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Abstract 

Anti-Müllerian hormone (AMH) is expressed by antral stage ovarian follicles in women. Consequently, 

circulating AMH levels are detectable until menopause. Variation in age-specific AMH levels has been 

associated with breast cancer and polycystic ovary syndrome (PCOS), amongst other diseases. 

Identification of genetic variants underlying variation in AMH levels could provide clues about the 

physiological mechanisms that explain these AMH-disease associations. To date, only one variant in 

MCM8 has been identified to be associated with circulating AMH levels in women. We aimed to identify 

additional variants for AMH through a GWAS meta-analysis including data from 7049 premenopausal 

women of European ancestry, which more than doubles the sample size of the largest previous GWAS. 

We identified four loci associated with AMH levels at p < 5x10-8: the previously reported MCM8 locus 

and three novel signals in or near AMH, TEX41, and CDCA7. The strongest signal was a missense variant 

in the AMH gene (rs10417628). Most prioritized genes at the other three identified loci were involved in 

cell cycle regulation. Genetic correlation analyses indicated a strong positive correlation among SNPs for 

AMH levels and for age at menopause (rg= 0.82, FDR=0.003). Exploratory Mendelian randomization 

analyses did not support a causal effect of AMH on breast cancer or PCOS risk, but should be interpreted 

with caution as they may be underpowered and the validity of genetic instruments could not be 

extensively explored. In conclusion, we identified a variant in the AMH gene and three other loci that 

may affect circulating AMH levels in women.  
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Introduction 

Anti-Müllerian hormone (AMH) is generally known for its function in sexual differentiation, during which 

AMH signaling is essential for the regression of internal female reproductive organs in male embryos.1 In 

women, AMH is expressed by granulosa cells of primary ovarian follicles, and AMH expression continues 

until the antral stage.2 AMH becomes undetectable after menopause, when the ovarian reserve is 

depleted, and AMH can therefore be used as a marker for reproductive aging.3  

Variation in age-specific circulating AMH levels has been associated with the occurrence of several non-

communicable diseases, including breast cancer.4 In addition, it has been suggested that AMH may be 

involved in the pathogenesis of polycystic ovary syndrome (PCOS).5 Gaining more insight into genetic 

variation and biological mechanisms underlying inter-individual variation in AMH expression through 

genome-wide association studies (GWASs) could provide new clues regarding postnatal functions of 

AMH, and possibly, the etiologies of non-communicable diseases associated with AMH levels.  

Previous GWASs on circulating AMH levels included either a mixture of male and female adolescents6, a 

very small study population7, or women of late reproductive age8 in whom AMH levels are generally very 

low. Of the previous GWASs, only the largest (n = 3344) identified a single genetic variant for AMH levels 

in premenopausal women, at chromosome 20 (rs16991615)8, which is also associated with natural age 

at menopause.9; 10 As sample sizes of previous GWASs were relatively small, a larger GWAS meta-

analysis might lead to detection of more AMH variation loci. Moreover, as most variation in AMH levels 

in women is observed at ages 20 to 40 years11, including younger women will increase power to identify 

additional loci. Therefore, we aimed to identify additional genetic variants for AMH through a GWAS 

meta-analysis including 7049 premenopausal female participants. For that, we combined summary 

statistics from the AMH GWAS meta-analysis by Ruth et al.8 with GWAS data from 3705 additional 

women of early and middle reproductive age from 3 different cohorts.  
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Subjects and Methods 

Study population 

We included data from 7049 premenopausal female participants (median age ranged from 15.3 to 48 

years across cohorts; Table 1) of European ancestry. In addition to the data from the AMH GWAS meta-

analysis by Ruth et al.8 (n = 3344), we included data from the Doetinchem Cohort Study12; 13 (n = 2084), 

the Study of Women’s Health Across the Nation (SWAN)14 (n = 425), and data from adolescent daughters 

of the Avon Longitudinal Study of Parents and Children (ALSPAC)15 (n = 1196). The GWAS by Ruth et al. 

included data from the Generations Study16, Sister Study17, Nurses’ Health Study18, Nurses’ Health Study 

II19, and ALSPAC mothers20. For the current study, we requested summary statistics excluding data from 

ALSPAC mothers, as we wanted to analyze data from the ALSPAC mothers separately to investigate 

potential bias due to cryptic relatedness. More details about participating studies and the definitions 

used for the assessment of menopausal status are described in the Supplemental Methods and 

Supplemental Table 1. All studies received ethical approval from an institutional ethics committee. 

