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Abstract 

 
Electroencephalography (EEG) characteristics associated with treatment response show potential for 

informing treatment choices for major depressive disorder, but to date, no robust markers have been 

identified. Variable findings might be due to the use of group analyses on a relatively heterogeneous 

population, which neglect individual variation. However, the correspondence between group level 

findings and individual brain characteristics has not been extensively investigated. Using single-subject 

analyses, we explored the extent to which group-based EEG connectivity and complexity characteristics 

associated with treatment response could be identified in individual patients. Resting-state EEG data and 

Montgomery-Åsberg Depression Rating Scale symptom scores were collected from 43 patients with 

depression (23 females) before, at 1 and 12 weeks of treatment with escitalopram, bupropion or both. The 

multivariate statistical technique partial least squares was used to: 1) identify differences in EEG 

connectivity (weighted phase lag index) and complexity (multiscale entropy) between responders and 

non-responders to treatment (≥50% and <50% reduction in symptoms, respectively, by week 12), and 2) 

determine whether group patterns could be identified in individual patients. The group analyses 

distinguished groups. Responders showed decreased alpha and increased beta connectivity and early, 

widespread decreases in coarse scale entropy over treatment. Non-responders showed an opposite 

connectivity pattern, and later, spatially confined decreases in coarse scale entropy. These EEG 

characteristics were identified in ~40-60% of individual patients. Substantial individual variation 

highlighted by the single-subject analyses might explain why robust EEG markers of antidepressant 

treatment response have not been identified. As up to 60% of patients in our sample was not well 

represented by the group results, individual variation needs to be considered when investigating clinically 

useful characteristics of antidepressant treatment response. 
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Author summary 

Major depression affects over 300 million people worldwide, placing great personal and 

financial burden on individuals and society. Although multiple forms of treatment exist, we are 

not able to predict which treatment will work for which patients, so finding the right treatment 

can take months to years. Neuroimaging biomarker research aims to find characteristics of brain 

function that can predict treatment outcomes, allowing us to identify the most effective treatment 

for each patient faster. While promising findings have been reported, most studies look at group-

average differences at intake between patients who do and do not recover with treatment. We do 

not yet know if such group-level characteristics can be identified in individual patients, however, 

and therefore if they can indeed be used to personalize treatment. In our study, we conducted 

individual patient analyses, and compared the individual patterns identified to group-average 

brain characteristics. We found that only ~40-60% of individual patients showed the same brain 

characteristics as their group-average. These results indicate that commonly conducted group-

average studies miss potentially important individual variation in the brain characteristics 

associated with antidepressant treatment outcome. This variation should be considered in future 

research so that individualized prediction of treatment outcomes can become a reality.  
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Introduction 

Neuroscience research on major depressive disorder (MDD) has greatly improved our understanding of 

the brain alterations associated with MDD. An accumulation of studies comparing patients with MDD to 

healthy controls have highlighted both local and global alterations in brain network function, indicating 

that it may best be characterized as a network disorder [1, 2]. Studies have also examined relationships 

between brain network characteristics and antidepressant treatment success; his is especially relevant 

given the variability in treatment outcomes in MDD (e.g. [3]). Despite high hopes for the application of 

such research in clinical practice, findings have been variable and no robust diagnostic or prognostic 

information for individual patients have been reported to date [4, 5]. 

         Functional connectivity, which is a commonly used measure of brain network function that 

measures the level of synchronized activity between brain regions, has shown promise for revealing 

network characteristics associated with treatment success [6-9]. Two electroencephalography (EEG) 

studies investigating associations between treatment success following 8 weeks of pharmacotherapy and 

functional connectivity found that weaker low frequency (delta, theta and alpha) connectivity at baseline, 

and a decrease in connectivity at these frequencies in right frontal and temporal electrode pairs was 

associated with better outcomes [6, 7]. However, increased alpha connectivity with treatment has also 

been associated with better treatment outcomes [9]. In the beta frequency band, some studies found lower 

pre-treatment connectivity and an early increase in connectivity, again mostly at frontal, temporal and 

central sites, to be associated with a better response [8, 9], while others did not find any treatment-related 

effects with beta [6], further highlighting the variability of connectivity findings in this context. 

