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Abstract 

To date, over 90 Parkinson’s disease (PD) risk variants have been reported from genome-wide 

association studies (GWAS). However, these GWAS efforts have been limited to individuals of European 

and East Asian ancestry. We performed the first GWAS of Latino PD patients from South America, 

comparing 807 cases against 690 controls followed by association testing of suggestive loci in a 

replication cohort of 1,234 cases and 439,522 controls. We demonstrated that SNCA plays a significant 

role in PD etiology in a Latino cohort and identified a suggestive locus near NRROS on chromosome 3 

that appeared to be driven by Peruvian subjects. We also characterized the overlap of PD genetic 

architecture between Europeans and Latinos with a replication of significant variants identified by Nalls 

et al. in their 2019 GWAS1, finding 80% concordance in direction of effect. We then leveraged the 

population history of Latinos via admixture mapping, identifying a significant locus on chromosome 14 in 

a joint test of ancestries, driven by the Native American ancestral background, and a significant locus on 

chromosome 6 in our test of African ancestry, containing the genes STXBP6 and RPS6KA2, respectively. 

Ultimately, our work reflects the most comprehensive characterization of PD genetic architecture in 

Latinos to date.      

 

Introduction 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s 

disease and as the fastest growing neurological disorder is expected to impose an increasing social and 

economic burden worldwide.1,2 PD prevalence increases with age, reaching 1-2% in people over age 

65.2,3 Though age remains the largest single risk factor for PD, specific environmental exposures and 

genetics also play a role in PD etiology. 1,2,4  While rare genetic variants have been shown to play a role 

in familial forms of the disease, the majority of patients do not report any family history.5 In these 

individuals, candidate gene approaches and large-scale genome-wide association studies (GWAS) have 

identified common genetic variants which contribute to PD risk.3  
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PD is truly a global disease, impacting all ethnic groups. Despite this, GWAS efforts to date have been 

limited to individuals of European and East Asian ancestry.1,6–9 This under-representation is not limited 

to PD; nearly 80% of all study participants represented in the GWAS Catalog are of European 

descent.10,11 This lack of diversity is even more evident when further broken down by ancestry; as of 

2018, only 1.3% of study participants in the GWAS Catalog are Hispanics/Latinos, 0.03% are Native 

American, and 2.4% are African.11 This risks missing out on population-specific variation, and creating 

biased polygenic risk scores due to linkage disequilibrium structure specific to the European subjects 

used to generate the majority of GWAS summary statistics.11–13  

 

PD incidence rates are rising in nearly every global region2, highlighting the need for greater diversity in 

PD consortiums. A study of Medicare beneficiaries and a study of Kaiser Permanente members both 

found the age-adjusted PD incidence rate to be highest in Hispanics/Latinos among the surveyed 

ancestries.14,15 Furthermore, few genetic studies have been done in Latin America and the existing 

studies have exclusively utilized candidate gene approaches.16–20 The Latin American Research 

Consortium on the Genetics of PD (LARGE-PD) was formed in 2009 to fill this gap.21 LARGE-PD is an 

ongoing effort that includes 35 institutions in 12 countries across the Americas and the Caribbean. Here 

we performed the first GWAS of Latino PD patients from South America composed of 1,497 subjects 

from LARGE-PD and 8.7 million variants obtained using a genotyping array and an imputation reference 

panel optimized for diverse subjects.22,23 

 

Methods 

Sample Description 

1,504 LARGE-PD samples from Uruguay, Peru, Chile, Brazil, and Colombia using the Multi-Ethnic 

Genotyping Array (MEGA) from Illumina22 were genotyped at the Genomics Core at the University of 

Washington. After performing standard quality control steps (described below), we selected 807 PD 

cases (mean age of 61.7 years and 53% males) and 690 controls (mean age of 56.5 years and 33% 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 12, 2020. ; https://doi.org/10.1101/2020.11.09.20227124doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.09.20227124
http://creativecommons.org/licenses/by/4.0/


4 

males) (see Supplementary Table 1 for the complete cohort description). PD patients were 

evaluated by a local movement disorder specialist using the UK PD Society Brain Bank clinical diagnostic 

criteria (UKPDSBB).24 Individuals who did not exhibit neurological symptoms were selected as controls. 

All participants provided written informed consent according to their respective locale’s national 

requirements. 

 

Genome-Wide Association Analysis (GWAS) 

Quality Control  

We converted the raw genotype data to PLINK format and carried out quality control (QC) steps using 

PLINK 1.9.25 We removed unplaced, duplicated, non-autosomal, monomorphic variants prior to filtering. 

We also filtered for HWE using a p-value threshold of less than 1x10-06 in controls and 1x10-10 in cases26 

and a genotype missingness filter of 5%. No samples failed due to missing greater than 5% of genotyped 

sites and the ascertained sex of all samples matched the sex inferred from the X chromosome. We 

flagged three pairs of samples as either duplicates or monozygotic twins via PLINK’s identity-by-descent 

procedure; these samples are likely the same individual. For this study, we excluded all six samples. In 

addition, we excluded one individual whose diagnosis had changed in the face of new clinical data. 