 

AMH measurements 

Included studies measured AMH in either serum or plasma using different AMH ELISA assays. Also, the 

methodology for handling AMH measurements below the assay limit of detection (LOD) differed across 

studies. A detailed overview of these study-specific details has been included in Supplemental Table 1. 

Across studies, the percentage of measurements under the assay-specific LODs ranged from 0% to 

24.2%. 
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Genotyping and imputation 

Extensive details on genotyping and imputation procedures for each participating study are presented in 

Supplemental Table 2. Briefly, samples of the Generations Study, Sister Study, and most samples of the 

Nurses’ Health Studies, were genotyped using the OncoArray array.8 The remaining 225 samples of the 

Nurses’ Health Studies were genotyped using Illumina HumanHap550 and HumanHap610 arrays.8 

Samples of the Doetinchem Cohort Study were genotyped using the Illumina Infinium Global Screening 

Array-24 Kit (Illumina Inc., San Diego, California, United States of America). For genotyping of samples 

from ALSPAC mothers and daughters, the Illumina Human660W-Quad array and Illumina HumanHap550 

quad genome-wide SNP genotyping platform were used, respectively. SWAN participants were 

genotyped using the Illumina Multi-Ethnic Global Array (MEGA A1). All participating studies performed 

sample and SNP QC prior to imputation, which was done using the Haplotype Reference Consortium 

(HRC) panel version r1.1 2016 (Supplemental Table 2). 

 

Association analyses 

All studies converted AMH concentrations to pmol/L using 1 pg/mL = 0.00714 pmol/L. As AMH levels are 

not normally distributed, AMH measurements were transformed using rank-based inverse normal 

transformation in all studies, as previously described.8 

In all studies linear models were fitted, assuming additive SNP effects, adjusted for age at blood 

collection (years) (Supplemental Methods). Analyses were further adjusted for population stratification 

by inclusion of either 10 principal components (ALSPAC, SWAN) or a kinship matrix (Generations Study, 

Sister Study, Nurses’ Health Studies, Doetinchem Cohort Study). In addition, we included summary 

statistics of the meta-analysis of the Generations Study, Sister Study, and Nurses’ Health Studies, which 

was performed using METAL, as described elsewhere.8 Separate association analyses were conducted 
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for the ALSPAC mothers and daughters, because of the large differences in both age and AMH 

distributions between these groups (Supplemental Methods). 

Prior to meta-analysis, we performed file-level and meta-level QC on all summary statistics files to clean 

and check the data, and to identify potential study-specific problems. File-level and meta-level QC were 

conducted using the R package EasyQC (v9.2), following a previously published protocol21 (Supplemental 

Methods). No study-specific issues were identified through these QC procedures (Figure S1-S5). In 

addition, we sought to confirm that inclusion of ALSPAC mothers and daughters as separate cohorts 

would not result in inflation of effect estimates due to cryptic relatedness (411 mother-daughter pairs 

were present in the ALSPAC data). We checked this through meta-analyzing only data of the two ALSPAC 

cohorts and checking both the corresponding QQ plot and calculating . Given the absence of genomic 

inflation ( = 1.01, QQplot in Figure S6) we included summary statistics of both ALSPAC mothers and 

daughters in the meta-analysis. 

We performed an inverse variance weighted meta-analysis using METAL (version 2011-03-25). Genomic 

control was applied for all included studies. SNPs with a minor allele frequency (MAF) < 1% and/or poor 

imputation quality (info score < 0.4 or r2 < 0.3, depending on which metric was provided) were excluded. 

As a result, 8,298,138 autosomal SNPs were included in this AMH GWAS meta-analysis. To assess if 

observed effect estimates were homogeneous across studies, we additionally performed a 

heterogeneity analysis in METAL. 

To identify lead and secondary SNPs within genome-wide significant associated loci, we performed an 

approximate conditional and joint association analysis.22 We used Genome-wide Complex Trait Analysis 

(GCTA)23 (version 1.93.1f beta) to run a stepwise model selection procedure to select independently 

associated SNPs (cojo-slct) using the summary-level data. We estimated LD between SNPs using data of 

4059 unrelated participants from the EPIC-NL cohort24 as LD reference panel.  
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Because of the strong correlation between AMH and age, and the difference in both the AMH and age 

distributions in the ALSPAC daughters compared to the other included cohorts, we performed a 

sensitivity analysis in which we excluded the ALSPAC daughters. Furthermore, this sensitivity analysis 

served as an additional check that inclusion of both ALSPAC mothers and daughters did not cause 

identification of false-positive hits. 