            Researchers have also investigated network dynamics in MDD by examining complexity in brain 

signals, which provides complementary information to more traditional measures of brain network 

function [10]. Signals are considered to be complex when they have both stochastic and deterministic 

properties, and thus are neither completely predictable nor entirely random [11]. Some studies suggest 

that patients with MDD exhibit greater signal complexity than controls [12-15], and decreases in 

complexity have been associated with symptom improvement [16, 17]. In contrast, Čukić and colleagues 
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[18] found higher complexity in patients in remission from MDD compared to both currently depressed 

patients and healthy controls. Importantly, most of these studies assessed complexity only at high 

temporal resolutions (1-10ms between datapoints). Our group found no association between treatment 

response and complexity at these fine temporal scales prior to treatment, but demonstrated that greater 

treatment response was associated with greater complexity at lower temporal resolutions [19].  

         These variable findings might be explained by the high degree of heterogeneity in patients with 

MDD [3, 20, 21]. Specifically, the studies reviewed above generally used group analyses to study small to 

moderate samples of patients with MDD, which could easily lead to variable findings if extensive 

individual variation exists in brain data recorded from this population. Group analyses tend to capture 

central tendencies in the data and treat individual variation outside of these common features as noise, and 

might therefore highlight different commonalities depending on the sample of patients included in each 

study. Evidence of such individual divergence from group level findings in brain recordings was recently 

shown within a relatively homogeneous sample of healthy young adults, where individual participants 

had qualitatively different brain network organization compared to the group-average estimate [22]. It is 

likely that similar (or even greater) individual variation in brain network characteristics exist in patients 

with MDD and could be a factor in the variable findings discussed above, but this has yet to be 

investigated. Defining the extent to which group findings are representative of brain features at an 

individual level in the context of MDD could inform future attempts to apply group findings to 

individuals. 

Here we explored the extent to which group level findings were representative of individuals 

within the same sample by examining EEG connectivity and complexity. Similar to other studies in this 

field (e.g. [8, 9, 18]), our sample consisted of a moderate sample of 43 patients, receiving multiple 

antidepressant medication regimens (in our case, escitalopram, bupropion or their combination) for 12 

weeks. For group analyses, patients were divided into responders (≥50% symptom improvement on the 

Montgomery-Åsberg Depression Rating Scale [MADRS] from baseline to 12 weeks of treatment) and 

non-responders (<50% improvement). EEG was measured at baseline, and after 1 and 12 weeks of 
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treatment. We identified patterns of change in EEG connectivity and complexity at the group level in 

responders and non-responder, and examined the extent to which each individual’s results conformed to 

their own group’s pattern (e.g., responders showing the responder pattern) through single-subject 

analyses. Based on the most consistently reported findings from previous literature, we expected that 

responders would exhibit decreased connectivity at lower frequencies with treatment, and decreased 

complexity in response to pharmacotherapy [6-8, 17]. We expected that individual responders would 

generally follow the pattern found in the responder group, while non-responders might show more 

variable changes. 

 

Methods 

Participants  

Fifty-three adults with a primary diagnosis of major depressive disorder (MDD), as assessed by a 

psychiatrist with the Structured Clinical Interview for DSM-IV-TR [SCID-IV-TR] [23], participated in 

this study, as previously described [19]. Briefly, patients were excluded if they had any other Axis I 

disorder (except for anxiety disorders), recent (< 6 months ago) problems with substance 

abuse/dependence, an unstable medical condition, significant suicide risk, seizure history, or if they had 

been previously treated for their current depressive episode with the current study medications. Medicated 

patients underwent a supervised washout period prior to study commencement (>5 weeks for fluoxetine, 1 

week for other medications). As part of a larger clinical trial conducted between August 2007 and March 

2012 [24], patients received either escitalopram (ESC) and placebo, bupropion (BUP) and placebo, or a 

combination of the two medications for 12 weeks. Assignment to a specific treatment regimen was 

randomized (double blind).  

Depressive symptoms were assessed using the Montgomery-Åsberg depression rating scale 

[MADRS] [25, 26], every week during the first 4 weeks, and biweekly for the remaining 8 weeks. Dosage 

was increased if tolerated, and remission was not yet reached (average dose at 12 weeks for the current 
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sample: dual treatment: ESC = 32 mg, BUP = 379 mg; monotherapy: ESC = 34 mg, BUP = 425 mg). All 

patients had a baseline MADRS score ≥ 22. Patients whose MADRS scores improved ≥50% from 

baseline to 12 weeks were considered responders (R), while those who improved <50% were considered 

non-responders (NR). Due to participant drop-out and issues with EEG data quality, 10 participants were 

excluded from the current study, leaving 43 participants for data analysis (i.e. complete datasets at 

baseline, week 1 and 12), of whom 25 were responders and 18 were non-responders. Demographic and 

clinical characteristics can be found in Table 1. Statistical tests were performed in Excel to check for 

differences between responder and non-responder groups. All participants provided written informed 

consent, and were reimbursed $30 CAD/testing session. This study was approved by the Royal Ottawa 

Health Care Group and University of Ottawa Social Sciences & Humanities Research Ethics Boards.  

