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Abstract

We study the relative importance of two key control measures for epidemic spread-
ing: endogenous social self-distancing and exogenous imposed quarantine. We use the
framework of adaptive networks, moment-closure, and ordinary differential equations
(ODEs) to introduce several novel models based upon susceptible-infected-recovered
(SIR) dynamics. First, we compare computationally expensive, adaptive network sim-
ulations with their corresponding computationally highly efficient ODE equivalents
and find excellent agreement. Second, we discover that there exists a relatively simple
critical curve in parameter space for the epidemic threshold, which strongly suggests
that there is a mutual compensation effect between the two mitigation strategies: as
long as social distancing and quarantine measures are both sufficiently strong, large
outbreaks are prevented. Third, we study the total number of infected and the max-
imum peak during large outbreaks using a combination of analytical estimates and
numerical simulations. Also for large outbreaks we find a similar compensation effect
as for the epidemic threshold. This suggests that if there is little incentive for social
distancing within a population, drastic quarantining is required, and vice versa. Both
pure scenarios are unrealistic in practice. Our models show that only a combination
of measures is likely to succeed to control epidemic spreading. Fourth, we analytically
compute an upper bound for the total number of infected on adaptive networks, using
integral estimates in combination with the moment-closure approximation on the level
of an observable. This is a methodological innovation. Our method allows us to ele-
gantly and quickly check and cross-validate various conjectures about the relevance of
different network control measures. In this sense it becomes possible to adapt models
rapidly to new epidemic challenges such as the recent COVID-19 pandemic.
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1 Introduction

The recent COVID-19 pandemic has demonstrated the necessity to develop and study
effective models of epidemic dynamics [AM91]. Classical epidemic models are compart-
mental models leading to relatively simple low-dimensional ordinary differential equations
(ODEs) [BvdDW08, DH00]. These minimal ODE models can be derived from first princi-
ples [KMS17] but often suffer from very strong assumptions, such as a sufficiently high link
density within the network of individuals. Within the past two decades, it became apparent
that viewing the structure of the contagion process via a network science approach is cru-
cial [PSV01, CBBV06, Dur10, HK11, PSCMV15, TKH20]. During the COVID-19 pandemic
it became clear that there are two major effects controlling direct epidemic spreading in hu-
mans without an available vaccine or immediate medical treatment: exogenous quarantine
measures [MB20, KKC+20] and endogenous social self-distancing (or social avoidance) of
existing contacts [GBB+20]. Formally, measures can be considered on a finer scale, such as
(digital) contact tracing [FWK+20, KRB+20]. Yet, most non-pharmaceutical interventions
(NPI) can be grouped into external/exogenous ones leading effectively to quarantine-type
effects, and intrinsic/endogenous ones within a population that lead effectively to a social
re-organization of contact networks.

In this work, we are interested in developing and analyzing effective, yet tractable math-
ematical network epidemic models to understand how to compare and balance the effects of
quarantining and social self-distancing. Motivated by the COVID-19 pandemic [TKH20],
we start from a standard susceptible-infected-recovered (SIR) model on a complex net-
work [KMS17]. Next, we use two well-established modelling approaches. First, we simply
add another possible quarantine state, X, of the nodes [MB20, PKG+20] together with a
transition rate, κ, of infected individuals to transition to state X. Second, we use a social
self-distancing rule of susceptible individuals trying to avoid contact with infected individu-
als leading to re-wiring of links [GDB06, SS08, RGZ09] controlled by a re-wiring rate, w; we
keep the population size and the total number of links fixed to account for the propensity to
keep social contact. Note that re-wiring links makes the network fully adaptive [GS09], i.e.,
there is dynamics on and of the network. The resulting model is a Markov chain on all possi-
ble node states and all possible edge configurations. It can be simulated on small to medium
size networks, but becomes quickly computationally intractable on large networks. For this
reason, we derive suitable ODE approximations [KMS17] based on a moment-closure approx-
imation [Kee99, KRM97, GDB06, Kue16]. This approximation technique can also account
for the dynamically changing connectivity of the network. We obtain a hierarchy of models.
A particular model is obtained after fixing a truncation level. In our analysis we focus on
the second-order or pair-approximation moment-closure, which leads to a five-dimensional
ODE. We compare medium-size direct network simulations with ODE simulations.

As a next step, we investigate the main questions associated with SIR-type models:
(I) Does an epidemic spread happen, or does it decay immediately? (II) How big is the
cumulative size of the epidemic outbreak? (III) What is the maximum size of the infected
population during an epidemic? As expected, the first question (I) can be calculated directly
using local analysis and we can express the epidemic threshold as a function of the re-wiring
rate w and the quarantine transition rate κ in the approximating ODEs. Questions (II)-(III)
are much harder to address as network structure effects preclude the application of classical
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methods from mathematical epidemiology to calculate the SIR outbreak size and/or the
maximum peak. Here we develop a new technical tool by viewing the outbreak size as a
global observable and applying moment-closure methods and integral estimates on the level
of this observable. This technique leads to an upper bound on the global outbreak size within
suitable parameter regimes, which we cross-validate numerically.