 

Gene-based genome-wide association analysis 

We performed a gene-based genome-wide association analysis using the MAGMA25 implementation 

(v1.07) in the online Functional Mapping and Annotation of Genome-wide Association Studies (FUMA) 

platform (FUMA)26 (parameter settings are listed in Table S3). For this analysis, SNPs located in gene 

bodies were aggregated to 18,896 protein coding genes (Ensembl build 92). MAGMA tests the joint 

association of all SNPs in each gene with inverse normal transformed AMH levels using a multiple linear 

regression approach, which takes LD between SNPs into account.25 FUMA considered genes to be 

significantly associated with circulating AMH levels if p < 2.65 x 10-6 (Bonferroni corrected p-value; 0.05/ 

18,896). 

 

Functional annotation using FUMA 

FUMA is an integrative web-based platform that uses 18 biological resources and can be used to 

functionally annotate lead variants from GWAS, and to prioritize the most likely causal SNPs and 

genes26. We used the SNP2GENE process integrated into FUMA (v1.3.6)26 for the characterization of 

genomic loci and functional gene mapping (parameter settings are listed in Table S3). We included SNPs 

identified in our approximate conditional and joint analysis as predefined lead SNPs for the 

characterization of genomic risk loci. SNPs that were in LD with these lead SNPs (r2 > 0.6) within a 500kb 
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window based on the 1000G Phase 3 European reference panel population in FUMA, and a GWAS meta-

analysis p-value < 0.05 were selected as candidate SNPs. Non-GWAS-tagged SNPs from the 1000G Phase 

3 European reference that met these LD and distance criteria were also selected as candidate SNPs. 

Candidate SNPs were annotated based on Combined Annotation Dependent Depletion (CADD) scores27, 

Regulome DB scores28, and chromatin states29 (Table S3). Positional mapping, eQTL mapping and 

chromatin interaction mapping were used to map SNPs to genes (Table S3). For chromatin states, eQTL 

mapping and chromatin interaction mapping we only selected tissues and cell types that are most likely 

to be involved in AMH expression and signaling (Table S3). 

 

Pathway analysis using DEPICT 

We used the hypothesis-free pathway analysis tool DEPICT (v1)30 to prioritize the most likely causal 

genes at associated loci, to highlight gene sets enriched in genes within associated loci, and to identify 

tissues/cell types that are implicated by the associated loci. For these analyses, we included all 

suggestive significant SNPs (p < 5 x 10-6), which were clumped at LD r2 < 0.1 and a physical distance of 

500kb using PLINK v.1.9 as part of the DEPICT pipeline. 

 

LD Score Regression 

We estimated SNP heritability using the LD Hub web interface (v1.9.3)31 for LD score regression32. In 

addition, we used LD Hub to estimate SNP-based genetic correlations between AMH and phenotypes 

that have been associated with AMH in observational studies. These genetic correlation analyses make 

use of GWAS summary statistics for all SNPs to estimate genetic covariance among SNPs for two traits.33 

Included phenotypes comprised reproductive traits, hormones (leptin), anthropometric traits, blood 

lipids, glycemic traits, metabolites, cardiometabolic traits, cancer, autoimmune diseases, bone mineral 
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density, aging and smoking behavior. Of the 597 UK Biobank traits in the LDHub database, we only 

included traits that corresponded to these phenotype categories, resulting in 345 comparisons. To 

correct for multiple testing, we calculated false discovery rates (FDR), using the p.adjust function in R (R 

package “stats”).34 FDR adjusted p-values < 0.05 were considered to be significant. 

 

Mendelian randomization 

In observational studies, AMH has been associated with breast cancer4, and PCOS35, amongst other 

diseases. As the exact function of AMH in the etiology of these diseases is unclear, and actual AMH 

levels are associated with predicted future age at menopause and current menopausal status, causality 

of these AMH-disease associations remains to be determined. Mendelian randomization (MR) is a 

method that may provide evidence for causality of observational associations.36 Because our AMH 

GWAS meta-analysis only included women, and previous research suggests that genetic variants for 

inter-individual differences in AMH levels differ between males and females6, we  performed MR 

analyses for the female-specific outcomes breast cancer and PCOS only. We performed two-sample MR 

analyses37 using the R package TwoSampleMR (version 0.5.1)38. We included identified lead SNPs as 

genetic instruments for AMH. For the outcomes, we included summary statistics from the most recent 

largest GWASs for breast cancer (n = 228,951; 122,977 cases)39 and PCOS (n = 113,238; 10,074 cases)40. 