Overall, 1,497 samples and 1,240,909 bi-allelic variants passed QC with an overall genotyping rate of 

0.999. 

 

Imputation 

We imputed the LARGE-PD dataset using the TOPMed Imputation Server (version r1) which utilizes 

MINIMAC4 and a reference panel of 125,568 haplotypes from diverse samples.27 Variants unable to be 

lifted over to hg38 or rectified via strand flips were removed by the Imputation Server pipeline. We 

retained imputed variants if they had a minimum imputation R2 greater than 0.3. For analyses requiring 

hg19 coordinates, we lifted the imputed results back to hg19 using Picard Tools.28  

 

Characterization of LARGE-PD Population Structure 
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To improve inference of LARGE-PD population structure, we merged LARGE-PD genotyped variants 

with sequenced variants from the 1000 Genomes Project29; the intersection consisted of 606,977 

variants. We then filtered the merged dataset for a minimum minor allele frequency (MAF) of 0.01 and 

linkage disequilibrium (LD) pruning using PLINK’s indep-pairwise with a window of 50 variants, a step of 

5 variants and a maximum R2 of 0.2 as its parameters. For the admixture analysis, we resolved pairs of 

relatives by randomly removing one relative from each pair using KING’s unrelated algorithm30 and a 

threshold of second-degree relatedness. We ran ADMIXTURE31 with K equal to 3, 4, or 5. For the K=5, 

we included all 1000 Genomes populations; for K =4, we removed South Asian samples; for K=3, we 

removed East Asian and South Asian samples. We repeated each analysis 20 times using the random 

seed option and retained the repetition with the highest log-likelihood. In addition to the admixture 

analysis, we performed principal component analysis (PCA) on all LARGE-PD subjects using the PC-

AiR32 and PC-Relate33 methods that are implemented in the GENESIS package and is available from 

Bioconductor34 (see supplementary methods).  

 

Estimation of Additive Heritability (h2) 

We estimated heritability using GCTA35,36 and imputed LARGE-PD variants and a method developed by 

Yang et al. to correct for the bias due to LD.37 Imputed variants with a MAF of at least 1% are stratified 

into four groups based on their LD score, followed by the estimation of genetic relatedness matrices 

(GRMs) corresponding to each of the strata. We restricted our heritability analysis to the unrelated subset 

of LARGE-PD up to the second degree, as determined via KING30 in the same manner described in the 

admixture analysis. We then estimated narrow-sense heritability using AI-REML in GCTA36 and the four 

stratified GRMs, assuming a prevalence of 0.5% and including age, sex, the first five PCs, and 

recruitment site as fixed effects. 

 

Genome-Wide Association Study  

We conducted a GWAS utilizing all samples from the imputed LARGE-PD cohort and logistic mixed 

models implemented in the GENESIS R package.38 We included age, sex, the first five PCs, and the 
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GRM estimated using GCTA36 in our null model. We tested imputed dosages against the null via a score 

test.  

 

Fine Mapping 

We assessed the regional association plots prepared using the LocusZoom tool39, identified the variants 

previously associated with PD in the GWAS Catalog40, and obtained additional functional annotations 

using the Ensembl Variant Effect Predictor.41 We determined the LD structure of the chromosome 4 peak 

using PLINK 1.9. We also utilized this LD information to create custom LocusZoom-style plots. We 

determined the 95% credible set using PAINTOR 3.042 (see supplementary methods).  

 

Conditional Analysis 

We performed a conditional analysis where we adjusted for rs356182, the lead SNCA variant in 

European-ancestry PD analyses along with age, sex, and the first 5 PCs using logistic mixed models 

implemented with the GMMAT package43 in R. We evaluated p-values using two different p-value 

thresholds: the number of GWAS-significant variants and the number of independent tests in the SNCA 

region.44 We then performed a stepwise conditional analysis, adjusting for rs356182 and additional 

significant SNPs until no SNPs remained statistically significant.  

 

23andMe Replication of LARGE-PD GWAS Primary Results 

We selected 180 variants for replication with a minimum p-value of 1x10-5 provided they met one of the 

following criteria: the top variant at a genomic locus (+/- 500 KB) or in the 95% credible set at the 

NRROS and SNCA loci. 23andMe tested the set of identified variants via their replication pipeline and 

an independent cohort of 1,234 Hispanic/Latino subjects with self-reported PD status and 439,522 

controls. All self-reported PD cases and controls from 23andMe provided informed consent and 

answered surveys online according to 23andMe’s protocol, which was reviewed and approved by 

Ethical & Independent Review Services, a private institutional review board 

(http://www.eandireview.com). Samples were genotyped on one of five genotyping platforms; for 
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inclusion, samples needed a minimal call rate of 98.5%. Genotyped samples were then phased using 

either Finch or Eagle245 and imputed using Minimac3 and a reference panel of 1000 Genomes Phase 

III29 and UK10K data.46 For this replication study, samples were classified as Latino using a genotype-

based pipeline47 consisting of a support vector machine and a hidden Markov model, followed by a 

logistic classifier to differentiate Latinos from African-Americans. Unrelated individuals were included in 

the analysis, as determined via identity-by-descent (IBD).  Variants were tested for association with PD 

status using logistic regression, adjusting for age, sex, the first five PCs, and genotyping platform. 