  

EEG data collection  

Resting state EEG recordings were collected before the start of treatment (baseline), 1 week and 12 weeks 

after treatment initiation. Participants abstained from caffeine and nicotine >3 hours prior to testing, and 

did not take any drugs, other than the prescribed antidepressants, on the nights before testing, except if 

needed for a stabilized medical condition. Two 3-minute resting-state EEG recordings were collected, one 

with eyes open (EO) and one with eyes closed (EC), while participants sat in a temperature- and light-

controlled testing chamber. Ip et al. (2018) showed that 3-minute EEG recordings are enough to extract 

reliable EEG characteristics in the theta, alpha and beta bands using a test-retest design. The order of EO 

and EC testing was counterbalanced between participants and sessions. EEG was recorded using 32 

Ag/AgCl electrodes embedded in a cap (EasyCap, Inning am Ammersee, Germany), with electrodes 

positioned according to a variant of the 10-20 system [27]. AFz served as the ground, and the average of 

the two mastoid channels (Tp9/Tp10) was used as the reference. Four additional channels were placed 

outside the left and right eye canthi, and above and below one eye, to monitor electrooculographic (EOG) 

activity. Data was sampled at 500 Hz, and impedance was <5KΩ (BrainVision Recorder, Gilching, 

Germany).  
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EEG Preprocessing  

EEG data were preprocessed using EEGLAB v13.4.4b [28] in MATLAB 2014 (The MathWorks, 

Inc., Natick, Massachusetts). Raw EEG data were bandpass filtered (0.5-55 Hz; slope: 12 dB/octave) 

using ERPlab’s IIR butterworth filter, notch filtered at 60 Hz (lower and upper edge: 55-65 Hz) using 

EEGlab’s basic FIR filter and segmented into 2s epochs. We used an independent component analysis 

(ICA) to identify and eliminate noise and ocular artifacts. Channels with excessive noise or drift were 

excluded from the ICA procedure, and subsequently interpolated using EEGlab’s spherical spline 

interpolation function. No more than two channels were interpolated for each participant and session. 

Epochs were visually inspected following ICA, and those with remaining artifacts were manually 

rejected. An average of 85.7 (range: 63-113) artifact free epochs were obtained per participant, state 

(EC/EO) and session (baseline, week 1 & 12), including 28 electrodes (Fp1/2; F3/ 4; F7/8; FC1/2; FC5/6; 

C3/4; CP1/2; CP5/6; P3/4; P7/8; T7/8; O1/2; Fz/Cz/Pz/Oz). The two reference channels, and two 

additional channels that were consistently flat for each participant (FT9/FT10), were excluded from 

analysis. There was no statistical difference between responders and non-responders in number of artifact-

free epochs per session or state (p-values: .09-.9).  

  

Connectivity analysis 

Functional connectivity, as quantified by the weighted phase lag index (WPLI), was calculated for each 

unique combination of the 28 channels (378 pairs) using the open source Fieldtrip toolbox [29] in 

MATLAB. WPLI is a modified version of the phase lag index (PLI), which was first described in 2007 by 

Stam and colleagues [30]. It estimates connectivity by calculating the phase angle difference between 

EEG signals from two channels for each time point, and determining the consistency in these phase lags 

over time. As such, if the difference in phase between two channels is similar over time, the PLI will be 

high, indicating high connectivity between two channels. An advantage of the PLI compared to other 

EEG connectivity measures is that it is less sensitive to volume conduction, because it disregards any 

phase lags of 0 and π. The WPLI also takes into account that phase lags can easily turn into leads and vice 
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versa (e.g. a slightly positive phase angle difference can turn into a slightly negative phase angle 

difference). While the PLI is sensitive to such small disturbances in phase lags, the WPLI resolves this 

issue by giving greater weight to angle differences around 0.5π and 1.5π [31]. The result is a value 

between 0 and 1, with higher values indicating stronger connectivity. WPLI was calculated in two ways, 

first across epochs, as is commonly used and enables direct comparisions with previous findings, and then 

within epochs, which is less commonly used, but enables single-subject analyses.  