Wald ratio estimates were calculated for individual SNPs and a random effects inverse variance 

weighted (IVW) meta-analysis approach was used to combine these estimates. To assess the strength of 

included genetic variants for AMH we calculated F-statistics corresponding to the IVW analyses, using 

the proportion of variance in AMH explained by the genetic variants, the sample size of the outcome 

GWASs, and the number of variants included41. We compared the overall MR estimate (i.e. IVW) to SNP-

specific MR estimates (i.e. Wald ratio) since inconsistent estimates are indicative of horizontal 
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pleiotropy, which is a violation of the MR assumptions.38 In addition, we tested for heterogeneity in 

causal effects amongst the genetic instruments using Cochrane’s Q statistics and performed leave-one-

out sensitivity analyses to assess the potential effect of outlying variants.  
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Results 

Descriptive statistics on age and AMH levels of the study participants included in this GWAS meta-

analysis are presented per study in Table 1. Median AMH ranged from 1.1 pmol/L in SWAN to 26.1 

pmol/L in ALSPAC daughters. Median age ranged from 15.3 years in ALSPAC daughters to 48 years in the 

Sister Study. 

 

Genome-wide association analysis 

We identified four genome-wide significant lead SNPs (p <5 x 10-8) for inverse normally transformed 

AMH, in four loci (Table 2, Figure 1, Figure S7-8). Approximate conditional and joint analysis did not 

reveal secondary signals. In addition to the previously reported locus on chromosome 20 (rs16991615, 

nearest gene: MCM8), we identified 1 locus on chromosome 19 (nearest gene: AMH) and 2 loci on 

chromosome 2 (nearest genes: TEX41 and CDCA7). The strongest signal was rs10417628 on 

chromosome 19, which is physically located in the AMH gene (β = -0.34, se = 0.05, p = 1.2 x 10-11 ) 

(Figure S8A). Combined the four lead SNPs explained 1.47% of the variance in AMH levels. 

In the sensitivity analysis excluding ALSPAC daughters, all four loci from the main analysis remained 

genome-wide significant, and an additional locus at chromosome 5 (rs116090962, nearest gene: CTB-

99A3.1) was identified (β  = 0.38,  se = 0.07, p = 6.0 x 10-9) (Table S4). 

 

Gene-based genome-wide association analysis 

Gene-based genome-wide association analysis, which tested associations between 18,896 protein 

coding genes and inverse normal transformed AMH, highlighted the following four significant genes: 

AMH, BMP4, EIF4EBP1, and GAB2 (Supplemental Figure 9).  
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Functional Annotation using FUMA 

Through the SNP2GENE process, FUMA identified 82 candidate SNPs that were in LD with the four 

identified lead SNPs (Supplemental Table 5). These candidate SNPs were used for the prioritization of 

genes. 

In total, 12 genes were mapped to the locus of the previously identified SNP on chromosome 20 

(rs16991615) (Supplemental Table 6), of which MCM8 and CRLS1 were prioritized based on eQTL 

mapping (Figure 2A). CRLS1 was the only gene prioritized based on both eQTL mapping and chromatin 

interactions. However, as rs16991615 is a missense variant located in exon 9 of the MCM8 gene, and 

this was the only SNP identified for this locus, MCM8 is the most likely gene causing this signal. 

For the locus on chromosome 19, 3 candidate SNPs (rs10417628, rs12462821, rs7247495) were 

identified. The lead SNP in this locus (rs10417628) is also a missense variant, located in exon 5 of the 

AMH gene, making this the most likely causal gene at this locus. The other 2 variants were located in 

intronic and intronic non-coding RNA regions. Based on the used parameter settings, FUMA mapped 8 

genes to the AMH locus (Supplemental Table 6), of which 4 were highlighted by eQTL mapping (AMH, 

C19orf35, SPPL2B and LSM7) and 1 through chromatin interactions (ABHD17A) (Figure 2B). 

Most of the candidate SNPs were identified for the locus on chromosome 2 near TEX41. All 77 variants 

were located in either intronic or exonic long noncoding RNA regions. Of the 15 genes mapped to this 

locus (Supplemental Table 6), no genes were prioritized based on eQTL mapping, but several genes were 

prioritized based on chromosome interactions, including ZEB2-AS1 (Figure 2C). In the other locus on 

chromosome 2, for which CDCA7 is the nearest gene, no additional candidate SNPs were identified and 

no genes were mapped to this locus.  
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Pathway analysis using DEPICT 

Using the DEPICT tool, 188 suggestive associated SNPs (p < 5 x 10-6) were clumped at LD r2 < 0.1 and a 

physical distance of 500 kb, resulting in 24 clumps as input for the enrichment analyses (Table S7). The 

top three prioritized gene sets were “URI1 PPI subnetwork”, “NFYB PPI subnetwork” and “nuclear inner 

membrane” (Table S8). “Induced Pluripotent Stem Cells” was identified as the highest prioritized cell 

type (Table S9). However, none of these enrichments were statistically significant (FDR > 0.05).  