From a public health perspective, we find that large parameter regimes in the (w, κ)-plane
show a linear, or almost linear relationship regarding the effects of quarantine versus social
self-distancing leading to a bounded triangular region, within which the epidemic cannot
be avoided, controlled, or contained efficiently. This shows that there is a balancing effect
between strong quarantining and social self-distancing, i.e., the weakening of one measure
necessitates the strengthening the other and vice versa. On the one hand, this is an intuitive
result. On the other hand, it arises without any major assumptions in broad parameter
regimes in a complex fully-adaptive network epidemic model. In addition, it can be observed
in network- and ODE simulations, and can be analytically treated both, locally and globally
via nonlinear dynamics techniques. Hence, it seems advisable, when reducing or observing
the reduction of mitigation measures, i.e., a decrease of w and/or κ, to avoid entering the
dangerous triangle region as there is no easy way to leave it again by a simple small change.

The paper is structured as follows: In Section 2 we provide the detailed mathematical
model for adaptive social self-distancing models with quarantine including moment-closure
via pair approximation; in the appendix we also develop more complicated higher-order
moment-closure models. In Section 3 we present our main analytical and numerical results
including a new global moment-closure viewpoint for global observables. In Section 4, we
provide a summary and outlook, how our approach can be extended to wider set of applica-
tions.

2 Adaptive SIR-type Network Models

Here we compare two different, yet comparable, measures present in most epidemics: social
self-distancing, i.e., nodes/agents avoid infected individuals simply due to the risk of acquir-
ing the disease themselves, and external quarantine measures, which enforce the removal of
infected nodes from the population. It is evident from data that both measures have played
a key role during the COVID-19 pandemic [MB20, KKC+20, GBB+20]. To account for the
complex social structure, we start with microscopic Markov process models of susceptible-
infected-recovered (SIR) dynamics on general networks with N nodes, K undirected links,
and node states S, I, and R. Then we add mitigation measures to the SIR model. The
well-known basic SIR rules are:

• (infection) infected I nodes infect susceptible S nodes along susceptible-infected SI
links with a rate β > 0.

• (recovery/death) infected I nodes become recovered R nodes at a rate γ > 0.

One way to model social self-distancing [GDB06, SS08] is the preference of the susceptible
S nodes to avoid interactions with the infected I nodes:
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• (social self-distancing) SI links are re-wired at a rate w ≥ 0 to susceptible-susceptible
SS links or to susceptible-recovered SR links (with equal proportion).

The self-distancing/re-wiring rule makes the network fully adaptive [GS09] and allows
for very general network topologies. The rule also takes into account that links are not lost,
which mirrors the desire to keep as many social connections as possible and to optimally
re-wire them to mitigate risk. While it is straightforward to simulate the resulting Markov
process on any given network, the simulations become prohibitively expensive for large N .
It is also straightforward to use the master equation for the resulting Markov process [Nor06]
and arrive at the following set of ODEs via standard techniques [KMS17]

˙[S] = d
dt

[S] = −β[SI],
˙[I] = d

dt
[I] = β[SI]− γ[I],

˙[R] = d
dt

[R] = γ[I],
˙[SI] = d

dt
[SI] = −(β + γ + w)[SI] + β[SSI]− β[ISI],

˙[SS] = d
dt

[SS] = −β[SSI] + w [S]
[R]+[S]

[SI],

(1)

where [S] = [S](t), [I] = [I](t), [R] = [R](t), [SI] = [SI](t), [SS] = [SS](t), [SSI] = [SSI](t)
and [ISI] = [ISI](t) are expectation values of the number of susceptible, infected and
recovered nodes, of SI-links and SS-links and of SSI- and ISI-triplet motifs. The ordinary
differential equations (ODEs) (1) represent a variation of earlier models [SS08, GDB06]. Note
that we do not allow recovered individuals to pass back into the susceptible compartment,
which makes sense if we assume that immunity is acquired upon recovery, e.g., as conjectured
to be true on certain time scales of interest for COVID-19. Although the ODEs (1) are
actually exact in the mean-field limit [KMS17] for any graph, they are not closed as we
have not written down the equations for the SSI and ISI motifs. Although these equations
could be derived, they would depend on fourth-order motifs, and so on [Kue16, HK11].
To avoid studying an infinite system of ODEs, we employ a standard moment-closure pair
approximation [KRM97, Kee99, KMS17, GDB06], assuming that