Reported p-values were from a likelihood ratio test (see supplementary methods).  

 

Replication of Previously Identified PD Risk Variants 

We attempted to test 90 independent PD risk variants, previously identified by Nalls et al. 20191, in 

LARGE-PD for association with PD. We successfully imputed 84 of the 90 variants. 5 of the six variants 

that we were unable to impute were absent from the TOPMed imputation reference panel due to failing 

TOPMed’s QC protocol; the remaining variant was absent from the dataset. For this variant look-up, we 

applied the approximation of the Wald test to the score test results from our primary GWAS in order to 

obtain beta coefficients. In order to ensure fair comparisons, we removed strand ambiguous (CG/AT) 

sites with a MAF greater than 0.30. We also removed rare variants with a minor allele count (MAC) of 

less than or equal to 10 in LARGE-PD. Beta coefficient correlations were performed using Pearson’s 

method. In addition to the variants from Nalls et al. 20191, we also performed a variant look-up of 

additional PD GWAS results from European and East Asian-ancestry studies.6,7,9 

 

Admixture Mapping  

Quality Control 

For the admixture mapping, we employed a slightly modified quality control pipeline. We converted the 

Illumina files to binary PLINK48 format. We excluded SNPs with missing genotype > 0.10, HWE p-value 

<.0001, and monomorphic SNPs, with a final genotyping rate of 0.998. We did not need to exclude any 

of the subjects for low genotyping (maximum missing genotype data of 0.10). The final admixture 
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mapping analysis included all 1,497 subjects with both genotype and phenotype data, and 1,294,079 

SNPs that passed quality control filtering. 

 

Admixture Mapping Analysis 

We selected 63 unrelated individuals from CEU (Utah residents with Northern and Western European 

ancestry from the CEPH collection) and YRI (Yoruba in Ibadan, Nigeria) samples from the HapMap 

project phase III49 (International HapMap Consortium, 2003), and Native American (Pima, Maya and 

Colombian) samples from the HGDP project (https://www.hagsc.org/hgdp/) to be used as references for 

European, African, and Native American ancestral populations. We excluded 242 CEU and YRI samples 

from the dataset in order to keep balanced reference samples (63 samples for each ancestral reference 

population), as recommended in the RFMix manual.50 We then merged the HapMap and HGDP reference 

datasets with our 1,497 LARGE-PD samples using PLINK, keeping 164,651 autosomal SNPs in common 

to all datasets with an overall genotyping rate of 0.999. We performed a joint phasing of LARGE-PD and 

reference samples using Shapeit251 and an additional reference panel of phased haplotypes from 1000 

Genomes project, phase III.29  

  

We performed the local ancestry estimation using RFMix50, version 1.5.4, considering the trihybrid 

ancestry (European, African, and Native American) of the samples. We prepared the input files for RFMix 

using auxiliary Python scripts of the Ancestry Pipeline developed by Martin et al. 2017.13 

  

We performed admixture mapping through a joint test implemented in the GENESIS R package34 

(https://github.com/UW-GAC/GENESIS), in which all European, African, and Native American ancestries are 

tested jointly in an admixture mapping logistic mixed model. The analysis was performed in two steps. 

Firstly, we fit the logistic mixed model under the null hypothesis of no genetic effect including sex, age, 

and the first five components as fixed effects and the genetic relationship matrix (see supplementary 

methods) as random effects. Then, this fitted null model was used in a second step in which we 
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conducted a multivariate score test to verify the association between the ancestry at each locus and PD 

status (see supplementary methods for a detailed description of the admixture mapping model).  

 

Secondary admixture mapping analyses were performed for each European, African, and Native 

American ancestry separately in order to identify which ancestral population was driving the significant 

signal. Based on previous studies, a p-value of 5x10-5 controls the type I error at level of 0.0552 (see 

supplementary methods). We fine-mapped the suggestive admixture peaks by overlaying our GWAS 

results (as described above) with admixture mapping peaks. Significance levels were determined via 

Bonferroni's correction for the number of imputed SNPs with minimum MAF of 0.01 in each peak. 