DEPICT prioritized nine genes at FDR < 0.05 as most likely causal genes (Table S10). Of the genome-wide 

associated loci, only MCM8 (rs16991615), and CDCA7 (rs11683493) were prioritized at this FDR 

threshold. AMH, BMP4, and GAB2 were also prioritized by DEPICT, but FDR values were > 0.20. Of the 

genes significant in the gene-based MAGMA analysis, EIF4EBP1 was prioritized at FDR < 0.05.  

 

LD Score Regression 

We used LD score regression implemented in LD Hub to calculate SNP heritability for AMH based on the 

meta-analysis summary statistics. Total SNP heritability (hg
2) on the observed scale was estimated to be 

15% (se = 7%). We additionally performed genetic correlations analyses between AMH and 345 traits on 

LD Hub. After correction for multiple testing, AMH was only significantly correlated with age at 

menopause (rg = 0.82, se = 0.19, FDR = 0.003) (Table S11). 

 

MR analyses 

IVW MR estimates did not indicate a causal effect of circulating AMH on breast cancer risk (ORIVW = 1.00, 

95%CI: 0.74 – 1.36; Table 3). Results from the single SNP analysis including the variant in the AMH locus 

also did not support a causal association with breast cancer (ORIVW = 0.99, 95%CI = 0.87 – 1.12), whereas 
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analyses for the remaining variants suggested a risk decreasing effect of the SNPs in the TEX41 and 

CDCA7 loci and a risk increasing effect of the variant in the MCM8 locus (Table 3). In agreement with 

these findings, a formal heterogeneity test for the IVW estimate indicated heterogeneity in causal 

effects amongst the four genetic variants (2.13 x 10-11), although the interpretation of this heterogeneity 

p-value is limited due to the small number of included SNPs. Leave-one-out sensitivity analyses 

supported the outlying effect of rs16991615 (MCM8 locus) (Figure S11). 

For PCOS, the IVW MR estimate suggested that higher genetically predicted AMH levels are potentially 

associated with an increased risk of PCOS, but confidence intervals were wide and included the null 

(ORIVW = 1.29, 95%CI = 0.85 – 1.95; Table 3). Single SNP analyses resulted in a similar effect estimate for 

the variant in the AMH locus (ORIVW = 1.27, 95%CI = 0.64 – 2.56), risk increasing effects for the SNPs in 

the TEX41 and MCM8 loci, and a risk decreasing effect of the variant in the CDCA7 locus (Table 3). The 

heterogeneity test did not suggest heterogeneous effects of the individual SNPs (p = 0.30), most likely 

because of the high uncertainty in individual SNP estimates, but again interpretation of this p-value is 

limited with only four SNPs. Leave-one-out sensitivity analyses indicated rs11683493 (CDCA7 locus) 

affected the IVW estimate most, and that exclusion of this variant resulted in a positive association 

(ORIVW = 1.53, 95%CI = 1.01 – 2.33) (Figure S13).  
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Discussion 

We identified four loci for circulating AMH levels in women of European ancestry. In addition to 

confirming a previously reported signal in the MCM8 locus, we discovered three new signals in and near 

the AMH, TEX41 and CDCA7 genes. In total, 35 genes were prioritized for these loci based on physical 

position, eQTL mapping and chromatin interactions, but pathway analyses did not reveal enrichments of 

gene-sets, tissues or cell types for genes annotated to suggestive associated SNPs. Genetic correlation 

analyses supported a shared genetic architecture between AMH levels and age at menopause. 

Exploratory MR analyses did not provide strong evidence of a causal effect of circulating AMH on breast 

cancer and PCOS. 

We confirmed the association between rs16991615 and circulating AMH levels, previously reported by 

Ruth et al.8. This SNP is a missense variant located in exon 9 of the MCM8 gene, rendering MCM8 the 

most likely causal gene at this locus. In humans, MCM8 plays a role in in homologous recombination, 

which is critical for DNA repair.42 Previous studies have linked MCM8 deficiency to premature ovarian 

failure and infertility, but also to cancer development.39; 43; 44 Associations between rs16991615 and age 

at menopause45 and number of ovarian follicles46 have also been reported, which suggests that this 

locus is associated with circulating AMH levels because of its influence on the number of antral follicles. 