Across-epoch WPLI. Phase information was first extracted for each epoch, channel and 

frequency bin (0.5-50 Hz, 0.5 Hz bins) using Fieldtrip’s fast Fourier transformation algorithm. A Hanning 

taper was used for the lower frequencies (0.5-30 Hz), while a multi-taper using the dpss (discrete prolate 

spheroidal sequences) method with 2 Hz smoothing was applied to the higher frequencies (31-50 Hz), to 

optimize sensitivity of spectral content at each frequency. WPLI values were then calculated by 

considering the consistency of phase lags over epochs at each frequency bin for all channel pairs using 

Fieldtrip’s connectivity function.  

Single-epoch WPLI. This across-epoch method is not suitable for single-subject analyses, 

because it does not allow calculation of WPLI for individual epochs. Therefore, a second, less common 

approach was used to calculate WPLI for the single-subject analyses [32]. Instead of extracting one phase 

value per epoch, phase was determined for each time point within an epoch using a time-frequency 

transformation with Morlet wavelets in the time domain. To have reasonable temporal and frequency 

resolution, the length of the wavelets was increased with frequency in regular steps, from 3 cycles at 4 Hz 

to 7 cycles at 50 Hz [32]. Frequencies below 4 Hz were not included as the length of our epochs (2 

seconds) was too short to provide reliable estimations at these frequencies (i.e. 3 cycles of a 1 Hz wavelet 

are longer than 2 seconds). WPLI could then be calculated for individual epochs by examining the 

consistency of phase lags over time points within each epoch [32]. These individual epoch data were used 

for the individual connectivity analyses. To confirm that this single-epoch approach provides similar 

results at the group level as the across-epoch approach, we also averaged these data over epochs for each 

participant, and ran the exact same group level analyses.  
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Brain signal complexity analysis 

Multiscale entropy (MSE) was used to quantify brain signal complexity. An advantage of MSE over other 

measures of complexity is the incorporation of multiple time scales. This feature is important because it 

differentiates between signals that are purely random (such as white noise) and those comprised of both 

random and deterministic components (such as 1/f or coloured noise). Signals that are purely random 

show a rapid decline in the MSE curve with increasing scale whereas those with temporal inter-

dependencies will have a more gradual shift in the MSE curve [33, 34]. A detailed description and 

theoretic background for MSE is outlined in Costa and colleagues [11]. In short, MSE estimates the 

regularity of a signal by evaluating the ratio of similar patterns of different lengths repeating over several 

time scales. It is calculated in two steps. First, the raw signal is resampled several times to create data 

sequences that represent different temporal scales. Essentially, an increasing number of non-overlapping 

data points are averaged into one new data point. The first timescale is the (cleaned) raw time series. With 

a sample rate of 500Hz in the current study, time scale 1 had a temporal resolution of 2 milliseconds 

between data points. For time scale 2, two consecutive data points were averaged, yielding a temporal 

resolution of 4 milliseconds; for time scale 3, averaging occurs over three time points yielding a temporal 

resolution of 6 milliseconds, and so on. The coarsest scale used in this study was 20 (temporal resolution 

of 40 milliseconds).  

Next, sample entropy is calculated at each time scale. Sample entropy determines the natural 

logarithm of the ratio of patterns of length m over patterns of length m+1 repeated within one epoch. This 

gives a value between 0 and 1, with higher numbers indicating a less predictable/more variable signal (i.e. 

fewer patterns of length m+1 compared to the number of patterns of length m). In line with previous 

studies, (e.g. [19, 35]) and guidelines outlined by Richman and Moorman [36], parameter m was set to 2 

in this study, while the similarity criterion r, which determines which points in the time series are 

considered to be ‘the same’, was set to 0.5 (i.e. two data points were treated as indistinguishable if their 

amplitudes differed <50% of the standard deviation of the time series). MSE was calculated for each 

epoch and electrode at each time scale, using the algorithm available at 
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www.physionet.org/physiotools/mse/. Single epoch MSE data were used for statistical analyses at the 

individual level. MSE values were also averaged over epochs to provide one MSE value for each 

electrode and time scale per participant, session (baseline, week 1 and 12) and state (EC and EO), which 

were used for group level analyses. 

