + N5) 7
S** _ AC kx AgAC A 7C¢C/\ZikAC

C T Wetpuc+ s’ T k(e +pe+NE) M krks(ve + pe + NE)

sk VCAEKACM?) sk 'YC)\*C*ACM4 sk wCAC
ICS - sk) 0 RC - sx) 7 Q - Hx) 7

krksko(Ve + po + AE) krkskokio(Ye + pe + AE) pn(Vo + pe + A&
*% AV Kk )\T/*AV *ok fyv)\*V*AV

= I EEEEEEE— E = s =
Vo Syt A YT k(v v A2 Y kkis(Oy 4 py 4+ A5) )
9
Where

ki = (Ya+pa), Ko = (va+ pra), ks = (04 + 0anr + xa + pa), ks = (Ta + das + p1a)

ks = (w+pa) ke = (Vo + a+ pc), kr = (yo + pe)ks = (0c + domr + xc + pe), ko = (7¢ + dos + pio)
ko = (wo + a+ pe) ki = (0v + pv), ke = (W + 0v + ), ks = (dv + pv), kg = (pe + a)

My = (1= pa)ks +xa0a, My =0a¢aks+7a(1 — pa)ks + Taxada,

Mz = (1 — ¢c)ks + xcbc, My = ocpcke + 7o Ms,

Substituting the values of Ij* into A%, A& gives

(1 — €q)ﬂAbv’yvAv)\*V*

A= 10a

AT Nakiskio(0y + py + ) (102)
1-— b Ay AT

A = ( £q)Bebvyv Ay % (10b)

B Nckiskiz(6v + pv + A7)

Substituting the values of I3y, Ihs, 15y, 15 into A} gives

A By by ( D3\ NaDNY NDAE e Ds A& ) (11)
v Np \Ya+pa+ Ay vYat+pa+ Ay Yo+pa+ g Yo+ pa+ AE
Where
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_ yaAaM _ yadaA _ yeéohc _ yeAeM;
Dy =142A%L 0 ), = JACABA - ). — JC D¢ =
) ) 5 ) 6 )
_Fakska 0 Td T T hoky ~ " krks : krksko
Substituting A%, A& into A}Y and simplifying gives

N (AT + AN + Ag) =0 (12)
Which implies either Aj¥ = 0 or
A2 AN + A3 =0 (13)
Where
(1 —eq)BabvyvAv (1 —eq)BebyyvAv
Ay = N, 0 14
L l%‘ I TN gk vethe Rk

1 — cq)Boby A 1 — cq)Babyyy A
Ay =N, [klkn <k6 4 L= ebobvy V) + <k1 1 L eDBabvy V) kﬁkul

chl2kl3 NAkIle?)
(1 —eq)BabyyvAy [ vala NavaPala (1 —eq)Bcbvyv Ay
_ Byb 1— )k NavAPaBA ] (4
Prby [ Nakrokss Fakghey (L 4)Ks T xa0a) + T T T Nokuokss
(1 —eq)BcbvyvAvn [ yelAc YopcAene (1 —eq)BabyyvAy
_ Byb 1— o)k JePelano ) (1
Bvby [ Nekrakns Faleghy (L~ 9008 Fxc0) T I Y
(15a)

Ay = Nikikny <k6 n (1- 5(1)505\/%//\1/) [1 B ((1 —q)Bvby Babvyw AvyalAa[(1 — ¢pa)ks + xada + nA¢Ak4]>

NCk12k13 NhklNAk11k12k13k2k3k4
(1- SQ)ﬂAbV’YVAv> [1 3 ((1 — £q)Byby febvyvAvaeAcl(l — ¢o)ks + xcdo + ¢c770/€9]>

+ Npkeki1 <k1 +

NAk:12k:13 Nhk6N0k11k12k13k7k8k9
(15h)
1— b A 1-— b A
Ay = Nykikn (k:6 | (L= eq)bebvy V) [1 — Ry Ra] + Nikghyy (lﬁ 1 (L= ca)Babvay ‘”) [1— RyRc]
NCk12k13 NAk12k13
(15¢)

Ay <0 ifRVRA >1and Ry R¢e > 1, Ay >0 ifRV'R,A <land RyRe <1

A3 = kll

Nk kghy — ST (a2 (1 0a)ks + Xada) + 14940u04 ) %] (162)

