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Boxes 
 
 
Evidence before this study  

We searched on Medline, EMBASE, and Pubmed for articles published from January 2020 

to August 2020 using various combinations of the search terms “sex-difference”, “gender” 

AND SARS-Cov-2, or COVID. Epidemiological studies indicate that men and women are 

similarly infected by COVID-19, but the outcome is less favorable in men, independently 

of age. Several studies also showed that patients with hypogonadism tend to be more 

severely affected. A prompt intervention directed toward the most fragile subjects with 

SARS-Cov2 infection is currently the only strategy to reduce mortality. glucocorticoid 

treatment has been found  cost-effective in improving  the outcome of severe cases. 

Clinical algorithms have been proposed, but little is known on the ability of genetic 

profiling to predict outcome and disclose novel therapeutic strategies.    

Added-value of this study  
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In a cohort of 1178 men and women with COVID-19, we used a supervised machine 

learning approach on a synthetic representation of the uncovered variability of the human 

genome due to poly-amino acid repeats. Comparing the genotype of patients with extreme 

manifestations (severe vs. asymptomatic), we found that the poly-glutamine repeat of the 

androgen receptor (AR) gene is relevant for COVID-19 disease and defective AR 

signaling identifies an association between male sex, testosterone exposure, and COVID-

19 outcome. Failure of the endocrine feedback to overcome AR signaling defect by 

increasing testosterone levels during the infection leads to the fact that polyQ becomes 

dominant to T levels for the clinical outcome.  

Implications of all the available evidence  

We identify the first genetic polymorphism predisposing some men to develop a more 

severe disease irrespectively of age. Based on this, we suggest that sizing the AR poly-

glutamine repeat has important implications in the diagnostic pipeline of patients affected 

by life-threatening COVID-19 infection. Most importantly, our studies open to the 

potential of using testosterone as adjuvant therapy for severe COVID-19 patients having 

defective androgen signaling, defined by this study as ≥23 PolyQ repeats and inappropriate 

levels of circulating androgens.  
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ABSTRACT  

Background COVID-19 presentation ranges from asymptomatic to fatal. The variability in 

severity may be due in part to impaired Interferon type I response due to specific mutations 

in the host genome or to autoantibodies, explaining about 15% of the cases when 

combined. Exploring the host genome is thus warranted to further elucidate disease 

variability. Methods We developed a synthetic approach to genetic data representation 

using machine learning methods to investigate complementary genetic variability in 

COVID-19 infected patients that may explain disease severity, due to poly-amino acids 

repeat polymorphisms. Using host whole-exome sequencing data, we compared extreme 

phenotypic presentations (338 severe versus 300 asymptomatic cases) of the entire (men 

and women) Italian GEN-COVID cohort of 1178 subjects infected with SARS-CoV-2. We 

then applied the LASSO Logistic Regression model on Boolean gene-based representation 

of the poly-amino acids variability. Findings Shorter polyQ alleles (≤22) in the androgen 

receptor (AR) conferred protection against a more severe outcome in COVID-19 infection.  

In the subgroup of males with age <60 years, testosterone was higher in subjects with AR 

long-polyQ (≥23), possibly indicating receptor resistance (p=0.004 Mann-Whitney U test). 

Inappropriately low testosterone levels for the long-polyQ alleles predicted the need for 

intensive care in COVID-19 infected men.  In agreement with the known anti-

inflammatory action of testosterone, patients with long-polyQ (≥23) and age>60 years had 

increased levels of C Reactive Protein (p=0.018).  Interpretation Our results may 

contribute to design reliable clinical and public health measures and provide a rationale to 

test testosterone treatment as adjuvant therapy in symptomatic COVID-19 men expressing 

AR polyQ longer than 23 repeats. Funding MIUR project “Dipartimenti di Eccellenza 

2018-2020” to Department of Medical Biotechnologies University of Siena, Italy (Italian 

D.L. n.18 March 17, 2020). Private donors for COVID research and charity funds from 

Intesa San Paolo. 
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INTRODUCTION 