  

Regression of age effects 

To control for differences in age between responder and non-responder groups (see Table 1), and because 

both brain signal complexity and connectivity have been observed to change with age [19, 37-40], age 

was regressed out of the data before the statistical group comparisons using an in-house MATLAB script 

[41, 42]. 

  

State contrasts 

Consistent with MSE and connectivity differences between EO and EC states observed in previous 

studies [19, 43-46], we found strong EO/EC contrasts in our analyses that masked changes occurring over 

assessment sessions (see Figure S1 & S2). Therefore, we performed analyses on EO and EC data 

separately. To maximize the chance of replicating group findings at the individual level, we performed 

single-subject analyses on the data showing the strongest effects (EC for WPLI, EO for MSE), and 

present those group findings below (other group findings are presented in Supplementary Materials 

[Figure S3 & S4]). 

 

Statistical analyses with PLS-SVD 

Partial least squares with singular value decomposition (PLS-SVD) is a multivariate statistical approach 

that can detect condition- and/or group-related differences in whole-brain variables [47, 48]. Briefly, PLS-

SVD calculates the between-subject covariance between experimental design characteristics (in this case, 

responder status and assessment sessions) and brain characteristics (in this case, WPLI or MSE). Then, 

this covariance matrix is decomposed using SVD into orthogonal latent variables (LVs) that account for 
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most of the covariance between groups/conditions and brain characteristics, revealing the optimal 

associations between specific groups/conditions and spatiotemporal patterns in the brain. LVs contain 

several components. One is the singular value, which indicates the strength of the effect the LV 

represents. Another component holds the element loadings, which represent the pattern of the specific 

data elements (in this study frequencies and electrode pairs for WPLI, and time scales and electrodes for 

MSE) that show the given contrast. These element loadings are used to compute brain scores: the dot 

product of the element loadings with each participants’ data for each assessment session. Brain scores 

represent the extent to which each participant expresses the given contrast in a single number per 

participant, and can therefore be used to get an overview of the contrast between groups/conditions.  

Statistical testing occurs at two levels in PLS-SVD analyses. First, the overall significance of the 

LV is determined using permutation tests. In each permutation, the data are randomly shuffled between 

conditions (within participants) and between groups, and PLS-SVD analysis is performed on the shuffled 

data just as on the actual data. LVs are considered significant when their singular value is more extreme 

than 95% of the singular values calculated from the randomly shuffled data (corresponding to p < .05). In 

the current study, 500 permutations were performed for each analysis. Second, the stability of the 

identified pattern over participants is established through bootstrap resampling. In essence, the PLS-SVD 

analysis is repeated with different subsamples of participants, to see how consistently each electrode 

pair/electrode and frequency/time scale display the identified pattern of differences across the whole 

sample. This consistency is quantified as a bootstrap ratio, which is calculated by dividing the element 

loadings by the standard error of the created bootstrap distribution for each element. In addition to 

determining the stability of the pattern, bootstrap resampling also protects against the influence of 

outliers, as subsamples with and without the outlier would produce different outcomes, thereby 

decreasing the consistency of the findings (i.e. the bootstrap ratio). In practice, this means that effects that 

are driven largely by an outlier get attenuated. Bootstrap ratios are similar to z-scores, with absolute 

values ≥ 3.1 corresponding to ~99% confidence interval. In this study, bootstrap resampling was 

performed 200 times. As each statistical test is computed in one mathematical step, no correction for 
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multiple comparisons is necessary [47]. P-values indicating significance levels, and percentage of 

crossblock covariance explained (PCCE) are reported for each LV of interest. PLS-SVD analyses were 

applied both at a group and individual level.  

  

Group level analyses 

Both groups (responders vs. non-responders) and all sessions (baseline, 1 & 12 weeks of treatment) were 

entered in four PLS-SVD analyses: two for connectivity (EO/EC states separately) and two for 

complexity (EO/EC). As all showed interaction effects between groups and assessment sessions, two 

additional analyses were run for each analysis for responders and non-responders separately, again 

including all sessions. The p-values of these follow-up analyses were corrected for multiple comparisons 

using the Bonferroni method. 

The input data consisted of across-epoch WPLI/averaged MSE values, organized into 2D 

matrices with n * k rows, and m * t columns, with n being the number of participants (R: 25; NR:18) and 

k the number of conditions (assessment sessions: 3). M and t represent the spatiotemporal elements, 

namely the number of electrode pairs (378) and frequencies (99) for the WPLI analyses and the number 

of electrodes (28) and timescales (20) for the MSE analyses. The same procedure was followed for the 

averaged, single-epoch WPLI data (Methods – Connectivity analyses).  