 

Results 

Cohort Description and Ancestry Analysis 

We genotyped LARGE-PD samples using the Illumina Multi-Ethnic Genotyping Array (MEGA) which was 

designed to accurately genotype diverse samples and provides suitable coverage for imputation. The 

samples came from PD cases and healthy controls across nine sites in five countries: Uruguay, Brazil, 

Colombia, Peru, and Chile (see supplementary table 1). LARGE-PD cases were 53% male and had a 

mean age of 61.7 years (+-12.8 years) and a mean age at onset of 54.1 years (+- 14.4 years); controls 

were 33% male and had a mean age of 56.5 years (+- 14.6 years). Hispanic/Latino populations tend to 

have a three-way admixture pattern with contributions from African, European, and Native American 

ancestry. The exact proportions of these ancestries can vary dramatically and typically reflect the 

demographic history of the region. Restricting LARGE-PD to unrelated subjects, the mean proportion of 

African ancestry was 0.0517, Amerindian ancestry was 0.47, European ancestry was 0.47, and other 

ancestries were 0.0076 (see Figure 1; supplementary table 2). The mean proportion of Amerindian 

ancestry was highest in Peru-Puno (0.99) and lowest in Brazil-Ribeirao Preto (0.063). African ancestry 

was highest in Brazil-Sao Paulo (0.14) and lowest in Peru-Puno (1x10-05). European ancestry was highest 

in Uruguay (0.825) and lowest in Peru-Puno (0.007). Note that migration was not limited to these three 

populations; East Asian ancestry was observed in several individuals (see supplementary figure 1).  
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Additive Heritability of PD 

Using GCTA and all imputed SNPs with a minor allele frequency (MAF) of at least 0.01, we estimated 

the additive heritability (h2) of PD in LARGE-PD to be 0.38 (SE 0.068) with a prevalence of 0.5%. We 

used a method that accounts for the bias in sequence and imputed data caused by LD (linkage 

disequilibrium; see methods).  

 

Genome-wide Association Study 

We imputed the genotyped data with the TOPMed imputation server, after extensive quality control steps 

(see methods). This imputation server has been shown to improve imputation for Hispanics/Latinos.23,27 

We tested variants with a minimum MAF of 1% for association with the disease using a logistic mixed 

model as implemented by the GENESIS package (see methods). One locus achieved genome-wide 

significance: the SNCA locus on chromosome 4 (see Table 1; Figure 2). At this locus, rs356225 achieved 

the lowest p-value (4.22x10-9). A second locus in chromosome 3 appears suggestive, with rs78820950 

achieving the lowest p-value (8.25 x10-8). This locus is located in an intergenic region between FBXO45 

and NRROS. Overall, we observed minimal inflation (GC lambda 1.017); consequently, we did correct 

for this inflation factor (see supplementary figure 2).   

 

The chromosome 3 locus has not been previously reported in the PD literature and is located in an 

intergenic region where the closest gene is NRROS. NRROS does appear to have a neurological 

function53, but PD-related evidence is limited. The most significant variant at this locus, rs78820950, has 

a MAF of 0.103 in LARGE-PD. However, this variant was more than three times as frequent in Peru than 

other LARGE-PD sites (0.168 vs. 0.045).  

 

The chromosome 4 locus is well-characterized in PD literature and a number of SNPs have been put 

forth as contributing to PD risk.1,44,54,55 In LARGE-PD, 28 SNCA SNPs achieved genome-wide 

significance (Table 1). By utilizing LD information, we observed three LD blocks (see Figure 3). Two of 
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the three blocks contain well-documented PD SNPs44,55–58; the third contained a SNP associated with PD 

in one study.59 The top SNP, rs356225, is in strong LD with several known PD SNPs, with an R2 of 0.63 

with rs356182 (supplementary figure 3). An overall pattern of higher LD was observed in the Peruvian 

subset (supplementary figure 4) than in the entire LARGE-PD cohort (Figure 3).  

 

Conditional Analysis  

Using a logistic mixed model, we performed a conditional analysis where we adjusted for rs356182, the 

lead variant in European-ancestry PD meta-analyses, to test if it was driving the signal at this locus 

(supplementary figure 5). When correcting for the number of GWAS-significant variants, 8 SNPs remain 

significant, though attenuated, after adjusting for rs356182, with rs6830166 having the smallest adjusted 

p-value (0.012). None of the SNPs remain statistically significant when adjusting for both rs356182 and 

rs6830166 (see supplementary table 3), despite LD patterns showing evidence of three blocks. 

However, if we utilized a more stringent threshold, such as the regional correction implemented by 

Pihlstrøm et al. (n=220) in their conditional analysis of SNCA44, then we found minimal evidence of 

independence from rs356182 (see supplementary table 3). A more comprehensive conditional analysis 

is necessary to pinpoint the number of independent SNCA signals implicated in Latino PD etiology.  

 

23andMe Replication 

We employed a relaxed criterion (p-values <1x10-5) to identify SNPs for replication (see methods). 