Our GWAS study is the first AMH GWAS that identified a missense SNP (rs10417628) in the AMH gene in 

women. A previous AMH GWAS including adolescents from ALSPAC identified three SNPs in the AMH 

gene that were only significantly associated with AMH levels in male adolescents, and of which one 

(rs2385821) was in moderate LD with our lead SNP rs10417628 (R2 = 0.55).6 However, approximate 

conditional and joint analyses suggested that these variants represent the same signal at the AMH locus. 

Although identification of a genetic variant in the gene encoding for AMH itself suggests that we reveal 

an actual signal for circulating AMH concentrations, a recent case report suggests that the amino acid 
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substitution corresponding to rs10417628 reduces AMH detection by the picoAMH assay from Ansh 

Labs without influencing AMH bioactivity.47 We sought to verify this finding in a subsample of the 

Doetinchem Cohort Study, for which AMH was measured using both the picoAMH and the less sensitive 

Gen II assay from Beckman Coulter. For the only woman who was estimated to be homozygous for the T 

allele (dosage T allele = 1.9, age at measurement = 28.3 years), AMH levels were indeed undetectable 

using the picoAMH assay, whereas circulating AMH levels were detected using the Gen II assay (318 

pg/mL). In addition, median AMH levels measured using the Gen II assay were less different between 

women homozygous for the reference allele and heterozygous women (median AMH levelshomozygousrefallele 

= 953.0 pg/mL, IQR: 428.0 - 1999.0; median AMH levelsheterozygous = 848.0 pg/mL, IQR: 509.0 - 1310.0), 

compared to AMH levels measured using the picoAMH assay (median AMH levelshomozygousrefallele = 1485.9 

pg/mL, IQR: 704.4 - 3150.0; median AMH levelsheterozygous = 811.0 pg/mL, IQR: 462.3 - 1480.9). For 

ALSPAC, which also used the Gen II assay to measure AMH, the distribution of AMH levels was similar 

across adult women homozygous for the reference allele and heterozygous women as well. However, in 

the ALSPAC daughters median AMH levels were clearly higher in adolescents homozygous for the 

reference allele compared to heterozygous adolescents. Among the ALSPAC participants, only one 

adolescent was homozygous for the T allele, but her AMH levels could not be shared due to disclosure 

risk. Because of the lack of publicly available information on the antibodies and conformational epitopes 

of the Gen II assay, and the limited and inconsistent evidence in the current study, we do not want to 

draw any definite conclusions about this yet. 

For the associated loci on chromosome 2 it is more challenging to assign possible causal genes, as TEX41 

is a long noncoding RNA and the SNP in the CDCA7 locus was located in an intergenic region. Gene 

mapping based on chromatin interactions with TEX41 highlighted several genes, including the long non-

coding RNA ZEB2-AS1 (ZEB2 antisense RNA 1). ZEB2-AS1 up-regulates expression of the protein ZEB2.48 

ZEB2 (also known as SIP1) inhibits signal transduction in TGF-β and BMP signalling through interaction 
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with ligand-activated SMAD proteins.49; 50 Among other BMP proteins, BMP4 has been reported to 

regulate AMH expression through activation of SMAD proteins.51; 52 Based on identification of BMP4 in 

our gene-based association analysis and its prioritization by DEPICT, we hypothesize that BMP4 induced 

AMH expression may be regulated by ZEB2 interaction. However, fundamental laboratory research is 

needed to prove this. 

CDCA7 (also known as JPO1) is a direct target gene of the transcription factor MYC and is involved in 

apoptosis.53 Functional annotation did not map any genes to this locus and thus the mechanism through 

which this locus affects circulating AMH levels remains to be elucidated. Also for EIF4EBP1, and GAB2, 

which were significantly associated with AMH levels in the gene-based association analysis, it is not yet 

clear if and how these genes influence AMH expression. A target gene of EIF4EBP1 has been previously 

highlighted as candidate gene for age at menopause54, whereas GAB2 is involved in FSH signalling55 and 

has been identified as a potential causal gene for age at menarche.56 Altogether these results suggest 

that these genes play a role in reproductive functioning and reproductive aging, potentially by affecting 

the number of antral follicles, which are the main producers of AMH in women.2 Ideally, future studies 

should explore whether the observed genetic associations may merely reflect the size of the ovarian 

reserve, through adjusting analyses for antral follicle count. Such analyses would also show if we can 

actually use the identified variants are instruments for circulating AMH levels itself or for the quantity of 

antral follicles in MR analyses. 