This study was based on a preliminary descriptive analysis of a cohort of 35 

hospitalized COVID-19 patients that was used to pinpoint a combined model of rare and 

common host genetic variants.1 After this initial study, we extended the cohort to more 

than 1,000 Italian SARS-CoV-2 PCR-positive subjects.2 Among them, 25% were 

asymptomatic, 25% were very severe, and the remaining presented with different levels of 

respiratory failure and multi-organ involvement.2  

Alongside the mode of transmission, viral load, comorbidities, and demographic 

factors (such as age and sex), the host genetic background appears to play an important 

role in COVID-19 severity and progression.3 Data from classical methods of analysis, such 

as Genome-Wide Association Study (GWAS) or burden gene test on whole-exome 

sequencing (WES) data, have pinpointed a limited number of genetic factors that do not 

entirely explain how the host’s genetic background contributes to COVID-19 severity4. 

Two groups have recently identified rare variants in the interferon type I pathway that are 

responsible for inborn errors of immunity in a small percentage of patients and auto-

antibodies against type I interferon genes in up to 10% of with severe COVID-195,6,7. We 

hypothesized that most patients might instead have a more complex genetic background 

consisting of mutations arising in common susceptibility genes where additional private, 

rare, or low-frequency mutations provide the virus with the most favorable environment 

for replication, spread, and organ damage. Thus, we have considered the possibility that 

poly-amino acids repeat polymorphisms may contribute to COVID-19 severity. Our 

hypothesis was tested using a method of analysis based on a synthetic approach to genetic 

data representation. Specifically, we considered that polymorphisms in the polyQ tract of 

the Androgen Receptor (AR) may protect against the development of severe COVID-19. 

AR contains in its N-terminus domain a polymorphic polyQ tract, ranging between 9 and 
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36 repeated CAG units in the normal population8. In vitro and in vivo studies have 

demonstrated that the transactivation potential of AR is inversely correlated to repeat 

length and Q-tract length can significantly influence androgen-dependent physiological 

processes8-11.  

Several lines of evidence lead to the concept that androgens are relevant to both 

SARS-CoV-2 infection and COVID-19 disease presentation; however, they seem to have a 

Janus bifacial way of action12,13. On one side, androgens promote the transcription of the 

TMPRSS2 gene that encodes a serine protease known to prime the spike (S) protein of 

coronaviruses, facilitating viral entry into the cells14. On the other hand, hypogonadism 

and not hypergonadism is known to correlate with severe COVID-1915 and other chronic 

conditions, partly due to the loss of attenuation of the inflammatory immune response by 

testosterone16-18. Functional hypogonadism is also very common in male obesity and 

diabetes mellitus, two recognized factors of poorer prognosis in COVID-19 patients. The 

synthetic supervised genetic approach reported here contributes to disentangling this 

complex androgen-COVID-19 relationship. It may also have significant implications for 

further development of precision medicine in COVID-19 and identifies the use of 

androgens as a potential way to shape disease outcome as earlier proposed for 

glucocorticoids19, and subsequently demonstrated in a clinical trial20. 

RESULTS 

Testing the role of common poly-amino acid repeat polymorphisms in COVID-19 

outcome 

In order to test the role of common poly-amino acid repeat polymorphisms in 

determining COVID-19 clinical severity, we performed a nested case-control study 

(NCC), selecting the extreme phenotypic ends of our entire GENCOVID cohort (Table 1).  

(Figure 1). Among 18,439 annotated genes we selected those with amino acid repeats, 
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namely 43 genes, and represented them as a boolean. Logistic regression with LASSO 

regularization analysis identified AR as the only protective gene (Figure 1, panel A). As 

expected, the grid search curve of the cross-validation score (Figure 1, panel C) shows a 

maximum for an intermediate value of the L1 regularization parameters, and the chosen 

parameter is 6.31. With this calibration setting, the 10-fold cross-validation provides good 

performances in terms of accuracy (77%), precision (81%), sensitivity (77%), and 

specificity (78%) as shown in Figure 1, panel D. The confusion matrix is reported in 

Figure 1, panel B, whereas the Receiver Operating Characteristic (ROC) curve (Figure 1, 

panel E) provides an Area Under the Curve (AUC) score of 86%. 