_ Bvbvki(1—eq)BcbyavAyn (’Yc/\c (1 — ¢c)ks + xcpe) + nc’yc¢c/\c) k,

Ncki2kis krksko krks

(1—£q)By by Baby vy AvyaA
Ax — k2 Nk k 1 - ]\thk1]‘\?A‘/;11I3€1¥ZX3k2‘;€ZZ4 4 [(1 o ¢A)k3 - XA¢A + nA¢Ak4 (16b)
3 114 VhN176 (1—eq)Bvby BebvyvAvyvAc 1 k k.
T NpkeNcki1kiakizkrkskg [< o ¢C> 8 +XC¢C+UC¢C 9]

A3 = klehklkG(l — Rv(RA + Rc)) (16C)

As > 0if Ry(Ra+Re) < 1
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Az < 0if RU(RA -l—Rc) >1
The model (1) has a unique endemic(positive) equilibrium for the special case when w = we =
o = 0 whenever Rg > 1
Proof:(Proof of Lemma 5)
For model (1), let
(#1 = Sa,xe = Ea,x3 = Lan, w4 = Ias, 05 = Ry 06 = R,x7 = So,28 = Eo, w9 = Ion, 210 =
Ics, 211 = Ro, 012 = Q, 013 = Sy, x14 = Ev, 215 = Iy).
Thus, the model can be written as

1-— by B,b
L'El = AA — ]ﬁ&?l + (1 — ‘9)&)&35 + al7 — ( 6Q)5A Vﬁv Y
NNy,

Ty = (1= 6%5}4\2:/5‘/6‘/ (24 +naxs + (210 + NcT9) )1 — kaTa = fo

T3 = YaQaw — k33 = f3

By = (1 — pa)yara + xaxs — ksxy = f4

T5 = 0a%3 + TaTs + ax11 — k55 = f5

Te = whrs + Yax) + axis — ppre = fo

(1= 2q)Bcb,Brby
Nc Ny,

(4 + nazs + n(x10 + Nexy))x1 = fo

7 = Ao — kg7 + wexn — (4 + naxs + 110 + Ncxg))x7 = f7

. 1 —eq)Bcby Pvb
g = ( Q>BC VBV V(Qf4 + NAT3 + 77(_7;10 + 7703:9))'%7 — k’7378 = f8
Nc¢ Ny,

Tg = Yopors — kg9 = fo
t10 = (1 — ¢c)vors + XoTg — kox1o = fio
T11 = 0cTg + TcT10 — k1011 = fi1

T12 = Yo7 — k1aTi2 = fi2

, Bvb

i1y = Ay — er (24 +naxs + 1210 + Ne9) )13 — kniw1z = fia
h

. Bvby _

Ty = N, (:p4 + Naxs + 77($10 + 770!139))$13 —kpriy = fiu

15 = YWwx1a — k13215 = fi5
(17)

*

* is chosen as the bifurcation parameter. Solving for 8. = 3} from

Consider the case when 3, = f3

Re =1 gives

NekrkskoNykiokis [1 _ BvbvSyv(1—eq)by S38aval(1—¢ 4)ks+a(nakatxa)]

5* _ Npk19k13N gkokgky
¢ Bvby Sty (1 — eq)bySEven|(1 — ¢c)ks + dc(ncke + xo)]

The Jacobian J(£*) of the transformed system (17) evaluated at the disease-free equilibrium with
Be = B¢ gives
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i
w

—kq 0 0 0 (1-0)w 0 0 a 0 0 0 0 0 0 J1
0 —ko 0 0 0 0 0 0 0 0 0 0 0 0 Jo
0 vAPA —k3 0 0 0 0 0 0 0 0 0 0 0 0
0 (I—¢a)ya xa —ha 0 0 0 0 0 0 0 0 0 0 0
0 0 oA TA —ks 0 0 0 0 0 «Q 0 0 0 0
ba 0 0 0 w0 —pa 0 0 O 0 0 a 0 0 0
0 0 0 0 0 0 —kg 0 0 0 We 0 0 0 Js3
0 0 0 0 0 0 0 —kr 0 0 0 0 0 0 Ja
0 0 0 0 0 0 0 Yobo —kg 0 0 0 0 0 0
0 0 0 0 0 0 0 (-éc)e xc ke 0O 0O 0 0 0
0 0 0 0 0 0 0 0 oc e —kio 0 0 0 0
0 0 0 0 0 0 Ve 0 0 0 0 —k14 0 0 0
0 0 js  Jde 0 0 0 0 i g 0 0 —ku 0 0
0 0 Jo  Jio 0 0 0 0 Jin o J12 0 0 0 —k12 0
0 0 0 0 0 0 0 0 0 0 0 0 0 Yo —k