[ABC] ≈ m(A,B)m(B,C)
[AB][BC]

[B]
for A,B,C ∈ {S, I, R},

where m(A,B) = 2 if A = B and m(A,B) = 1 if A 6= B. With this closure, one obtains a
system of four ODEs for the densities ρI = [I]/N and ρR = [R]/N of infected and recovered
nodes and the per-node densities of susceptible-infected and susceptible-susceptible links:

d
dt
ρI = βρSI − γρI ,

d
dt
ρR = γρI ,

d
dt
ρSI = −(β + γ + w)ρSI + βρSI

2ρSS−ρSI

1−ρI−ρR
,

d
dt
ρSS = −2β ρSIρSS

1−ρI−ρR
+ w

[
1−ρI−ρR

1−ρI

]
ρSI .

(2)

Here we made use of node conservation and the notation ρAB ≈ [AB]/N to emphasize that
we are working with approximate per-node densities after moment-closure has been applied.
As such, the equations (2) only cover the aspect of social self-distancing and take into account
the complex adaptive network structure via a second-order closure.
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a) b)

Figure 1: Sample paths for the adaptive SIRX model (thin line) and the Pair Approximation
from (4) (thick line). In (a) we depict the disease prevalence (ρI) and in (b) we depict the
cumulative size of the recovered compartment (ρR). The dynamical parameters are given by
a recovery rate of γ = 0.025 and an infection rate of β = 0.005. The intervention parameters
for the quarantine and re-wiring rates are κ = w = 0.0025. The release rate from the
quarantined compartment is δ = 0.001. For the simulation we sampled from an Erdõs-Rényi
ensemble of size N = 2000 with mean degree µ = 15. We initialized 1% of nodes as infected
ρI(0) = 0.01 and ρSI(0) = µρI(0).

We take into account quarantine effects, such as in the modelling of COVID-19 in [MB20].
In [MB20], network structure was not considered. Quarantine effects lead to certain features
of epidemic spreading that cannot be captured by classical SIR models. We denote the
quarantined compartment by X. The rules we use are:

• (quarantine) infected I nodes are quarantined into a state X at a rate κ ≥ 0.

• (recovery of X) quarantined nodes are released into the recovered compartment R at
rate δ > 0.

In particular, we consider quarantining and rewiring only for the infected compartment.
This is a simplification of the present model and is not pursued like this in many real contact
tracing efforts. The expected release time from the X-compartment is 〈T 〉 = 1/δ, since the
rates are Poissonian. However, δ does not have an effect on the amount of nodes in the
infected compartment in this model and for any positive δ the amount of nodes in the
recovered compartment for t→∞ is also independent of δ. With these quarantine rules, we
obtain the non-closed moment equations:

d
dt

[S] = −β[SI],
d
dt

[I] = β[SI]− (γ + κ)[I],
d
dt

[R] = γ[I] + δ[X],
d
dt

[X] = κ[I]− δ[X],
d
dt

[SI] = −(β + γ + w)[SI] + β[SSI]− β[ISI]− κ[SI],
d
dt

[SS] = −β[SSI] + w [S]
[R]+[S]

[SI].

(3)
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More complicated variants of the rules are discussed in Appendix A. We see that the param-
eters appear linearly in the equations, so that any one of them can be used to re-scale the
time, e.g. t 7→ γt. This leaves four effective dynamical parameters β, w, κ and δ. The last
one does not affect the infected compartment or the recovered compartment at infinity and
is therefore not part of the subsequent analysis.

Using a moment-closure pair approximation, we get the closed system

d
dt
ρS = −βρSI ,

d
dt
ρI = βρSI − (κ+ γ)ρI ,

d
dt
ρR = γρI + δ(1− ρS − ρI − ρR),

d
dt
ρSI = −(β + γ + w + κ)ρSI + βρSI

2ρSS−ρSI

ρS
,

d
dt
ρSS = −2β ρSIρSS

ρS
+ w ρS

ρS+ρR
ρSI ,

(4)

that allows us to compare the effects of social self-distancing and quarantine. We compare
this model with full network simulations in Figure 1. The results show excellent agreement
for the vast majority of sample runs for a large part of the parameter space, when w, κ > 0;
see also Appendix B for additional comparisons, where even for the singular cases w = 0 or
κ = 0 excellent agreement is observed.

3 Results

In contrast to SIS or SIRS, an epidemic eventually dies out for a standard SIR model. Hence,
three questions arise:

(I) Given an initial density of infected I(0) sufficiently close to the disease-free state, does
the epidemic spread, or does it die out almost immediately?