23andMe tested each SNP using their replication pipeline (see methods) and a cohort of 1,234 self-

reported PD cases and 439,522 controls. Self-reported ancestry was not utilized; rather, Latino ancestry 

was determined from the subject genotypes (see methods). SNPs that were not directly genotyped were 

imputed. Each SNP was tested using logistic regression, adjusting for age, sex, the first 5 PCs, and 

genotype platform. Only the chromosome 4 locus replicated, with rs356182 achieving genome-wide 

significance (see Table 1; supplementary table 4), confirming the importance of SNCA and the variant 

rs356182 in particular.  
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Replication of Known PD Loci 

The largest PD-GWAS meta-analysis to date identified 90 independent GWAS-significant PD risk 

variants in subjects of European ancestry.1 To determine whether these SNPs conferred risk in the 

LARGE-PD cohort, we looked up 84 of the 90 SNPs in our primary GWAS (supplementary Table 5). 76 

of these variants passed our frequency and CG/AT filters (see methods). Sixty-three of the 76 variants 

(82.9%) had concordant direction of effect with a Pearson’s correlation of 0.82 (p < 2x10-16; figure 4). 10 

variants were nominally significant (p < 0.05 and > 5.95x10-04), and two were significant after correction 

for 84 tests (rs356182 at the SNCA locus and rs117615688 close to CRHR1, p < 5.95x10-04). The set of 

variants with a MAF less than 0.0452 contains every variant with a difference in LARGE-PD and Nalls et 

al. beta coefficients greater than one standard deviation from the mean (supplementary figure 6). This 

is likely due to a combination of the tendency of rare variants to have larger effect sizes and inaccuracies 

in the estimates of their beta coefficients. If we remove all variants with a MAF less than 0.05, the 

concordance rate improves to 86.3%.  

 

In addition to the replication of Nalls et al. 2019, we also performed a look-up of PD risk variants from 

Nalls et al. 2014, Chang et al. 2017, and Foo et al. 2020 (see supplementary table 6).6,7,9 36 out of the 

41 variants we looked up were consistent in their direction of effect, including both variants from Foo et 

al. Worth noting, Foo et al. 2020 is a study of individuals with East Asian ancestry, while the other two 

studies only utilize European-ancestry subjects. We also looked up the three independent PD risk 

variants in SNCA that were identified by Pihlstrøm et al.44 One, rs356182, was already included in our 

replication study. The other two, rs2870004 and rs763443, were not genome-wide significant (p=0.5 and 

p=0.0015) but were consistent in effect size direction. Neither were in LD with rs356182 in LARGE-PD 

(R2 0.08 and 0.01, respectively).  

 

Admixture Mapping  

Admixture mapping can be employed if a phenotype shows evidence of differential risk by ancestral 

background or if we observe allele frequency differences across ancestral populations. For PD, we do 
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see global patterns of PD incidence and prevalence suggestive of differential PD risk.2 In addition, 

Medicaid data in the United States also indicates potential differences in PD risk by ancestral 

background.14 To explore this in LARGE-PD, we tested the ancestry proportions estimated using 

ADMIXTURE via logistic regression, adjusting for age, sex, and recruitment site. We found that African 

ancestry was significantly associated with lower PD risk (p-value < 0.05, see supplementary figure 7). 

Given this result, we next performed admixture mapping to test local ancestry blocks for associations 

with PD risk. To do so, we employed a joint test using the GENESIS package and local ancestry inferred 

via RFMix and assuming three-way admixture (see methods). This was followed by a single-ancestry 

analysis to determine the ancestry driving each signal. In the joint test, a locus on chromosome 14 was 

significantly associated with PD risk at a p-value threshold of 5x10-5 (see Figure 5A; Table 2). Three 

other loci, at chromosomes 6, 17, and 21, were approaching the p-value threshold in the joint test. In the 

single-ancestry tests, the chromosome 6 locus was significant in the African-ancestry model and the 

chromosome 14 locus was significant in the Native American model (supplementary figure 8). The 

suggestive peaks at chromosome 17 and 21 were also driven by Native American ancestry.  

 

To fine-map the admixture mapping signal, we tested imputed variants co-localized within each peak 

using a logistic mixed model and evaluated their significance using a regional significance level 

determined by the number of imputed variants within each peak (see supplementary table 7). For two 

of the peaks, chromosome 6 and 21, the SNP with the lowest p-value is intronic; for the other two peaks, 

the SNP with the lowest p-value is intergenic. The chromosome 6 admixture mapping peak contains 

RPS6KA2 (Figure 5B); an intronic variant, rs75880521, achieved the lowest p-value (6.05x10-4), but this 

was not significant when adjusting for the number of variants in the region (adjusted p-value of 0.35). 

This variant had a MAF of 0.22 in Africans in 1000 Genomes but is virtually absent in populations without 

African ancestry. The chromosome 14 locus encompasses STXBP6 (Figure 5C) and rs79647551 

achieved the lowest p-value (4.5 x10-5). This variant is intergenic and had a frequency of 0.31 in Admixed 

Latin American populations but was considerably less frequent in other populations. The chromosome 

17 locus does not contain a gene; within this locus, rs4795926 had the lowest p-value (1.7x10-3). This 
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variant was most frequent in Admixed Latin American populations. The chromosome 21 locus 

encompasses ITGB2 where rs183517, an intronic variant, had a p-value of 1.6x10-4. In 1000 Genomes, 

this variant had the lowest frequency in Admixed American populations.  