where,

. —(1—¢ byx . 1—e by x . —(1—¢ byx . 1—e¢ byx

j1 = ( b?\;fAV1’]2:<b qJ)\ZAV17]3:b ( ?\Zcﬂcv7’]4b:( CIJ)Vﬁch7,

. - x . — T — T . — x

j5 = ,3;/ ]&:A 18 e = iVNZ 18 g = bﬂv \Z/VZUC 18 e = bﬁvN\;Ln 13

Jo = Bv \]/VlhlAlfm’ j10 = /3V]\x[/’l$137 ji1 = Bv vNZthleCl?,7 j1o = Bv ]\\/[hZZ$13
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The right eigen vector of J(£*) is given by w = (wy, wy, ...w;5)7, where

(1 - 5Q)bvg5w15

1T Nakikakshkaks Nokrkskoko
. (1 — éfq)BAbelIUw
Wy = N ik >0
(I —eq)yadaBabyziws
W3 = NAk‘ij3 > 0
(1= eq)yadaBabyriwis[(1 — 0)ks + xa04]
Wy = >0
Nakoksky
ws = (1 - 5Q)bvg4w15 <0
N gkokskaks N k7 kskokio
Wi — (1 - €q)bvg7w15
¢ paNakykokskaks Nokrkskokiokiake
_ (1 — eq)Bebyarwis|weye(ockode + Tegs) — krkskokio]
Nckekrkskokio
(1 —eq)Bebvarwss (18)
wg = ch7 >0
(1 —eq)Bebvyecporrws
Wy = >0
’ N krks
(1 =eq)vePebyrrwis[(1 — ¢c)ks + xcoc]
W19 = >0
Nckqkgko
(1= eq)yveBebyrrwisockede + 093]
w11 = >0
Nckrkgkokqg
Wio = (1 - 5Q)70605Vx7w15¢0[W070(00k9¢0 + 7093) - k7k8k9k10]
Nckekr Kgkokiokia
Wy — —Bvby (1 — eq)z13bywis[vaBazigii Nokrksky + BeyexngiaN akoksky)
’ Npkii N gkoksksNekrkskg
k
Wy = 13W15 ~0
84%

W15 = Wi > 0
Where

g1 = k3(1 = ¢a) + xada, 92 = ockedc +Tcgs, g3 = ks(1 —dc) + xcdce

91 = T17aBaNckrkskokio(Paks + Tagr) + aveBorrgaNakeksky

g5 = kokskakskskokio(BcrrNaa — Bazi Neke) + (1 — 0)wgs, go = wovc(ockepe + Tcgs) — krkskokio
g7 = Yagskekia + wOkegakikis + aBcxrtpege N akikokskyks
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Similarly, J(£*)g,=g: has a left eigenvector v = (v1, 2, ..., v15), where

V] = U5 = V¢ = VU7 = V11 = V12 = V13 =0

vy = By by yarisvis[@ags + (1 — da)ks]

NikoKskykio
e — By bvyvri3vis[xa — naka
’ Nykskykys
b
vy = Bvbyyvxizvis -0
Npkakio
b 1— k
Vg = Bebynyvyerizvis[dcgio + (1 — ¢c)ks] 50 (19)
Nykrkgkgkya
b c -k
Vo = Bvbynyveisvis[Xe + nekol -0
Nyksgkokio
Bvbynyvrivis
= >0
oo Nikokr
Via = TvUis -0
k1o
V15 = V15