 

Validation of polyQ polymorphism by sizing the PolyQ repeat of the AR receptor 

gene 

In order to validate the results on AR obtained by LASSO logistic regression, we 

seized the male subset (351  subjects) using the gold standard technique that uses a 

fluorescent PCR reaction followed by the use of GeneScan Analysis software® (Applied 

Biosystems) for sizing the number of triplets21. Based on the AR polyQ length, male 

patients were subdivided into two categories, those having a number of PolyQ repeats less 

than or equal to 22 repeats, and those having a number of PolyQ repeats greater than or 

equal to 23 repeats, being 23 repeats the reference sequence on genome browsers. We 

found that PolyQ repeats below 22 are enriched in the asymptomatic cohort of males. The 

difference was statistically significant in the group of males younger than 60 years of age 

in which genetic factors are expected to have a major impact (p-value 0,024) (Table 2; 

Supplementary Table S1; Supplementary Table S2). 

 

Validation of polyQ polymorphism in the Spanish Cohort 
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 We then seized the polyQ repeat in an independent cohort of 158 males from 

Spain, with age < 60 years and without known comorbidities (117 cases and 41 controls). 

The association with shorter repeats (≤ 22) and protection was confirmed (p-value 

0,014139 by χ2 test) (Table 3).  

 

Males with longer polyQ have receptor resistance 

To functionally link the length of the PolyQ repeats to AR functionality, we 

measured total testosterone (TT) in 183 men using LCMS/MS (Supplementary Table 

S1). TT was higher in patients carrying ≥23 vs  ≤22 glutamines (13.45 vs 11.23 nmol/L, p-

value of 0.0422), reflecting reduced negative feedback from the less active receptors 

present in patients carrying a PolyQ repeat of ≥23 (Fig. 2a). 

 

Unbalanced Testosterone-AR axis in males with longer polyQ repeats  

Hormonal status of the entire male set sized for polyQ according to the age group 

revealed lower TT and calculated free T levels and higher SHBG levels with increasing 

age (Supplementary Table S3).   

To evaluate whether the AR receptor reduced activity resulted in signs and symptoms 

of hypogonadism, subjects were interviewed, post-infection, using a modified version of 

the Androstest®22.  Interviews were available for 61 subjects (representative of the 

extremes genotypes of the cohort: 43 with ≤19 repeats and 18 with ≥25 repeats). An 

Androtest score ≥8 was found in 38% of men with ≥25 repeats as compared to 16% of 

those with ≤19 glutamines (likelihood ratio, p=0.046). Similarly, cryptorchidism (11% vs. 

2%), anemia (11% vs 2%) and severe erectile dysfunction (22% vs. 9%) were more 

frequently reported in subjects with ≥25 repeats, but not osteopenia/osteoporosis (6% vs 

7%). These results indicate a trend toward clinical hypogonadism for those with longer 

repeats. Conversely, in the entire male dataset, 6 cases of prostate cancer were found 
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annotated in the past-medical history, all in the ≤22 glutamines group, suggesting an 

increased prostate sensitivity to androgens. No difference was found in the prevalence of 

BPH or 5-alfa-reductase inhibitors use.  

As the reduced signal transduction of AR might be compensated by higher 

testosterone levels, as shown in Fig 2a, we tested whether the feedback was sufficient to 

overcome polyQ repeats. A binomial logistic regression was performed to ascertain the 

interaction between age, testosterone levels and polyglutamine receptor length on the 

likelihood that subjects require intensive care during COVID infections. The logistic 

regression model was highly significant (χ2 (3) = 18,881, p<0.0001), with the model 

explaining 7.5% (Nagelkerke /R2) of the variance in COVID19 outcome (Supplementary 

Table S4). A significant testosterone by polyglutamine length interaction was found 

(p=0.018), suggesting impaired feedback as predictor of the worst outcome, namely 

intubation or CPAP/BiPAP versus hospitalization not requiring respiratory assistance. To 

provide a graphical representation, we plotted the ratio between TT serum concentrations 

and polyQ number vs. clinical outcome (Fig. 2b). Results show a decreased mean ratio, a 

sign of an inappropriate rise of TT for increasing polyglutamine repeats, was associated 

with a worse outcome (p=0.00038).  