            

Single-subject analyses 

Non-rotated (hypothesis-driven) PLS-SVD analyses were performed for each individual, using single-

epoch EC WPLI data, and single-epoch EO MSE data. Single epoch WPLI/MSE values were organized 

into similar 2D matrices as described for the group analyses, only now each participant had their own 

datamat, with the n dimension representing the number of epochs instead of participants [48]. Non-rotated 

PLS-SVD was chosen because it allows one to determine whether and to what extent a specific, 

predefined contrast is present in the data. Using the contrasts found in the group analyses, non-rotated 

PLS-SVD was used to test whether each individual followed the pattern of change observed in responder 
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and non-responder groups. No correction for multiple comparisons was applied, as these analyses aimed 

to replicate group findings in separate datasets for each individual. 

The similarity of the individual PLS-SVD outcomes to the group PLS-SVD outcomes was 

quantified in two ways. First, the similarity was estimated quantitatively, by correlating the stable (|BSR| 

> 2, corresponding to ~95% confidence interval) element loadings (i.e. the spatiotemporal brain pattern) 

of the group results with the element loadings of each participants’ individual analysis in MATLAB. For 

connectivity, the element loadings from the group analyses on averaged single-epoch WPLI were used for 

this correlation procedure (Methods – Connectivity analyses). If participants did not significantly show 

the predefined contrast (responder/non-responder), indicating the timing and direction of the change 

highlighted by element loadings, their results were not correlated with the results of that group and were 

included as ‘showing no correlation with the group pattern’ in the summaries. Second, to balance 

arbitrary cut-offs and mimic clinical interpretability, significant individual outcomes were visualized and 

classified by two independent raters, blind to response status, as being similar to either or both the 

responder or non-responder group patterns, or neither. Important responder and non-responder features 

were selected based on visual inspection of the most consistent changes across time (i.e. those with |BSR| 

> 3.1) in the group analyses. The percentage of participants showing moderate-strong correlations (r≥.4; 

[49]) with their own group outcome and/or being classified as conforming to their own group pattern 

exclusively was determined as an indicator of the replicability of the group patterns at the individual 

level.  

 

Results 

Participants 

By design, responders had lower MADRS scores at week 12, but not at baseline or week 1 (Table 1). 

Apart from responders being younger than non-responders, the two groups did not differ statistically in 

clinical and demographic characteristics (Table 1). We accounted for the age difference by regressing age 

effects out of our data before running the statistical tests at the group level. 
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Table 1. Demographic and Clinical Characteristics (Means ± Standard Error) of Antidepressant 

Treatment Responders and Non-responders  

 Responders 
(N = 25) 

Non-responders 
(N = 18) 

Statistics 

Sex (F/M) 14/11 9/9 χ2(3) = 0.15, p = .70  

Age 35.1 ± 2.1 
(range: 19-57) 

44.8 ± 2.7 
 (range: 20-63) 

t(35) = 2.77, p = .009* 

Education (years) 15.4 ± 0.5  16.3 ± 0.6 t(34) = 1.20, p = .24  

Ethnicity 22 Caucasian; 2 
Asian; 1 South 

Asian  

17 Caucasian; 1 
African 

p = .48 (Fisher’s exact 
test) 

Comorbid anxiety (Yes/No) 3/22 3/15 p = .68 (Fisher’s exact 
test) 

Treatment regimen 
(ESC+BUP/BUP+placebo/ 
ESC+placebo) 

12/6/7 5/6/7 χ2(5) = 1.79, p = .41  

Baseline MADRS score 29.4 ± 0.9  32.2 ± 1.1  t(36) = 1.91, p = .064  

MADRS score at 1 week 23.1 ± 1.6  27.9 ± 1.9  t(37) = 1.92, p = .063 

MADRS score at 12 weeks 6.0 ± 1.0 24.9 ± 1.9  t(26) = 8.85, p < .001* 

Group differences were examined using independent samples t-tests in Excel, unless reported otherwise. * 

Significance at p < .05. F = female, M = male, ESC = escitalopram, BUP = bupropion, MADRS = 

Montgomery-Åsberg Depression Rating Scale 

 

 

Group analyses - WPLI 

The PLS-SVD analysis including both groups and all sessions identified one significant LV (p < .001, 