(II) How big is the cumulative size of the epidemic outbreak R∞ (we use r∞ for the corre-
sponding density)? R∞ measures the total number of nodes at t→∞ in the recovered
compartment R (respectively r∞ is the corresponding density).

(III) What is the maximum size of the epidemic, ˆ[I] := maxt I(t), i.e., what is the height of
the highest peak?

To answer (I), the local calculation near the disease-free state is relatively simple if
we have a closed ODE model. For example, consider the adaptive SIR model without
quarantining (2) and use the disease-free state ρ∗ with

ρI = ρR = ρSI = 0 and ρSS = µ/2,

i.e., also all links are of type SS. Here µ is the average degree of the network, which equals
2K/N for a network with K edges. Linearizing the vector field at ρ∗, we find that for

β < βadp
c =

γ + w

µ− 1
, (5)
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a) b)

Figure 2: Comparison of the critical infection rate. We depict the rate β at which the
epidemics surpasses a threshold of r∞ = 0.05, which we take as a proxy for the critical
point βc. We compare the simulations (left) with the mean-field analysis from the pair
approximation (right). The parameters are as before, except for the size N = 500.

an epidemic dies out exponentially fast. A very similar calculation for the full model (4)
reveals:

β < βqurt+adp
c =

γ + w + κ

µ− 1
, (6)

as the critical threshold for the infection rate. We see that on a local level near ρ∗, the
effects of self-distancing and quarantine are comparable as the rates of both processes lower
the critical threshold in a linear way.

These results are completely consistent with the numerics. Figure 2 shows the rate β
at which we record an epidemic outbreak/growth for direct network simulation, as well as
for numerical integration of the mean-field ODEs. The linear level-set structured in the
(w, κ)-diagram expected from (6) is clearly visible on the network simulation and the ODE
integration levels. This answers questions (I), and means that a combination of measures
is particularly effective to contain a disease early on. Since it is unrealistic to assume that
social self-distancing happens effectively in the situation of a new disease, our SIRX model
suggests that one has to compensate and focus more on quarantine measures of infected
individuals in the early phase.

However, the local structure near the disease-free state only yields a partial picture of SIR
models. In fact, one often does observe epidemic outbreaks for SIR-type dynamics. For this
case, we study r∞ to answer our second question (II). Figure 3 shows r∞ for a range of values
near the epidemic transition in the (w, κ)-plane. We compare numerical simulations that
estimate 〈limt→∞R(t)/N〉 with the pair approximation ρR,∞ := limt→∞ ρR(t) of equation
(4).

The numerical results indicate another linear relation between the parameters w and κ.
In general, it is impossible to get an exact formula for the cumulative size of the epidemic
outbreak for an arbitrary model for SIR-type dynamics on complex networks. Yet, we can
arrive at an implicit formula starting with in our adaptive SIRX model (3). We denote the
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a) b)

Figure 3: Comparison of the overall size of the epidemic r∞ for a fixed β = 0.0025 in the
(κ,w)-parameter plane. (a) Simulations. (b) Mean-field analysis from the pair approxima-
tion. We also indicate the critical curve, as calculated from (6). Again N = 500, µ = 15, γ =
0.025, δ = 0.01 and ρI(0) = 0.01.

expected final number of recovered individuals by R∞ := limt→∞[R](t) and write it as

R∞ = R∞ − [R](0) =

∫ ∞
0

˙[R] dt,

where we used [R](0) = 0 and we have omitted the argument t of the last integrand for
brevity. Now we use the differential equation for [R] and insert it to get

R∞ = γ

∫ ∞
0

[I] dt+ δ

∫ ∞
0

[X] dt.

We have obtained two integrals, which would suffice to calculate r∞. Using the same idea
as for [R], we find for [I] and [X] that

0− [I](0) =

∫ ∞
0

˙[I] dt = β

∫ ∞
0

[SI] dt− (κ+ γ)

∫ ∞
0

[I] dt

0 =

∫ ∞
0

˙[X] dt = κ

∫ ∞
0

[I] dt− δ
∫ ∞
0

[X] dt,

as there cannot be any quarantined infected nodes in the beginning or at the end of the
epidemic. Using the ODE for [I], we get

R∞ = γ

∫ ∞
0

[I] dt+ κ

∫ ∞
0

[I] dt = β

∫ ∞
0

[SI] dt+ [I](0).