 

Older severely affected males with longer polyQ repeats display a more pronounced 

inflammatory phenotype  

Finally, we tested the relationship between the AR polyQ repeat size and 5 

laboratory markers of immunity/inflammation, including CRP, Fibrinogen, IL6, CD4 and 

NK count. We found that older (≥60) males with AR polyQ tract ≥23 have a higher (55.92 

versus 48.21 mg/dl) mean value of CRP (p=0.018) and lower mean value of Fibrinogen 

and a trend of higher IL6 (Table 4).   
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DISCUSSION  

We employed machine learning methodologies to identify a set of genes involved 

in the severity of COVID-19. In the presence of very high dimensionality, as for instance 

in a WES study, it is crucial to select the most predictive genes representing patterns of 

variation (mutations or variants) in subjects with different classes of response (i.e., disease 

state: from asymptomatic to severe cases). This problem is even more complex in diseases 

where multiple genes are involved in determining the severity and clinical variability of 

the pathology. Here, we wanted to represent poly-amino acids repeat polymorphisms that 

are typically missed in classical GWAS analysis, which concentrates on bi-allelic 

polymorphisms. 

We used a machine learning approach and logistic regression with a LASSO 

regularization to test if using such a simplified representation could lead to a reliable 

prediction of extreme clinical outcomes (asymptomatic versus severely affected). This 

approach enabled us to predict such clinical outcomes with 77% sensitivity. 

AR contains a highly variable polyglutamine repeat (poly-Q) located in the N-

terminal domain of the protein, spanning from 9 to 36 glutamine residues in the normal 

population5.  AR polyQ length correlates with receptor functionality, with shorter 

polymorphic glutamine repeats typically associated with higher and longer PolyQ tracts 

with lower receptor activity.5 AR is expressed in both males and females, but the 

bioavailability of its ligands testosterone (T) and dihydrotestosterone (DHT) differs 

significantly, being much higher in males. As previous studies linked male hypogonadism 

to a poorer outcome we decided to focus on male patients and demonstrated that shorter 

polymorphic glutamine repeats (<22) confer protection against life-threatening COVID-19 

in a subpopulation of individuals with age <60 years. 
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We also confirmed the functional association between polyQ size and receptor 

activity. Specifically, we showed that longer polyQ size (≥23) is associated with higher 

serum T levels, suggestive of impaired negative feedback  (p=0.0046 at Mann-Whitney U 

test) at the level of the hypothalamus and pituitary gland, therefore confirming the 

association between functional hypogonadism and severe COVID-19 infection.  

As T is known to have an immunomodulatory activity attenuating inflammatory 

immune responses,23-27 we hypothesized that a long PolyQ repeat would lead to a pro-

inflammatory status heralded by increased proinflammatory markers18,28 by conferring 

decreased AR transcriptional activity. Conversely, men with a more active receptor (short 

PolyQ tract) would be protected because they can tame the inflammatory response and 

increase survival regardless of serum T levels. We found that                                                                          

-CRP-, one of the main inflammatory markers, was higher in subjects with a long AR 

PolyQ tract. This observation not only is in line with the known anti-inflammatory 

function of testosterone, but also reinforces the functional importance of the AR PolyQ 

tract and its association with COVID-19 clinical outcome. Furthermore, this observation 

suggests that CRP is hierarchically more indicative than serum T level, which can be 

inappropriately normal and mask a functional hypogonadism in men with a long PolyQ 

repeat. 

The allele distribution of the PolyQ repeat length varies among different 

populations, with the shortest in Africans, medium in Caucasians, and longest in Asians29. 

Interestingly, WHO data on mortality rates during the first pandemic wave indicated a 

higher fatality rate in China and Italy (https://covid19.who.int/)30 with respect to African. 