 

Discussion 

As has been well-documented by Sirugo et al. 2019, the majority of GWAS subjects represented in the 

GWAS catalog are of European ancestry.11 PD GWAS efforts feature a similar disparity; with the 

exception of three studies in East Asia8,9,60, the last three large-scale studies have exclusively included 

individuals of European descent.1,6,7 This risks missing population-specific variation that could impact PD 

risk and possibly lead to predictive disparities through the use of polygenic risk scores.11,61 LARGE-PD, 

the first Latino PD GWAS cohort, is indicative of a shift towards more inclusive PD genomic research. 

 

In LARGE-PD, we estimated the additive heritability of PD to be 0.38 (SE 0.068) with a prevalence of 

0.5%. The heritability estimate, though higher than that of European cohorts62, was concordant with a 

study of Kaiser Permanente members where more familial aggregation of PD was observed in 

Hispanics/Latinos that in other population classifications.63 Nevertheless, further refinement with a larger 

sample size is necessary to improve the accuracy of PD heritability estimation in South American 

populations.  

 

The suggestive chromosome 3 locus identified by our GWAS was driven by Peruvians of primarily 

Amerindian ancestry (Figure 1). The nearest gene to this locus, NRROS (Negative Regulator Of Reactive 

Oxygen Species; also called LRRC33), is biologically plausible as a potential PD risk gene. NRROS 

knockout mice display neurological abnormalities including motor deficits53 and a neurodegenerative 

phenotype has recently been identified in patients who are homozygous for loss-of-function NRROS 

variants.64 In addition, NRROS appears to be critical for microglial development.53,65 However, the 

chromosome 3 locus did not replicate in the 23andMe cohort nor was it nominally significant, so it is 

possible that this was simply a false positive. However, the mean ancestral proportions of 23andMe 
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differs from that of LARGE-PD, with a mean Native American ancestry of 19% (16.5% in cases) in 

23andMe compared to a mean Amerindian ancestry of 46.9% in LARGE-PD and 78.3% in the Peru-Lima 

subset (see supplementary table 1). To determine if this locus was truly a false positive, an additional 

replication in a cohort with greater Amerindian ancestry might be necessary.  

 

The SNCA locus in chromosome 4 achieved genome-wide significance in both LARGE-PD and the 

23andMe replication cohort (Table 1). In large-scale PD GWAS and meta-analyses, the strongest 

associations were consistently within the SNCA locus, though such studies have been limited to 

populations of European and East Asian ancestry.44,55–58 In LARGE-PD, 28 variants in SNCA achieved 

genome-wide significance, with 20 replicating in 23andMe. This includes rs356182, the lead variant at 

the SNCA locus in the European-ancestry studies. Twenty-five of the variants were represented in data 

available in the PDGene portal66; all 25 were genome-wide significant in PDGene. The 28 variants formed 

three blocks of tight LD (Figure 3) in LARGE-PD. In our conditional analysis, there appeared to be two 

independent signals, with one being rs356182, when we corrected for the 28 variants. However, if we 

utilized the more stringent regional correction employed by Pihlstrøm et al.44, then we see minimal 

evidence of a signal independent from rs356182, though our analysis likely lacked power. Worth noting 

is the higher LD between SNCA variants in the Peruvian subjects who made up over half of LARGE-PD 

subjects (supplementary figure 4). Fourteen of the 28 significant variants were tightly correlated with 

rs356182 (R2 > 0.8), the lead SNCA SNP in European PD studies, and all tested variants were at least 

moderately correlated with rs356182 in Peruvian subjects (R2 > 0.41). This suggests that the signal we 

observed in the SNCA locus was indeed being driven by rs356182. In addition, rs356182 was the only 

variant that was genome-wide significant in both LARGE-PD and the 23andMe replication cohort. A 

regional stepwise conditional analysis in a large diverse dataset is necessary to determine the number 

of independent PD risk variants in SNCA. Nevertheless, it is clear that SNCA, and rs356182 in particular, 

plays a significant role in PD etiology in Latinos. 
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In our replication of the independent GWAS-significant variants identified by Nalls et al.1, we found that 

82% of the tested variants were concordant in their effect size direction in LARGE-PD. Two of the 

variants, rs356182 (SNCA) and rs117615688 (nearest gene CRHR1 in the MAPT locus) replicated, with 

rs356182 achieving genome-wide significance. In our look-up of PD risk variants with a minimum MAF 

of 1% across three studies,6,7,9 34 out of the 39 variants identified in European studies were concordant 

in their effect size direction; both of the variants identified in an East Asian cohort were also concordant. 

Despite challenges estimating beta coefficients due to sample size, we found evidence that there is a 

substantial overlap in the genetic architecture of PD between Latinos and Europeans. 

 

In our exploration of the relationship between ancestry and PD risk, we found evidence that African 

ancestry was protective against PD risk (supplementary figure 7) and there was a statistically-significant 

locus on chromosome 6 in the African-ancestry admixture mapping model (supplementary figure 8C). 

Fine-mapping the chromosome 6 locus found rs58837225, an intronic variant in RPS6KA2 (Ribosomal 

Protein S6 Kinase A2) that was common in individuals of African ancestry but rare in other populations. 