We did not find support for a causal effect of circulating AMH levels on breast cancer and PCOS risk in 

our exploratory MR analyses. To be valid genetic instruments for MR, SNPs have to fulfil the following 

three criteria57: (1) SNPs have to be associated with the circulating AMH levels; (2) SNPs cannot be 

associated with confounders of the studied AMH-outcome associations, and (3) SNPs cannot influence 

the outcomes through mechanisms that do not involve circulating AMH levels. Because rs10417628 in 

the AMH gene potentially reflects AMH detection instead of AMH expression, analyses including this 
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variant should be interpreted with caution. However, leave-one-out analyses excluding this variant did 

not affect IVW MR estimates. Based on the function of genes mapped to the loci on chromosomes 20 

and 2, it is likely that these variants affect breast cancer and PCOS risk through mechanisms 

independent of AMH (e.g. DNA replication and apoptosis), in particular the MCM8 locus, which has also 

been identified in breast cancer GWAS.39 Due to the limited number of identified lead SNPs it was not 

possible to assess if our results were indeed biased by horizontal pleiotropy. Furthermore, weak 

instrument bias may still have biased MR results towards the null, since the F statistics may be 

overestimated in this GWAS (853.9 for breast cancer, and 422.4 for PCOS). Consequently, we should be 

cautious about excluding a causal effect of AMH on the studied outcomes.  

Previous research suggests that AMH levels in females rise during puberty, until the mid to late 

twenties, and after that decrease until menopause.11; 58 Based on these observations and the differences 

in both age and AMH distributions between the ALSPAC adolescents and other participants, we 

performed a sensitivity analysis excluding the adolescents from ALSPAC. This analysis revealed an 

additional locus on chromosome 5 (rs116090962, nearest gene: CTB-99A3.1), although we could not find 

clues for its association with circulating AMH levels in adult women only, nor with AMH levels in general. 

Study-specific betas revealed an opposite effect for the MCM8 locus and a minimal effect for the CDCA7 

locus in adolescents compared to effects in adult women. A larger GWAS including older adolescents 

and a larger proportion of females aged 20 to 40, would be required to reveal potential gene-age 

interactions explain variation in AMH expression. 

The main strengths of the current GWAS meta-analysis are its size, which is twice the size of the 

previous GWAS meta-analysis, and its larger proportion of women of early-reproductive age. Given 

AMH’s function in ovarian follicle development, circulating levels and variation in AMH levels decrease 

with age. As a result, statistical power to identify genetic variants for circulating AMH increases if 

younger women are included. Still, our sample size remains relatively small for a GWAS, and future 
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larger studies may lead to the detection of additional variants for circulating AMH levels. This is 

supported by our chip heritability estimate of 15% (se = 7%), which indicates that there are likely more 

SNPs that contribute to variability in AMH levels. Identification of additional genetic variants will also 

facilitate increased power to identify pathways and tissues enriched for genes involved in AMH 

expression. A second limitation of this study is potential overlap in participants between the current 

AMH GWAS and the GWAS for breast cancer39 (maximum n = 1,459; 20.7% of current study) and PCOS40 

(maximum n = 225; 3.2% of current study). Overlap in participants in two-sample MR analyses may bias 

effect estimates and inflate Type 1 error rates.59  

In conclusion, we replicated the previously reported association with the MCM8 locus and identified 3 

novel loci for circulating AMH levels in women, including the AMH locus. The strongest signal in this 

locus possibly affects AMH detection by specific assays rather than AMH bioactivity, but further research 

is required to confirm this hypothesis. Genes mapped to the MCM8, TEX41 and CDCA7 loci are involved 

in the cell cycle and processes like DNA replication and apoptosis. The mechanism underlying their 

associations with AMH may affect the size of the ovarian follicle pool. MR analyses did not support a 

causal effect of AMH on breast cancer and PCOS, but these finding should be interpreted with caution 

because we could not robustly explore how valid the instruments were and weak instrument bias may 

have biased estimates towards the null.  
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Figures 

 

 

Figure 1: Manhattan plot of genome-wide association results for inverse normally transformed AMH 

in women. 

Results are association results from meta-analysis of inverse normally transformed AMH in 7,049 women of 

European ancestry. Individual studies adjusted analyses for age at AMH measurement and population stratification 

(through kinship matrix or 10 principal components). 
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C 

Figure 2: Circos plots for the genome-wide significant loci for inverse normally transformed AMH in 

women. 

Circos plots are presented for each of the identified loci: MCM8 (panel A), AMH (panel B), TEX41 and CDCA7 (panel 

C). The outer layer represents the Manhattan plot. The second (including genomic positions) and third layers 

represents the chromosome ring, genomic risk loci are depicted in blue. Only genes mapped by either eQTLs or 
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chromatin mapping are plotted. Genes only mapped by eQTLs are green, genes only mapped by chromatin 

interactions are orange, and genes mapped by both have a red colour. Orange coloured lines represent chromatin 

interactions, green coloured lines are eQTL links. Plots were created using the FUMA platform26. 
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Tables 

Table 1: Distributions of AMH and age per participating study. 