PCCE = 35.07%). As this LV presented an interaction effect between groups and sessions, two additional 

analyses for each group separately were run, with the statistical significance threshold corrected to ⍺ < 

.025. These analyses revealed a complex, opposite pattern of change from weeks 1 to 12 in responders 

(p=.024, PVE=55.8%) and non-responders (p = .032, PCCE=56.6%; Figure 1), although the non-

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 1, 2021. ; https://doi.org/10.1101/2020.11.09.20227280doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.09.20227280
http://creativecommons.org/licenses/by-nc/4.0/


 16 

responder LV only approached significance. The most prominent frequencies for each group are 

highlighted by red boxes in Figure 1: Non-responders showed a widespread increase in alpha 

connectivity (10Hz), while responders exhibited an extensive increase in beta connectivity (22Hz). 

Considering the same frequencies in the opposite groups (e.g. alpha in responders; highlighted by blue 

boxes) revealed more spatially contained changes in the opposite direction: Responders showed a 

decrease in connectivity at 10Hz, while non-responders showed a decrease at 22Hz. In both groups, 

changes in alpha connectivity were most pronounced at interhemispheric frontal-to-occipito-parietal 

electrode pairs but involved additional electrode pairs in non-responders. The most consistent beta 

changes occurred in left intra-hemispheric connections in both groups, but also included right central and 

parietal electrode pairs in responders (Figure 2).  

The group PLS-SVD analyses performed on the averaged single-epoch WPLI data showed a 

similar pattern of change in connectivity in responder and non-responders (Supplementary Material & 

Figure S5). However, the results spread over multiple frequencies (e.g. from 8-14 Hz instead of 

dominantly at 10 Hz), which is unsurprising, considering the reduced spectral resolution associated with 

sliding window approaches [32]. 
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 Figure 1. Results from the task partial-least squares (PLS-SVD) analyses examining change in 

connectivity as measured by weighted phase lag index (WPLI) over the course of antidepressant 

medication treatment in eventual non-responders (left) and responders (right). Bar graphs (A) depict the 

contrast between assessment sessions within groups, that was significantly expressed across each data set 

as determined by permutation testing. The statistical image plots (B) present the bootstrap ratio maps over 
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all electrode pairs (rows) and frequencies (columns). The orange and purple pixels display where the 

contrast represented by the bar graphs was most reliable across participants as determined by 

bootstrapping. Positive values (purple) indicate increased WPLI in responders, and decreased WPLI in 

non-responders from 1 to 12 weeks of treatment, while negative values (orange) indicate decreased WPLI 

in responders and increased WPLI in non-responders from weeks 1 to 12. To aid interpretability, the most 

prominent increases in WPLI are highlighted by red boxes, while decreases in WPLI are outlined by blue 

boxes. As highlighted by these boxes, non-responders showed an increase in alpha and a decrease in beta 

connectivity from week 1 to week 12 of treatment, while responders showed the opposite pattern. 

 

 

Figure 2. Topographical location of electrode pairs showing the most consistent change in connectivity as 

measured by weighted phase lag index (WPLI) over assessment sessions in non-responders (A/C) and 

responders (B/D) at 10Hz (A/B) and 22Hz (C/D). Positive values (orange) indicate increased WPLI from 

1 to 12 weeks of treatment, while negative values (purple) indicate decreased WPLI from weeks 1 to 12.  
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Group analyses - MSE 

The PLS-SVD analysis examining changes in MSE over time in responders and non-responders identified 

one significant LV (p < .001, PCCE = 82.71%), which revealed an interaction effect. The analyses 

exploring changes for each group separately each found one significant LV (responders: p = .006, PCCE 

= 93.85%, non-responders: p = .02, PVE = 86.9%, significant at ⍺ < .025). Both groups showed a 

decrease in coarse scale complexity from baseline to 12 weeks, but the timing and extent of change 

differed. Responders showed an early (starting at week 1) and widespread decrease in coarse scale 

complexity, while non-responders showed a later (only present at week 12) decrease in coarse scale 

complexity in limited electrodes (Figure 3 & 4). Additionally, fine scale complexity increased only in 

non-responders. 
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Figure 3. Results from the task partial-least squares (PLS-SVD) analyses examining change in 

complexity as measured by multiscale entropy (MSE) over the course of antidepressant medication 

treatment in non-responders (left) and responders (right). Bar graphs (A) depict the contrast between 

assessment sessions within groups, that was significantly expressed across each data set as determined by 
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permutation testing. The statistical image plots (B) present bootstrap ratio maps over all electrodes (rows) 

and time scales (columns). The colored values display where the contrast represented by the bar graphs 

was most consistent across participants as determined by bootstrapping. Positive values (purple) indicate 

decreased MSE, while negative values (orange) indicate increased MSE at week 12 compared to baseline 

and week 1 in non-responders, and at week 12 compared to baseline in responders. 