A variant in RPS6KA2 was recently shown to be in an three-way epistatic relationship with a variant in 

SNCA and a variant in RPTOR in an age at PD onset study.67 However, this admixture peak did not 

achieve significance in the joint test nor was the fine-mapped variant regionally significant (see 

methods). The mean proportion of African ancestry in LARGE-PD was under 0.06, meaning that we 

were underpowered to detect African-specific variation. A second locus on chromosome 14 achieved 

significance in the joint test and in the Native American-ancestry model (Figure 5A, 5C, supplementary 

figure 8B). This locus contains the gene STXBP6 (Syntaxin Binding Protein 6); though it has primarily 

been implicated in lung cancer68, this gene is also highly expressed in the brain.69 Though our admixture 

mapping results likely provide information for hypothesis generation, replication of our results is 

necessary, ideally in a cohort enriched in African ancestry for the chromosome 6 result and a cohort 

enriched in Native American ancestry for our chromosome 14 result.   
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LARGE-PD is a significant step forward towards increasing the diversity in PD GWAS efforts, though a 

comprehensive understanding of population-specific PD genetic architecture is still lacking outside of 

individuals of European and East Asian origin. Larger sample sizes are always needed, but just as 

necessary is the inclusion of Hispanic/Latino PD subjects from diverse ancestral backgrounds, such as 

those with significant Native American or African ancestries. PD is a global disease, and it is crucial that 

genetic studies reflect a wide diversity of individuals.  
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Schuh, Bruno L. Santos-Lobato. 

Chile:Pedro Chaná. 

Colombia: Carlos Velez-Pardo, Marlene Jimenez-Del-Rio, Francisco Lopera, Gonzalo Arboleda, 

Humberto Arboleda, Jorge Luis Orozco, Sonia Moreno, William Fernandez, Carlos E. Arboleda-Bustos. 
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Ecuador: Jorge Chang-Castello, Brennie Andreé Muñoz. 

Honduras: Alex Medina, Anabelle Ferrera. 

Mexico: Daniel Martinez-Ramirez, Mayela Rodriguez. 

Peru: Mario Cornejo-Olivas, Pilar Mazzetti, Hugo Sarapura, Andrea Rivera, Luis Torres, Carlos 

Cosentino, Angel Medina. 

Puerto Rico: Angel Viñuela. 

Uruguay: Elena Dieguez, Victor Raggio, Andres Lescano, Ignacio Amorín. 
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Table 1: LARGE-PD GWAS-significant results 

SNP CHROM POS FREQ P.VALUE REF ALT REPLICATES GENE R2 R2_PERU R2_EUR 
rs356183 4 89704947 0.492 6.10E-09 G C NA SNCA 0.217 0.419 0.641 
rs356182 4 89704960 0.556 2.48E-08 G A YES SNCA NA NA NA 
rs356181 4 89704988 0.481 2.60E-08 G A NA SNCA 0.689 0.840 0.589 
rs356211 4 89715267 0.463 4.37E-08 C T YES SNCA 0.612 0.802 0.492 
rs356219 4 89716450 0.522 4.50E-08 G A YES SNCA 0.749 0.873 0.770 
rs356220 4 89720189 0.52 3.00E-08 T C YES SNCA 0.744 0.870 0.763 
rs356221 4 89721313 0.47 6.15E-09 A T YES SNCA 0.628 0.806 0.516 
rs356223 4 89722356 0.471 4.63E-09 A G YES SNCA 0.631 0.806 0.517 
rs356225 4 89722606 0.47 4.22E-09 C G YES SNCA 0.629 0.806 0.516 
rs356165 4 89725735 0.515 1.35E-08 G A YES SNCA 0.742 0.870 0.767 
rs356204 4 89742391 0.47 5.63E-09 T C YES SNCA 0.625 0.800 0.517 
rs356203 4 89744890 0.516 2.15E-08 C T YES SNCA 0.741 0.865 0.767 
rs356200 4 89747463 0.47 5.77E-09 T C YES SNCA 0.625 0.800 0.516 
rs189596 4 89750185 0.47 4.72E-09 G A YES SNCA 0.626 0.802 0.516 
rs356168 4 89753280 0.47 4.69E-09 G A YES SNCA 0.626 0.802 0.516 
rs2736990 4 89757390 0.474 5.85E-09 G A YES SNCA 0.626 0.802 0.519 
rs356198 4 89761353 0.255 4.05E-08 C T NOMINAL SNCA 0.217 0.419 0.020 
rs356197 4 89761599 0.255 4.05E-08 G A NOMINAL SNCA 0.217 0.419 0.020 
rs356196 4 89761652 0.255 4.05E-08 A T NA SNCA 0.217 0.419 0.020 
rs356191 4 89766969 0.272 2.76E-08 G A NOMINAL SNCA 0.230 0.426 0.024 
rs356162 4 89776006 0.273 3.55E-08 T C NOMINAL SNCA 0.228 0.426 0.024 
rs184810 4 89776828 0.273 3.54E-08 T C NOMINAL SNCA 0.228 0.426 0.024 
rs3775434 4 89781630 0.32 1.15E-08 A G YES SNCA 0.298 0.553 0.005 
rs3822089 4 89782860 0.319 1.31E-08 G A YES SNCA 0.299 0.556 0.005 
rs3822090 4 89783725 0.319 1.29E-08 C T YES SNCA 0.299 0.556 0.005 
rs3775439 4 89788590 0.321 2.02E-08 G A YES SNCA 0.295 0.546 0.004 
rs2737029 4 89790619 0.484 2.11E-08 T C YES SNCA 0.621 0.776 0.434 
rs6830166 4 89823842 0.326 9.35E-09 C T YES SNCA 0.293 0.548 NA 