Study N AMH, pmol/L 

(median (IQR)) 

Age at blood collection, years 

(median (IQR)) 

Studies contributing to summary 

statistics GWAS Ruth et al.8* 

   

Generations Study 379 3.9 (0.8, 11.7) 44 (40, 48) 

Sister Study 438 1.2 (0.1, 6.0) 48 (45, 51) 

Nurses’ Health Studies 642 6.1 (2.0, 13.9) 44 (41, 47) 

    

Additional studies    

Doetinchem Cohort Study 2,084 10.9 (2.9, 25.6) 37.2 (31.2, 42.9) 

ALSPAC mothers 1,885 2.0 (0.4, 5.2) 46 (44, 49) 

ALSPAC daughters 1,196 26.1 (18.2, 39.8) 15.3 (15.3, 15.5) 

SWAN 425 1.1 (0.2, 3.3) 47.3 (45.3, 49.3) 

    

Total 7,049   

* In the original study ALSPAC mothers were included as well, but in the current analyses summary statistics from 

ALSPAC were included separately to assess potential genomic inflation due to inclusion of both ALSPAC mothers 

and daughters. Therefore, we treated the ALSPAC mothers as individual study.
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Table 2: Loci significantly associated (p  < 5 x 10-8) with inverse normally transformed AMH in women. 

Nearest 

gene 

SNP Chr Pos  

 

EA OA EAF N Imputation 

quality 

Effect (SE) P Direction  Phet Percentage 

of variance 

in AMH 

explained 

AMH rs10417628 19 2,251,817 T C 0.02 7049 0.83 -0.34 (0.05) 1.2 x 10-11 ----- 0.14 0.50 % 

TEX41 rs13009019 2 145,670,572 A G 0.69 7049 0.95 -0.09 (0.01) 7.2 x 10-10 ----- 0.24 0.35% 

MCM8 rs16991615 20 5,948,227 A G 0.07 7049 0.99 0.16 (0.03) 1.2 x 10-8 ++-++ 0.0009 0.30% 

CDCA7 rs11683493 2 174,259,325 T C 0.57 7049 0.97 -0.08 (0.01) 1.7 x 10-8 ----- 0.03 0.32% 

Definition of columns: nearest gene, nearest gene identified using DEPICT tool (Subjects and Methods); SNP, genetic variant identified as lead SNP; Chr, 

chromosome; Pos, base pair position genomic build GRCh37; EA, effect allele; OA, other allele; EAF, effect allele frequency; N, number of samples contributing 

to estimate; Imputation quality, mean imputation quality over the included studies; Effect (SE); effect size and corresponding standard error; P, p-value; 

Direction, direction of effect for previous GWAS, ALSPAC mothers, ALSPAC daughters, Doetinchem Cohort Study and SWAN, respectively; Phet, p-value for 

heterogeneity of effect across studies. 
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Table 3: Mendelian randomization estimates for causal effects of circulating AMH on breast cancer and PCOS risk. 

Outcome Method Odds Ratio 95% CI p 

Breast Cancer IVW 1.00 0.74 - 1.36 0.98 

 
Wald ratio estimate for rs10417628 
(AMH) 

0.99 0.87 - 1.12 0.85 

 
Wald ratio estimate for rs13009019 
(TEX41) 

0.84 0.72 - 0.97 0.02 

 
Wald ratio estimate for rs16991615 
(MCM8) 

1.60 1.37 - 1.87 1.79 x 10-9 

 
Wald ratio estimate for rs11683493 
(CDCA7) 

0.76 0.65 - 0.89 9.41 x 10-4 

     

PCOS IVW 1.29 0.85 - 1.95 0.23 

 
Wald ratio estimate for rs10417628 
(AMH) 

1.27 0.64 - 2.56 0.49 

 
Wald ratio estimate for rs13009019 
(TEX41) 

1.66 0.80 - 3.45 0.18 

 
Wald ratio estimate for rs16991615 
(MCM8) 

1.75 0.83 - 3.69 0.14 

 
Wald ratio estimate for rs11683493 
(CDCA7) 

0.66 0.29 - 1.50 0.32 

Odds ratio and 95%CI are per 1 unit increase in inverse normally transformed AMH. 

AMH, anti-Müllerian hormone; PCOS, polycystic ovary syndrome; IVW, inverse variance weighted; MR, Mendelian randomization. 
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