Several crucial observations are evident from the last formula. The procedure generically
does not terminate on the infinite network level as in generic cases, we expect that all motifs
could eventually occur. This means that without further assumptions only an infinite series
expression for R∞ is obtained or we could obtain upper or lower bounds. Still, the infinite
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series and particularly upper bounds are very informative as they can display the influence
of the different parameters and link them to higher-order network motifs. Indeed, at the
next step, the expected number of links comes into play. We get

0− [SI](0) =

∫ ∞
0

˙[SI] dt = −(β + γ +w + κ)

∫ ∞
0

[SI] dt+ β

∫ ∞
0

[SSI] dt− β
∫ ∞
0

[ISI] dt,

and we obtain

R∞ = [I](0) +
β

β + γ + w + κ
[SI](0) +

β2

β + γ + w + κ

∫ ∞
0

(
[SSI]− [ISI]

)
dt. (7)

The infinite sum will yield new motif terms involving infected nodes at every step at the
time t = 0. This demonstrates the key importance of the network structure. For example, a
highly connected first cluster of infected nodes yields a large number of SI-links and thereby
a large final outbreak size. We could continue this procedure to obtain an infinite series
formally but this does not give any concrete quantitative approximations. Instead, we aim
for an upper bound of the total number of infected/recovered.

The key new technical step is that we directly impose the moment-closure pair approx-
imation directly on (7), using the approximate densities ρI , ρR, ρSI and ρSS of the closed
equations (4). We get an approximation for r∞ in terms of ρR,∞ := limt→∞ ρR(t),

r∞ ≈ ρR,∞ = ρI(0) +
β

β + γ + w + κ
ρSI(0) +

β

β + γ + w + κ

∫ ∞
0

β
ρSI
ρS

(
2ρSS − ρSI

)
dt. (8)

Using βρSI = −ρ̇S and applying the logarithmic derivative gives

ρR,∞ ≈ K0 +
β

β + γ + w + κ

∫ ∞
0

− d

dt
(ln(ρS))

(
2ρSS − ρSI

)
dt,

where K0 := ρI(0) + β
β+γ+w+κ

ρSI(0) > 0. Integration by parts and ln(x) = −| ln(x)| for

x ∈ (0, 1] yields

ρR,∞ = K0 +
β

β + γ + w + κ

(
− ln(ρS)

(
2ρSS − ρSI

)∣∣∣∞
0
−
∫ ∞
0

| ln(ρS)|
(

2ρ̇SS − ρ̇SI
)

dt.

)
Next, we use | ln(ρS(t))| ≥ | ln(ρS,∞)| = − ln(1 − ρR,∞) and we make the assumption that
2ρ̇SS − ρ̇SI ≤ 0 for all times (see the computations below for further justification of this
assumption). Then we obtain the bound

ρR,∞ ≤ K0 +
β

β + γ + w + κ

(
− ln(ρS)

(
2ρSS − ρSI

)∣∣∣∞
0

+ ln
(

1− ρR,∞
)∫ ∞

0

(
2ρ̇SS − ρ̇SI

)
dt

)
= K0 +

β

β + γ + w + κ

(
− ln

(
1− ρR,∞

)
2ρSS(∞) + ln

(
1− ρI(0)

)(
2ρSS(0)− ρSI(0)

)
+ ln

(
1− ρR,∞

)(
2ρSS(∞)− 2ρSS(0) + ρSI(0)

))
= K0 +

β

β + γ + w + κ
ln

[
1− ρI(0)

1− ρR,∞

]
(2ρSS(0)− ρSI(0))
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a) b)

Figure 4: Approximations of r∞. In (a) we show three approximations of r∞ for the adaptive
SIRX model via the Pair Approximation (4), the implicit equation (9) and via repeated sim-
ulation of the stochastic dynamics. The implicit equation is an inequality in r∞ and depends
on the initial conditions, which are here chosen in agreement with the other approximations,
namely ρI(0) = 0.01 and ρSI(0) = µρI(0). The inequality is achieved by a Hölder bound,
which requires a positivity condition on ρ̇SI − 2ρ̇SS ≥ 0 at all times. In (b) we show the
shaded regions where the positivity condition holds for a range of infection rate β = 0.003
(blue, upper set of lines), β = 0.0025 (black, middle set of lines) and β = 0.002 (red, lower
set of lines). For each infection rate we show the boundary for a set of initial conditions to
illustrate the dependence on ρI(0) and ρSI(0). For the initial SI-link density we choose a
mean-field scenario (dashed line) with ρSI(0) = µρS(0), a scenario (dash-dotted line) with
dis-proportionally many initial SI-links ρSI(0) = 6µρS(0) and a scenario (dotted) with very
few SI-links ρSI(0) = (µ/5)ρS(0). One may also see the mean-field transition lines (solid
lines) at the respective infection rates in the respective colours. They all lie within the
positivity region. All parameters are as before, in particular µ = 15.
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Simplifying finally yields the desired upper bound

ρR,∞ ≤ ρI(0) +
β

β + γ + w + κ

[
ρSI(0) + (2ρSS(0)− ρSI(0)) ln

[
1− ρI(0)

1− ρR,∞

]]
. (9)

The bound (9) is a transcendental inequality in ρR,∞. Regarding our assumption

ρ̇SI ≥ 2ρ̇SS, (10)

we find that it holds numerically for a broad ranges of parameters. In Figure 4(b) we show the
domains of validity for the positivity assumption in the (w, κ)-plane for a range of infection
rates and initial conditions. The assumption holds in a neighbourhood around the critical
transition.