 
LARGE-PD GWAS-significant results. SNP, the rs ID of the variant. CHROM, the chromosome. POS, the position 
in build HG38 coordinates. FREQ, the allele frequency observed in LARGE-PD. P.VALUE, the p-value from a 
score test. REF and ALT, the reference and alternative alleles. REPLICATES, indicates whether the variant 
replicated in the 23andMe cohort. GENE, the nearest gene. R2, the measure of LD (in R2) of the variant with 
rs356182, the lead variant in European cohorts. R2_PERU, the measure of LD with rs356182 in the Peruvian 
subset of LARGE-PD. R2_EUR, the measure of LD with rs356182 in 1000 Genomes European populations.   
 

Table 2: Admixture mapping results 

CHR PEAK P P_ADJ AFR_PVAL ADJ_AFR_PVAL NAM_PVAL ADJ_NAM_PVAL 
6 166465311-166607482 1.11E-04 0.111 2.02E-05 0.020 0.110 1.000 
14 24713480-25147976 3.57E-05 0.036 0.012 1.000 1.91E-05 0.019 
17 33970400-34509873 3.22E-04 0.322 0.346 1.000 9.19E-05 0.092 
21 44767470-46068473 2.21E-04 0.221 0.073 1.000 6.92E-05 0.069 

 
LARGE-PD Admixture mapping (AM) results. CHR, the chromosomal local of the AM peak. PEAK, the physical 
position in build hg19. P and P_ADJ columns are the p-values from the joint test. The AFR_PVAL and 
ADJ_AFR_PVAL are the p-values for the African single-ancestry test; the NAM_PVAL and ADJ_NAM_PVAL are 
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the p-values for the Native American single-ancestry test. All adjusted p-values (ADJ)  are corrected for a 
significance threshold of 5E-05 (see supplementary methods).  
 
Figure 1: LARGE-PD Demography 

A.       B.  

1A: Mean ancestry proportions by LARGE-PD site. We estimated ancestry proportions using ADMIXTURE and a 

K of 5 in a joint dataset that included LARGE-PD and 1000 Genomes Project samples.74 Using 1000 Genomes 

super-population codes to infer the ancestry underlying each cluster, C1 represents East Asian, C2 represents 

South Asian, C3 represents Native American, C4 represents African, and C5 represents European ancestry (see 

Figure S1). 1B: PCA plot of LARGE-PD subjects. We conducted a principal components analysis using PC-AiR in 

the merged 1000 Genomes-LARGE-PD dataset. Note the preponderance of individuals with high Amerindian and 

European ancestries. Principal components were calculated using the PC-AiR algorithm from the GENESIS 

package in R. 
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Figure 2: LARGE-PD GWAS results 

 

Manhattan plot of log-transformed p-values by chromosome. P-values were obtained via a logistic mixed model 

adjusting for age, sex, and the first five principal components using the GENESIS package in R. The significant 

peak is located within SNCA on chromosome 4. The suggestive peak one near chromosome 3 is near NRROS. 

 
Figure 3: LD disequilibrium structure of GWAS significant SNCA variants 
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R2 values between each variant were obtained using PLINK 1.9 and are displayed as a correlation matrix; red 

indicates higher R2 values. Three independent LD blocks were observed with R2 values less than 0.5 between 

each block. 

 

Figure 4: Replication of GWAS significant results from Nalls et al. 20191 

 

On the scatterplot of beta coefficients, the x-axis corresponds to betas obtained from LARGE-PD and the y-axis 

corresponds to beta coefficients from Nalls et al. 20191 for 76 of the 90 GWAS significant variants. In LARGE-PD, 

we successfully imputed 84 of the 90 variants; this figure excludes three variants with a MAC less than 10 and 

five strand ambiguous (CG/AT) sites that did not pass our filters (see methods). The color scheme represents p-

values obtained from LARGE-PD. Significant (p-value < 5.9x10-4) and nominally significant (p-value < 0.05) 

variants are labeled by their respective nearest genes.  
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Figure 5: LARGE-PD Admixture mapping results 

        

 

5A: Admixture mapping result of a joint test as implemented by the GENESIS package in R. The 

significance level of 5x10-5 is indicated in red. 5B and 5C: The admixture mapping results (blue) are fit using 

Loess curve and overlaid on the GWAS results in that region. The gene co-localized with the admixture 

mapping peak is labeled and highlighted in red.    

A. 

B. C. 
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