Where

gs = Xa — Naks, g0 = xc —ncke, g1 = danaks +k3(1 — da) + xada, g12 = dcncks + g3
The associated non-zero partial derivatives of system (17) evaluated at the DFE gives the associ-
ated bifurcation coefficients a and b defined by

a= Zn: v w-w~ﬁ(0 0)
k=1 R ]al'ial'j ’
»’Lv]_

n ank

b= VpW; -(0,0)

kgz:l 8.1']666

which gives

1— 1— 1—
( €Q)BAbv5vbv 4 202w1w3< €Q)3Abvﬁvbv77A +2v2w1w10( €Q)5Abvﬁvbv77

=2
¢ = it NN, NN, NAN,

1—¢ b, Bvb 1—c¢ b b 1—¢ b b
+2v2w1w9( Q)ffAAva vime. 2v8w4w7( ?\)ff(]:\[hvﬁv v +2v8w3w7( Q)Jegz\};ﬁv VA
(1 —eq)Bcby Bvbyn (1 —eq)Bcby Bybynne Bvby

2 2 2
-+ VgWr W10 NcNh + VW7 W9 NcNh —+ V14W4W13 Nh
b b b
+ 2014waw13 BV]\;;T]A + 2014w10wW13 ‘;V:n + 211141091013ﬁv]i/[:nc
(20a)
CL:G1+G2—G3—G4—G5 (QOb)
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. where
o _ 21— 20)*Babl B (Ra + Ro)ywyazisviswrs ¢AXAk2k3k4k5kZ§Zk,1€0§C,f 7kN aer ¢A]>\§A,(€1 = s
1= N2N2N k kzk‘Qkark kekoktnk +¢AnA 4 23589 IOﬂAxl Cchr W15
ATTRTTCEI R R BERT R TI0T12 +(1 — pa)kok3kakskskokioBexrNac + (1 — ¢pa)ks(1 — 0)wgs
Gy = 2(1 — £9)*BEYY By (Ra + Ro)xamyvycaizviswis { dcgrowcycockedo + dcgroweyoTogs ] wy
NENPkek2k3k3kioki2 +(1 = ¢o)kswercockode + (1 — ¢o)ksweyetegs] -

G, = 2= £q)*Baby 5% (Ra + Ro)yvyazisviswis FAXAk2k3k4k5k8k9kloﬁA$1N(;k7 + Ganaka(l - 9)w94] .

+PanakikokskskskokioBer7rNac
N2 31212
NiNjNckikskskikskrkgkokiokio (- ¢A)k§k2k4k5k8k9k1o/@AI1ch7

2(1 — £q)*BEby By (Ra + Ro)arnyvycrizviswis
G = krkskokio + (1 — oo ) k2krkoko] w
' N¢Njkekikikgkioki2 [bogr0krkskokio + (1 — do)kEkrkokio] wis
2(1 —eq)Bvby(Ra + Rc) [yvvisBuxisby[vaBazigin Nekrkske + Beycrimgia N akaoksks] "
Nh NhNAk2k3k4ch7k8k9k11k12 15

Gs =

with g1, 92, 93, G10, 911, 912 > 0

n 82 fk

b= VW, ~(0,0)
kz_l 02,055
1—¢ by b,z 1—¢ bybynax 1—¢ by bynx
- vgw4( ]qv)f]\\/fhv 7 +vgw3( QﬁgN‘; VNATT +v8w10( 6{73]50‘;\7: vIT7 (22a)
1—¢ by b x
+U8w9( Q)]i\;]\\;hvﬂﬁc 7
- (1 —eq)Bvbybyz7(Ra + Ro)Bvbynyvrizyevis[dcgio + (1 — ¢c)ksjwis -0 (22b)
N¢ Ny Nypkrkgkokio

. Since the bifurcation coefficient is positive. It follows from theorem 2 of ([16]) that the trans-
formed model (17) will undergo a backward bifurcation if the bifurcation coefficient a is positive.
The phenomenon of backward bifurcation examines the scenario where a stable DFE coexist with
a stable EEP when the associated reproduction number is less than unity.
The epidemiological implication of the backward bifurcation of the model (1) is that the classical
requirement of the reproduction number being less than unity becomes only a necessity, but not
sufficient condition for malaria control. However, if we set w(l — ) = wg = na = @ = 0 in the
expression for a in (20b), the bifurcation parameter becomes negative. Thus, it follows from the
a Castillo Chavez theorem in [16], that model (1) does not undergo the phenomenon of backward
bifurcation if w(1l —0) = we =n4a = a =0.