Note that our analysis is in sharp contrast to the classical three-dimensional SIR ODE
model, where an exact implicit functional relation for r∞ can be obtained. Therefore, having
an upper bound available such as (9) helps us to study the parameter dependencies. The
same linear combination of the two parameters w and κ appears as in the local bifurcation
case near the epidemic threshold. Now however, they occur via an inverse. The same
conclusions as for the local epidemic spreading near the outbreak threshold are valid: we
need a linear mix of quarantine and social self-distancing to keep the total number of infected
r∞ under control. Figure 4(a) shows a comparison of the upper bound for with numerical
simulations of the full network as well as simulations of the pair approximation ODEs. Both
capture the main trend well that occurs when the infection rate is increased. When the total
infected population is around the ten percent level, our approximations show that employing
a combination of quarantine and social-distancing might be effective in practice, while going
beyond this level, a very steep increase of the total number of infected occurs.

Finally, we answer question (III) regarding the maximum peak ˆ[I] of the number of in-

fected, i.e., ˆ[I]/N is the maximal fraction across the entire duration of the epidemic. Figure 5
shows the corresponding results comparing direct network simulations in Figure 5(a) with
mean-field approximations in Figure 5(b). The structure of the results is familiar in the
sense that a linear dependence between w and κ emerges for our studied parameter ranges.
Therefore, one can conclude that using a well-tuned combination of quarantine and social
self-distancing outside of a triangular region in (w, κ)-space is likely to be not only effective
in preventing outbreaks, or reducing the total number of infected during epidemic, but also
to prevent high peaks.

4 Conclusion & Outlook

In this work, we have provided three contributions. First, we developed a new type of
adaptive network models that include two of the most important epidemic control measures:
quarantine and social self-distancing. We derived mean-field models via pair approxima-
tion; even more detailed approximation schemes are discussed in the appendix. Second,
we analyzed the new model via a numerical combination of direct network simulations and
mean-field ODEs, which show excellent agreement. We focused on three questions regarding
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a) b)

Figure 5: Comparison of the maximal disease prevalence. (a) Simulation. (b) Mean-field
from the Pair Approximation. We also indicate the critical curve, as calculated from (6).
We can see here a slight deviation, which can be explained by the fact that the simulations
are random processes. The average of sample path maxima over many sample paths is
not the same as the maximum of the average of sample paths. The former overestimates
the expectation value of ρI . Again N = 500, µ = 15, γ = 0.025, β = 0.0025, δ = 0.01,
ρI(0) = 0.01 and ρSI(0) = µρI(0).

(I) the epidemic threshold, (II) the total number of infected individuals, and (III) the max-
imum peak of the epidemic. In all three cases, we demonstrated for a broad range that the
parameters controlling quarantine and social-distancing enter in a comparable linear com-
bination to control the epidemic spread. This has the practical implication that a suitable
combination of these two measures outside of a well-defined triangular region in parameter
space is the best choice as one cannot expect either measure to be executed perfectly in
practice. Third, on a technical level, we have shown a new way to provide estimates for
the total infected population during an epidemic by using pair approximation and integral
estimates directly on the level of the final infected number observable. This provides a new
technical tool for broad classes of epidemic models on networks since one can now aim to
employ moment-closure on many other observables directly.

Of course, many generalizations of the presented model are possible. For example,
one could try to use slightly different rules for the link dynamics allowing for link dele-
tion [BBLS19, TW13]. Yet, we conjecture that the same analysis principles we have devel-
oped here still apply. Furthermore, it would be desirable to not only consider the mitigation
of the epidemic itself but also whether quarantine and social self-distancing can help us or
are detrimental to detect early-warning signs for large epidemic outbreaks [OD13, WK16,
BOM+18]. This line of research has already been started in recent years for epidemics
on adaptive networks [KZG15, HKT18] but the interplay between pre-epidemic mitigation
measures and warning signs has remained unexplored.
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A More on Moment Equations for Adaptive Epidemics

with Quarantine

In this appendix, we provide more details on moment-closure schemes and the derivation of
our reduced system. Beyond the pair approximation (4), refined approximation schemes are
possible, which we present in this appendix in more detail.