Hence, AR polyQ length variability could represent an explanation for the observed 

differences in death rate. Moreover, Africans seem to be more prone to infection31. This 

observation could be due to a more active AR receptor, leading to a higher expression of 

TMPRSS2, a protease essential for SARS-CoV-2 spread14. 
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Different studies have shown an association between hypogonadism and severe 

COVID-1915 and other chronic obstructive pulmonary diseases16,17. Our results are in line 

with these initial observations and contribute to explain a possible mechanism leading to 

these associations. The present study brings the observations to the upper level, revealing 

that is the overall androgenic effect -resulting from the interaction of polyQ polymorphism 

and circulating testosterone levels- to predict the need for intensive care. In infected men, 

we observed impaired feedback no longer sufficient to compensate for the reduced AR 

transcriptional activity, leading to the fact that polyQ becomes dominant to T levels. The 

latter helps to solve some inconsistencies, including the early reports of a slightly better 

outcome in prostate cancer patients -who tend to have lower polyQ, as in our cohort - 

when compared to other cancers. 

An improvement in peak oxygen saturation in men receiving testosterone 

replacement therapy has been demonstrated in a randomized controlled trial32 and could be 

one of the mechanisms responsible for the observed protective effect of AR’s with shorter 

polyQ tract in COVID-19 patients. Thus, our study has important implications and 

suggests that androgen therapy could be tested as an adjuvant treatment in COVID-19-

infected men with functional hypogonadism. Based on the evidence discussed in this 

paper, a proper randomized controlled trial (RCT) is warranted in COVID-19 male patients 

with signs of hypoandrogenism and longer AR polyQ tract to test the safety and efficacy of 

AR agonists, like testosterone, in improving outcome.  A simple genetic test measuring the 

AR receptor PolyQ repeat in male patients could then be introduced to screen individuals 

more likely to benefit from testosterone therapy.  

Variants of another X-linked gene, TLR7, have been associated with severe 

COVID-19 outcomes in young men6. In the 2 reported families, the rare TLR7 mutations 

segregated as a highly penetrant monogenic X-linked recessive trait. While variants in 

TLR7 gene are expected to account for a small number of severely affected cases, our 
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findings involve a much larger number of subjects, as although the OR is relatively small, 

long polyQ alleles are relatively common (27%)33. Overall, X-linked genetic variants keep 

coming up as important for defining severe COVID-19 cases in males.  

In conclusion, we present a method that can predict if subjects infected by SARS-

CoV-2 are at risk for life-threatening complications. This approach has 77% accuracy, 

81% precision, 77% sensitivity, and 78% specificity. Furthermore, we present evidence 

suggesting that a more active AR has the potential to confer protection against COVID-19 

severity. If confirmed, these observations should be followed by properly conducted 

clinical trials studying if testosterone helps decrease morbidity and mortality in patients 

affected by the most severe forms of the disease. Finally, as shown by regression analysis, 

ORs ranges between 1.26 and 1.45, therefore the risk of carrying a longer AR is much 

smaller than other already known strong predictors such as age and sex, but still is highly 

significant, relatively common, and among the very few known genetic predictors of 

COVID19 outcome. 

 

METHODS 

Patients.  

We performed a nested case-control study (NCC). Cases and controls were drawn 

from the Italian GENCOVID 2 cohort of 1178 subjects infected with SARS-CoV-2  

diagnosed either by RT-PCR on nasopharyngeal swab, or by serology test. 2 Demographic 

characteristics of patients enrolled in the cohort are summarized in Table 1 according to 

their clinical status. In particular, the cohort was subdivided into 5 groups, based on the 

type of the respiratory and medical support that was given to the patients: i. endotracheal 

intubation; ii, CPAP-biPAP ventilation; iii. oxygen administration; iv. hospitalization 

without respiratory support; v. no hospitalization either because asymptomatic or with 

minor symptoms of COVID-19 (mild fever, cough, sore throat, etc.). Subjects of the cohort 
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were recruited by Italian hospitals and primary care clinics participating in the 

GENCOVID Multicenter study previously described 2. 