Proof:(Proof of Lemma 6)
To prove the global asymptotic stability of DFE we use a previously described approach in [13].
Let X = (SA, Ra, R, Sc, Re, Q, Sv) and Z = (EA, Iane, Las, Ec, o, Ios, By, [V) and writing the
model equation (1) in the form

dX dz
E:F(X,O), %:G(X,Z),Where EA:[AM:IAS:EC:ICM:[CS:EV:[VZO

with F(X,0) being the RHS of Su, R4, R, Sc, Re, Q, Sy and G(X, Z) the RHS of
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EA7 jAM7 jAS? ECa jCM? Z.’C'S7 EV7 jV

X
Next, consider the reduced system: i F(X,0) given as

Sa=Aa— (a+pa)Sa+ (1 —0)wRa+ aSc
R4 = —(w+ pa)Ra + aRc
R=whRA + US4 — uaR + aQ
Sc = Ac — (Yo +a+ puc)Sc + weRe (23)
Re = —(we + a4+ pue)Re
Q = YoSc — (a+ pc)@Q
Sy = Ay — (Oy + pv) Sy

X" = (527 sz R*7 Sé‘? Rév Q*a S:)
Ap(otatpc)tole o Yalda(botatpc)talc](atpc)taveAc(Watia)
_ | Watpa)(Wot+atpuc)’ ™ A atpa)latpc)(Yot+atuc) ’
Ac (Uel\Y! Ay
(Votatpc)’ 7 (atpo)(botatuc)’ dy+upy

(24)
be an equilibrium of the reduced system (23), we now show that X* is a globally stable equilibrium
in D by solving equations (23) and taking limit as t — oo
Solving for S, (t) gives

Aa(be + a4+ pe) + ale 1 — e~ (batualty
(Ya +pa)(Wo +a+ pc) (25)

+ {/t(l - Q)WRA(T)€(¢A+MA)td7—:| e~ (batpa)t
0

Sa(t) :SA(O)Q_(¢A+MA)'5 +

A (e + a+ pe) + ale

lim S4(t) =
BRI = (), e + ot ac)
Solving for Ra(t) gives

t
Ru(t) = Ra(0)e~@rnalt 4 / aRC(T)e(w+uA)th] o (wtpalt (26)

0

Jim R4(t) = 0 Solving for R(t) and substituting the value of S4(¢) in the expression obtained

gives

alAa(Wo + a+ pe) + abol(a+ po) + aeAo(a + /m)) (1 — et
pa(a + pa)la+ pe) (Ve + a+ pe)

t
+ {/ UJ@RA(T)GMAth} g Hat
0

R(t) =R(0)e " + (

(27)
lim Ra(t) = ValAa(Wo + o+ pe) + alcl(a+ pe) + apeAe(Ya + pa)
oo pa(ta+ pa)(a+ pe)(We + a+ uc)
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Solving for S¢(t) gives

A t
S(t) = S(0)e Wetatno)t ¢ 1 — ¢~ (Wetatuo)t [/ R (Yetanc)t g | o= (otatuc)t
C() C( )6 +(’¢C+O‘+,U/C>( e )+ OwC C(T>e T €
(28)
Ac
lim S¢(t) =
e Ty
Solving for R¢(t) gives
Re(t) = Re(0)eWotatno)t (29)
tli>m Rc(t) =0
Solving for Q(t) and substituting the value of S¢(t) in the expression obtained gives
wCAC (a+ ,;| _
1) = 0) + elatuc)t| o—(atuc)t 30
) [QU (o + pe) (e + a + pe) (30)
. Yoo
limQ(t) =
B Q) (a+ pc) (Yo + a+ pc)
Solving for Sy (t) gives
Sy (t) = | Sv(0) + AV Gvmon | g (31)
ov + py

taking limit of Sy (¢) as t — oo gives

Ay
lim Sy (t) = ——
firg Sv () ov + pv
The asymptotic dynamics are independent of initial conditions in D. Hence, the solutions of (23)
converge globally in D. According to previous study [16] it is required to show that G(X, Z)

satisfies the two stated conditions
(i) G(X,0) =0 and
(i) G(X,Z) = D.G(X*,0)Z — G(X, Z), G(X,Z) > 0 where