A.1 Full closed equations up to second order motifs

First, we write down the full closed equations up to second-order motifs, which are given by

d

dt
[S] =− β[SI], (11)

d

dt
[I] =β[SI]− (γ + κ)[I], (12)

d

dt
[R] =γ[I] + δ[X], (13)

d

dt
[X] =κ[I]− δ[X], (14)

d

dt
[SI] =− (β + γ + w + κ)[SI] + β[SSI]− β[ISI] (15)

d

dt
[SS] =− β[SSI] + w

[S]

[R] + [S]
[SI] (16)

d

dt
[SR] = + γ[SI] + δ[SX]− β[ISR] + w

[R]

[R] + [S]
[SI] (17)

d

dt
[SX] =− δ[SX]− β[ISX] + κ[SI] (18)

d

dt
[II] =− 2γ[II] + β[SI] + β[ISI]− 2κ[II] (19)

d

dt
[IR] = + 2γ[II]− γ[IR] + δ[IX] + β[ISR]− κ[IR] (20)

d

dt
[IX] =− γ[IX]− δ[IX] + β[ISX] + 2κ[II]− κ[IX] (21)

d

dt
[RR] = + γ[IR] + δ[RX] + κ[RX] (22)

d

dt
[RX] = + γ[IX]− δ[RX] + 2δ[XX] + κ[RI] (23)

d

dt
[XX] =− 2δ[XX] + κ[XI] (24)

We see that equations for the nodes (11)-(14) depend only through [SI] on the equations of
the links. Equation (15) depends on itself, on [SSI] and on [ISI]. After pair approximation
there is another dependence on [SS] entering, so we need (16). The resulting equations are
self-contained.

If we now add further equations for the other link densities we obtain equations (17)-(24).
We also see from equations (11)-(24), that there is node and link conservation. Note that
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there is no dependence on the average degree. And there should not be. We could enforce
it, by redefining the variables. So for instance if we have ρS := [S]/N ∈ [0, 1] for the per-
capita density of susceptibles in the population and ρSI := [SI]/N ∈ [0, µ/2] for the average
number of [SI]-links per node, then we could redefine ˆρSI := [SI]/L ∈ [0, 1] as an actual
density (with ˆρSI = (2/µ)ρSI) and equation (11) would then read d

dt
ρS = −β(µ/2) ˆρSI . Yet,

this explicit dependence on the degree is not necessary, so we have decided to employ the
equations without this additional parameter.

Starting from the second-order, we can also write down the third-order equations:

d

dt
[SSI] =− r[SSI]− κ[SSI]− w[SSI] + w

[S]

[S] + [R]
[SI]

[SI]

[S]

− β[SSI]− β
[
S

I

S I
]
− β[ISSI]

d

dt
[ISI] =− 2r[ISI]− 2κ[ISI]− 2w[ISI]− 2β[ISI]− β

[
I

I

S I
]
.

These equations can also be written in the alternative form via pair approximation densities
as follows

d

dt
ρSSI =− rρSSI − κρSSI − wρSSI + w

ρS
ρS + ρR

ρSI
ρSI
ρS
− βρSSI − βρSI

ρISI
ρS
− βρSI

ρSSI
ρS

d

dt
ρISI =− 2rρISI − 2κρISI − 2wρISI − 2βρISI − βρSI

ρISI
ρS

.

Now the procedure to develop higher-order moment-closures could be pursued [KMS17] but
we have not found that the resulting equations add significant practical insight in our context.
Instead, we are going to derive to interesting variations of the equations we have analyzed.

A.2 Adaptive SIR with infinite quarantine

Following [MB20], we consider the modification that not the links are removed but that there
is a state [X] which represents the quarantined state. In that state, the disease cannot be
transmitted along the link. So all those links attached to that node are removed from the
pool of transmittable links. Effectively this behaves like link-removal. Hence, we obtain the
equations

d

dt
[S] = −β[SI]− κ0[S]

d

dt
[I] = β[SI]− γ[I]− (κ0 + κ)[I]

d

dt
[R] = γ[I]

d

dt
[X] = κ0[S] + (κ0 + κ)[I]

d

dt
[SI] = −(β + γ + w)[SI] + β[SSI]− β[ISI]− 2κ0[SI]− κ[SI]

d

dt
[SS] = −β[SSI] + w ∗ [S]