In the current NCC study, cases were selected according to the following inclusion 

criteria: i. CPAP/biPAP ventilation (230 subjects); ii. endotracheal intubation (108 

subjects). As controls, 300 subjects were selected using the sole criterion of not requiring 

hospitalization. Cases and controls show the extreme phenotypic presentations of the 

GENCOVID cohort. Exclusion criteria for both cases and controls were i. SARS-CoV-2 

infection not confirmed by PCR; ii. not-caucasian ethnicity. Demographic characteristics 

of the subjects in the NCC study are summarized in Table 1.   

 

Analysis of triplets size in the AR locus  

To establish allele sizes of the polymorphic triplet in the AR locus, we used the 

HUMARA assay with minor modifications21. Specifically, we performed a fluorescent 

PCR followed by capillary electrophoresis on an ABI3130 sequencer. Allele size was 

established using the Genescan Analysis software. 

 

Binary representation of WES data 

In this paper, one of several synthetic approaches to genetic data variability 

representation is used: poly-amino acids repeat polymorphisms (Benetti et al., Topological 

Data Analysis on boolean representation of genome variability as a method for discovering 

the genetic bases of complex disorders. Paper in preparation). Reads were mapped to the 

hg19 reference genome by the Burrow-Wheeler aligner BWA. Variants calling was 

performed according to the GATK4 best practice guidelines. Namely, duplicates were first 

removed by MarkDuplicates, and base qualities were recalibrated using BaseRecalibration 

and ApplyBQSR. HaplotypeCaller was used to calculate Genomic VCF files for each 

sample, which were then used for multi-sample calling by GenomicDBImport and 
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GenotypeGVCF. In order to improve the specificity-sensitivity balance, variants quality 

scores were calculated by VariantRecalibrator and ApplyVQSR, and only variants with 

estimated truth sensitivity above 99.9% were retained. Variants were annotated by 

ANNOVAR. WES data were represented in a binary mode on a gene-by-gene basis. 

Representation of poly-amino acids triple repeats: A set of binary variables was included 

to correctly describe non-frameshift variants in gene portions with repeated triplets. A total 

of 43 genes with triplet repeat variability were taken from UniProtKB 

(https://www.uniprot.org/uniprot/?query=reviewed:yes%20keyword:%22Triplet%20repeat

%20expansion%20%5BKW-0818%5D%22). For any of these genes a variant Dij was 

defined as equal to 1 if the i-th gene presented a deletion in the region characterized by 

repeated triplets. Non-informative genes, with either all 0 or all 1, are removed from the 

dataset.  

 

LASSO logistic regression 

The problem of extracting knowledge on the most relevant genes involved in the 

classification tasks of COVID-19 disease can be interpreted in the classical framework of 

feature selection analysis. Due to the specificities of the problem (i.e., the complex 

classification task), we adopted the embedded method of the LASSO logistic regression 

model. By denoting with �� the coefficients of the logistic regression and by lambda (λ) 

the strength of the regularization, the LASSO (Least Absolute Shrinkage and Selection 

Operator) regularization34 term of the loss, �∑
�

���  |��|, has the effect of shrinking the 

estimated coefficients to 0. This provides a feature selection method for sparse solutions 

within the classification tasks able to enforce both the sparsity and the interpretability of 

the results. The weights of the logistic regression algorithm can be interpreted as the 

feature importances of the subset of the most relevant features for the task35. The input 

features are the poly-amino acids triplet repeats presented in the previous section as well as 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 5, 2020. ; https://doi.org/10.1101/2020.11.04.20225680doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.04.20225680


 

gender, comorbidity (1 if there is at least one comorbidity) and the age, the latter as a 

continuous variable normalized between 0 and 1.  

The fundamental hyper-parameter of the logistic regression algorithm is the 

strength of the LASSO term, which is tuned with a grid search method on the average area 

under the Receiver Operating Characteristic (ROC) curve for the 10-fold cross-validation. 

The regularization hyperparameter varies in the range [10 ��, 10�] with 50 equally 

spaced values in the logarithmic scale. The optimal regularization parameter is chosen by 

selecting the most parsimonious parameter whose cross-validation score falls in the range 

of the best one along with its standard deviation. This choice is related to the aim of the 

work that is to select the most important genes (and not necessarily the entire set of genes 

contributing to COVID-19 variability).  During the fitting procedure, the class slight 

unbalancing is tackled by penalizing the misclassification of the minority class with a 

multiplicative factor inversely proportional to the class frequencies. The data pre-

processing was coded in Python, whereas for the logistic regression model the scikit-learn 

module with the liblinear coordinate descent optimization algorithm was used. 