AM@Wotatpc)tale n Yalda(Wet+atpc)+alc](atpc)+aveAo(@atpa)
(X*,0) = (@Z’AJV“A)%CJFO‘*MC)’ ’ ra(atpg)(atpe)(Yotatie) ’

el v 0.0,0,0,0,0,0,0

c
(Yetatpuc)’ 7 (atpc)(Wotatuc)’ Sy+uy

D.G(X*,0) is the Jacobian of G(X, Z) taken with respect to the infected classes and evaluated
at (X*,0).
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(1—£q)Baby S%

—ky 0 0 0 0 0 0 N
Yada —ks3 0 0 0 0 0 0
(1 — ¢A)'7A XA —]C4 0 0 O O 0
D.G(X*,0)Z = 0 0 0 —hr 0 00 e
- ’ 0 0 0 Yogc —kg 0 0 0
0 8 bO sx B bOS* (1= ¢c)e 8 bXC R ;kgs 0 0
0 \4 ‘]/V”ZLA v V]\ZL Vv 0 \4 V]g:c’ A% V]\\;: )% _k12 0
0 0 0 0 0 0 Vv —ki3
and
(1—eq)Baby Sy N, Sa
N} S% Ny Iy
0
0
(1—eq)Bcby S¢ N¢& S,
A U (1 - 5 )
G(X, Z) = 0
0
Bvbvmsv] + Bvb VSv[
Ny éL 1 — NnSv
+ﬁvbvnﬁcsv[ + Bv v775v] Sy Ny,
0
Since we have
gx — Maldctatuc)tade  gx Ac x* Ay
AT Watpa)Wotatuc)’ ¢ (Yet+atpuc)’ 4 ov+puy

In D, Sy SSZ, Sc < Sév, Sy < S‘*/, Nj, = No + N4 and thus N, < N*

If the human population is at equilibrium, we have (1 — g:]%) > 0, (1 — E§C> >0, (1 — ggif‘;) >

0; thus G(X, Z) > 0. Therefore, the DFE is globally asymptotically stable by the theorem in [16].
Proof:(Proof of Lemma 7)

Suppose Rg > 1 then the existence of the endemic equilibrium point is guaranteed. Using the
common quadratic Lyapunov function,

C; %
V(xq, 29, 23, ...2,) = 25(%_%)2 (32)
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As formerly illustrated [20], we consider a Lyapunov function with the following state variables

V(Sa, Ea,Iam, Las, Ra, R, Sc, Ec, Iom, Ics, Re, Q, Sv, Ev, Iy) =
1
S1Sa = 8%) + (Ea— ER) + (Iane — Lipg) + (Ias — Tig) + (Ra — RY) + (R — RV

2
+51(Sc = 8¢) + (B — Eg) + (Iew — Igng) + (Ies — I6s) + (Re — Re) +(Q — Q7))
1
+ 518y = 5v) + (Bv — Ey) + (Iv — )P
Now, differentiating (33) along the solution curve of (32) gives
dV * * * * * *
o [(Sa = S%) + (Ba— E4) + (Lanr — Tipy) + (Tas — Tig) + (Ra — RY) + (R — RY)]x
d
a@ + Eq+ Tay + Ins + Ra+ R)+
(34)

+[(Se = 50) + (Ee — EO) + (Iom — Iow) + (Tos — 1) + (Re — Re) + (Q — @)%

d
%(SC’ + Ec+Iov + Ios + Re + Q) + [(Sv — Sy) + (By — Ey) + (Iv — 1))

d
%(SV + Ey + Iy)

from (32), it implies that

d
(Sa+FEa+Iay+1Ias+Ra+R)=As— pa(Sa+Ea+ Tayy + Ias+ Ra+ R) — 0anlay — daslas

dt
d
—(Sc + Ec + Iom + Ios + Re + Q) = A — pe(Se + Ec + Iey + Ios + Re + Q) — demlon — desles

dt

d
%(S’v + By, +1Iy) = Ay — (pv +0v)(Sy + Ev + Iv)

Plugging (34) to (35) gives

(35)

dt
(Aa —pa(Sa+Es+Iap+Ias+ Ra+ R) — Samlan — daslas)+

+[(Se = S¢) + (BEc — E¢) + (Iem — 1ey) + (Ies — Ios) + (Ro — Re) + (Q — Q)]
(Ac —pe(Sc+ Ec+ Ioym + Ies + Re + Q) — dcmlon — deslos) + [(Sy — Sv) + (By — By )+