[R] + [S]
[SI]− 2κ0[SS]
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This latter model has the following density representation:

d

dt
ρS = −βρSI − κ0ρS

d

dt
ρI = βρSI − γρI − (κ0 + κ)ρI

d

dt
ρR = γρI

d

dt
ρSI ≈ −(β + γ + w + 2κ0 + κ)ρSI + βρSI

2ρSS − ρSI
ρS

d

dt
ρSS ≈ −2β

ρSIρSS
ρS

+ w

[
ρS

ρS + ρR

]
ρSI − 2κ0ρSS

A.3 Adaptive SIR with quarantine and a return rate

Lastly, let us consider, as before, that there is a quarantined compartment, but quarantine
does not last forever and there is a return rate δ > 0. We still allow for both, the sus-
ceptible population as well as the infected population to be quarantined at a rate κ0 and
κ0 + κ respectively. If they are healthy quarantined individuals, then they are transferred
back into the susceptible compartment. If they are infected, they transition into the recov-
ered compartment, respectively, at the aforementioned rate δ. In summary, this yields the
equations

d

dt
[S] =− β[SI]− κ0[S] + δ[XS]

d

dt
[I] =β[SI]− γ[I]− (κ0 + κ)[I]

d

dt
[R] =γ[I] + δ[XI ]

d

dt
[XS] =κ0[S]− δ[XS]

d

dt
[XI ] =(κ0 + κ)[I]− δ[XI ]

d

dt
[SI] =− (β + γ + w)[SI] + β[SSI]− β[ISI]− 2κ0[SI]− κ[SI] + δ[XSI]

d

dt
[SS] =− β[SSI] + w ∗ [S]

[R] + [S]
[SI]− 2κ0[SS] + δ[XSS]

d

dt
[XSS] =− δ[XSS] + 2κ0[SS]− β[XSSI]

d

dt
[XSI] =− δ[XSI]− γ[XSI]− (κ0 + κ)[XSI] + κ0[SI]
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After the usual reduction steps, we obtain a closed system of eight ODEs for the densities

d

dt
ρS =− βρSI − κ0ρS + δρXs

d

dt
ρR = + γ(1− ρR − ρS − ρXs − ρXi

) + δρXi

d

dt
ρXs = + κ0ρS − δρXs

d

dt
ρXi

= + (κ0 + κ)(1− ρS − ρR − ρXs − ρXi
)− δρXi

d

dt
ρSI =− (β + γ + w + 2κ0 + κ)ρSI + βρSI

2ρSS − ρSI
ρS

+ δρIXs

d

dt
ρSS =− 2β

ρSIρSS
ρS

+ w
ρS

ρS + ρR
ρSI − 2κ0ρSS + δρSXs

d

dt
ρSXs =− δρSXs + 2κ0ρSS − βρSXs

ρSI
ρS

d

dt
ρIXs =− δρIXs − γρIXs − (κ0 + κ)ρIXs + κρSI .

In future work, it could be interesting to study the differences between the slight variations
of adaptive social self-distancing epidemic networks with quarantine we presented in this
appendix. Yet, we conjecture that the key major effects to understand the control of the
disease are already displayed by our five-dimensional main system (4).

B Additional Comparisons between Network Simula-

tions and the Moment Equations

In this appendix, we collect several additional examples of comparisons between direct net-
work simulations and the moment-closure equations (4). As outlined in the main part of the
paper, we are particularly interested in the parameters w controlling the re-wiring of social
self-distancing and the quarantine rate κ. We have already shown a comparison in Figure 1,
where κ > 0 and w > 0, which showed very good agreement between network dynamics
and the moment-closure approximation. To check the robustness of the approximation, we
provide here also in Figure 6 the case w = 0 and κ > 0, while in Figure 7 we consider
κ = 0 and w > 0. Even for these quite singular cases, the approximation via second-order
moment-closure works extremely well.
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a) b)

Figure 6: Sample paths for the adaptive SIRX model (thin line) and the Pair Approximation
from (4) (thick line). In a) we depict the disease prevalence (ρI) and in b) we depict the
cumulative size of the recovered compartment (ρR). The dynamical parameters are given by
a recovery rate of γ = 0.025 and an infection rate of β = 0.005. The intervention parameters
for the quarantine and re-wiring rates are κ = 0.0025 and w = 0. The release rate from the
quarantined compartment is δ = 0.001. For the simulation we sampled from an Erdõs-Rényi
ensemble of size N = 2000 with mean degree µ = 15. We initialized 1% of nodes as infected
ρI(0) = 0.01 and ρSI(0) = µρI(0).

a) b)

Figure 7: Sample paths for the adaptive SIRX model (thin line) and the Pair Approximation
from (4) (thick line). In a) we depict the disease prevalence (ρI) and in b) we depict the
cumulative size of the recovered compartment (ρR). The dynamical parameters are given by
a recovery rate of γ = 0.025 and an infection rate of β = 0.005. The intervention parameters
for the quarantine and re-wiring rates are κ = 0 and w = 0.0025. The release rate from the
quarantined compartment is δ = 0.001. For the simulation we sampled from an Erdõs-Rényi
ensemble of size N = 2000 with mean degree µ = 15. We initialized 1% of nodes as infected
ρI(0) = 0.01 and ρSI(0) = µρI(0).
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