Performances of the model were evaluated using the cross-validation confusion matrix as 

well as by computing precision, sensitivity, specificity, and the Receiver Operating 

Characteristic (ROC) curve.  

 

Total Testosterone measurement.  

Blood samples were collected after an overnight fast, immediately centrifuged at 4 

°C and stored at -20 °C until assayed. Blood samples were collected after an overnight 

fast, immediately centrifuged at 4 °C and stored at -20 °C until assayed. Serum total 

testosterone was measured using the Access testosterone assay (Beckman Coulter Inc., 

Fullerton, CA, USA) with a minimum detection limit of 0.35 nmol/L. Reference range for 

this assay was 6.07-27.1 nmol/L. Thawed plasma underwent 15 min incubation at 56°C for 
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virus inactivation. Afterward, plasma total testosterone was measured by liquid 

chromatography - tandem mass spectrometry (LC-MS/MS) according to a previously 

validated method provided with reference values between 9.8 - 28.4 nmol/L36. In the 

present study, measurement was performed in 100 µl plasma, with sensitivity limit being 

0.270 nmol/L, imprecision ranging 9.8 to 0.7% and accuracy 90.6 to 101.5% at 

concentration levels between 1.12 and 39.2 nmol/L. A stability test under viral inactivation 

conditions was performed in 6 samples, revealing a testosterone mean (min-max) % loss of 

9.7% (4.6-16.7%). SHBG levels were measured in plasma samples using Quantikine 

ELISA Kit (DSHBG0B, R&D Systems, Minneapolis, MN, USA) according to the 

manufacturers' instructions. Serum LH was measured using “Access LH assay “ a 

chemiluminescent, two-step enzyme immunoassay (Beckman Coulter Inc., Fullerton, CA, 

USA). Sensitivity for the LH determination is 0.2 mIU/mL. Reference range in adult males 

for this assay is 1.2-8.6 mIU/mL 

   

Statistical analysis.  

Since serum and plasma Testosterone values were not normally distributed, the 

statistical analyses were performed using non-parametric tests. In particular, we used the 

Mann-Whitney U test to compare testosterone levels in males with AR long-polyQ (≥23) 

versus males with short polyQ (≤22). Logistic regression analysis was performed to 

ascertain the interaction between age, testosterone, and the number of polyglutamine 

repetitions and COVID19 outcomes. Box-Tidwell procedure was used to assess linearity 

and the Hosmer and Lemeshow to assess goodness of fit test. 
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FIGURE LEGENDS  

Figure 1 LASSO logistic regression.  

This histogram of the LASSO logistic regression weights represents the importance of 

each feature for the classification task (Figure 1) (Panel A). The positive weights reflect a 

susceptible behaviour of the features to the target COVID-19 disease, whereas the negative 

weights a protective action. The calculated odd ratio of AR short repeats (≤22) is 0,79 i.e. 

protective. Therefore, the odd ratio of long repeats (≥23) is 1/0,79= 1,27 i.e. severity. 

Panel B: Confusion matrix for the aggregation of the logistic regression predictions in the 

10 folds of the cross-validation. Panel C: Cross-validation ROC-AUC score for the grid of 

LASSO regularization parameters; the error bar is given by the standard deviation of the 

score within the 10 folds; the red point corresponds to the parameter chosen for the fitting 

procedure. Panel D: Boxplot of accuracy, precision, sensitivity, specificity, and ROC-

AUC score for the 10-fold of the cross-validation. The box extends from the Q1 to Q3 

quartile, with a line at the median (Q2) and a triangle for the average. Panel E: ROC curve 

for the 10 folds of the cross-validation.  

 

Figure 2 Relationship between Total Testosterone and polyQ repeats and clinical 

outcome 

Panel A: Increased Total Testosterone levels in patients with longer polyQ repeats. 