(Iy — I})] x (Ay = (pv +0v)(Sv + Ev + Iy))
(36)

WV (54— %)+ (Ba— ES) + (st — Tong) + (Ins — Tig) + (Ra — BY) + (B — BY)]x
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Now assuming,

Ay =pa(SA+Ey+ Dy + g+ Ry + RY) + Sanmlan + 0aslis
Ao = e (SE+EL+ Ik + ks + R+ QF) + denIins + dcsIig (37)
Ay = (py +ov) (Sy + By + 1)
Substituting (37) into (36)
dv * * * * * *
o [(Sa—S%) +(Ea— E%) + (Iam — Tapy) + (Tas — Thg) + (Ra — Ry) + (R — R7)] x
pa(Sh+EY+ Dy +Ihe + Ry + RY) 4+ 0am iy + 0aslis
—pia (Sa+ Ea+ Iay + Ias + Ra+ R) — Sanlans — daslas
+[(Se = S¢) + (Bc — E¢) + (Iem — 1) + (Ies — 16s) + (Re — R) +(Q — Q)] %

pe (SE+ B+ Iy + Iing + RS+ Q) + Som iy + dcsl
—pe (Se+ Ec+ Ioym + Ios + Re + Q) — demlom — desles

+[(Sv = 57) + (Bv — EV) + (Iv — Ip)] x (v + 0v) (Sy + EV + Iy) — (pv +6v) (Sv + Ev(+ gv))
38
O =154 — 82+ (Ba = B2) + (T — T + (Tas — i) + (Ra — R3) + (R— B)] %

| —11a(Sa — S%) — pa(Ba — E4) — pa(Lans — Lipg) — pallas — Iig) — pa(Ra — RY) — pa(R — RY)
| —Oan (v — Tipg) — 0as(Tas — Iis)

+[(Sc = S¢) + (Ec — E¢) + (Iem — 15y) + (Ies — 1¢s) + (Ro — Rg) + (Q — Q)] x
| —pc(Sc — SE) — pe(EBe — EL) — poe(Iom — Iiy) — pe(los — Iig) — pe(Re — RE) — pe(Q — Q) 1

| —emUen — Igy) — des(les — Ies)
+ [(Sv = Sy) + (Bv — Ey) + (Iy — I)] %
[—(pv +0v)(Sy — Sy) — (pv + dv)(By — EY) — (v +6v) (Iv — I}))]

(39)
This implies that
dv * * * * * *
o [(Sa—S%) + (Ea— E%) + (Iam — Lapy) + (Tas — Thg) + (Ra — Ry) + (R — RY)] x

[ wa(Sa = S%) + pa(Ba — ER) 4 palTan — Thpy) + pa(las — Iig) + pra(Ra — RY) + pa(R — R¥)
| +0anr(Lans — Tapg) + 0as(las — Thg)

—[(Se = S¢) + (Ec — E¢) + (Uem — Iey) + (Ies — I6g) + (Ro — Re) +(Q — Q)] %

" ue(Se = SE) + pe(Ec — EE) + pe(len — 1) + ne(les — Iig) + pe(Re — RE) + pe(Q — Q%)

—[(Sv = SV) + (Bv — Ey) + (Iy — I/)] %
[(pv +0v)(Sy = SV) + (uv + ov)(Bv — Ey) + (pv + 0v) (Iy — 1))

av av
This shows that T is negative and i 0 if and only if
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Sa=8%, Ea=FEY, Iay =14y, las=14, Ra=R), R=R",

Sc =58, Ec=E§, Ioy =15y, les=15g, Re=RE, Q=Q,

Sy =8y, By =Ey, Iy=1

Additionally, every solution of (1) with the initial conditions approaches £** as t — oc.

Therefore, the largest compact invariant set in

{(SA, Ea,Lart, Ias, Ra, R, Sc, Ec, Ioy, Ics, Re,Q, Sv, Ey, Iy) € D : &2 < 0} is a singleton set {£**}
Therefore, from Lassalle’s invariant principle [21], it implies that the endemic equilibrium &** is
globally asymptotically stable in D whenever Rg > 1
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