Box-plot showing values of Total Testosterone (TT), expressed in nmol/L, in patients with 

shorter (≤22) and longer (≥23) polyQ repeats in AR gene. A subset of 183 males is 

studied: 122 males with polyQ repeats ≤22 and 61 with polyQ repeats ≥23. The TT median 

value, represented by the black horizontal line, is higher in patients with  ≥23 polyQ 

repeats. (*p-value = 0.0422; Mann-Whitney U test). 

Panel B: Reduced Testosterone/PolyQ ratio in patients with the most severe COVID-19 

clinical presentation.  
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Box-plot showing the ratio Total Testosterone (TT), over the number of polyQ repeats, in 

cases and controls. A subset of 183 males (109 cases, 74 controls) was studied. The 

median of TT Ratio (nmol/L/polyQ number), represented by the black horizontal line, is 

lower in patients that underwent intubation/CPAP/BiPAP ventilation (cases). (***p-valu = 

0,00038; Mann-Whitney U test). 
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Table 1. Demographics characteristics of the Italian GEN-COVID Cohort and NCC study

Intubation CPAP/BiPAP 
Ventilation Oxigen Therapy No respiratory 

support

Oligo-
asymptomatics 

without 
hospitalization

GEN-COVID

Number of Sybjects 108 230 352 188 300
Male/Female 80/28 157/73 208/144 104/84 116/184
Age males (years) 61,52±11,43 62,75±13,48 63,41±14,53 55,99±15,44 47,40±13,23
Age females (years) 63,71±13,96 66,23±15,25 68,40±14,74 52,88±16,39 48,61±11,06

Cases Controls

NCC study

Number of Subjects 338 300
Male/Female 237/101 116/184
Age males (years) 62,34±12,84 47,40±13,23
Age females (years) 65,53±14,94 48,61±11,06
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Table 2. PolyQ alleles correlation with COVID-19 outcome - males with age <60

Males <60
<22 >23 Marginal Row Totals

Cases 52 (59,15%) 36 (28,85%) 88(48,08%)
Controls 71 (63,85%) 24 (31,15%) 95(51,91%)
Marginal Column Totals 123 (67,21%) 60 (32,78%) 183 (Grand Total)

* p-value (cases vs controls) = 0,024
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Table 3. Validation in Spanish cohort

Spanish validation (χ2)
Males global

≤22 ≥23 Marginal Row Totals

Cases 51 (32,27%) 66 (41,77%) 117 (74,05%)
Controls 27 (17,08%)* 14 (8,86%) 41 (25,94%)
Marginal Column Totals 78 (49,36%) 80 (50,63%) 158 (Grand Total)

* p-value (cases vs controls) = 0,014139 (Significant at p<0.05)
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Table 4. Correlation between polyQ repeats in AR gene and laboratory values

CRP M≥60y cases CRP M<60y cases
Triplets Mean Count p-value Triplets Mean Count p-value

≤22 48,21 78 0,01804 (Significant at p<0,05) ≤22 54,5 43 0,2
≥23 55,92 38 ≥23 26,41 29

Fibrinogen M≥60y cases Fibrinogen M<60y cases
Triplets Mean Count p-value Triplets Mean Count p-value

≤22 401,33 57 0,09277 ≤22 316,93 22 0,53
≥23 320,34 27 ≥23 356,91 19

IL6 times the upper limit of normal M≥60y cases IL6 times the upper limit of normal M<60y cases
Triplets Mean Count p-value Triplets Mean Count p-value

≤22 54,56 40 0,249 ≤22 40,43 17 0,81
≥23 75,78 16 ≥23 31,8 14

CD4 Lymphocytes M≥60y cases CD4 Lymphocytes M<60 cases
Triplets Mean Count p-value Triplets Mean Count p-value

≤22 264,06 32 0,22 ≤22 503,68 16 0,45
≥23 357,52 21 ≥23 396,13 15

NK Cells M≥60y cases NK Cells M<60y cases
Triplets Mean Count p-value Triplets Mean Count p-value

≤22 70,71 28 0,179 ≤22 147,3 13 0,098
≥23 102,25 16 ≥23 107,14 14
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