  

Figure 4. Topographical location of electrodes showing the most consistent change in complexity as 

measured by multiscale entropy (MSE) over assessment sessions in non-responders (A) and responders 

(B) at a time scale of 32ms between data points. Negative values (purple) indicate decreased MSE at 

week 12 compared to baseline and week 1 in non-responders, and decreased MSE at week 12 compared 

with baseline in responders. There was no increase in MSE for any electrode at this time scale. 

 

Individual analyses - WPLI 

The pattern of change across assessments identified by the group PLS-SVD examining connectivity was 

similar regardless of the approach used to calculate WPLI, namely, consisting of a change in connectivity 

from week 1 to week 12 in both non-responders and responders (Figure 1 & S5). Therefore, we applied 

this pattern in the non-rotated single-subject PLS-SVD analyses. As the non-responder and responder 
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patterns only differed in the direction of change (i.e. increase or decrease in WPLI), only one contrast was 

defined for each analysis (0 1 -1). This contrast examines changes in WPLI from week 1 to week 12 but 

leaves the direction of change and at which frequencies this occurs to be determined by the data. All non-

responders and 22/25 responders exhibited the predefined pattern of change at an uncorrected significance 

level (all p < .05), of whom 33 (19R/14NR) survived Bonferroni correction (p < .001).  

 The correlation procedure showed that 60.5% of individual patients exhibited moderate-strong 

positive correlations (i.e. r≥.4; [49]) between their individual and group outcomes. Another 9.3% showed 

weak positive correlations (i.e. .1<r<.4), while 14.0% revealed negative correlations between individual 

and group PLS-SVD outcomes. The remaining 16.3% of patients’ individual analyses either correlated 

negligibly (-.1<r<.1) or did not reach significance and were therefore not correlated (Figure 5). 

Following the direction of change found at 10Hz (alpha) and 22Hz (beta) for the responder and 

non-responder groups, individuals showing a pattern of a meaningful decrease in alpha (~8-14Hz) and/or 

increase in beta (~18-30Hz) WPLI from week 1 to 12 were considered to fit the responder pattern, while 

patients showing a pattern of a meaningful increase in alpha and/or decrease in beta WPLI from week 1 

to 12 were considered to fit the non-responder pattern. Two authors examined each individual outcome 

pattern and independently decided whether they conformed to the outlined definitions. Inter-rater 

reliability was quantified using Cohen’s Kappa: 𝜿=0.76 for rating whether patients fit the responder 

pattern, and 𝜿=0.57 for rating whether patients fit the non-responder pattern. Raters discussed 

discrepancies until consensus, which indicated that 39.5% of patients fit the pattern of their own group 

exclusively, 34.9% fit both patterns, 14.0% only showed the pattern of the opposite groups, and the 

remaining 11.6% did not conform to either pattern (7% did not reach significance). Table 2 shows the 

characteristics of patients who were rated as fitting their own WPLI pattern exclusively versus the other 

categories. Aside from individual responders conforming to the responder group pattern showing higher 

correlations with their own WPLI group pattern compared to responders assigned to other categories (p = 

.005, did not survive Holm’s sequential Bonferroni test for multiple comparisons), there were no obvious 
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clinical and demographic differences between individuals in the different responder and non-responder 

categories.   

  

 

Figure 5. Proportion of participants that exhibited the same pattern as their own group exclusively, the 

pattern of the opposite group exclusively, both group patterns or neither group pattern in their individual 

analysis of connectivity as measured by weighted phase lag index (WPLI; A) and complexity as measured 

by multiscale entropy (MSE; B). Proportion of participants showing a strong/medium positive correlation 

(r≥.4), a weak positive correlation (.1<r<.4), a negligible or lack of correlation (-.1<r<.1) or a negative 

correlation (r<-.1) between their individual outcome matrix and that of their own group for WPLI (C) and 

MSE (D).  
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Table 2. Demographic and Clinical Characteristics (Means ± Standard Error) of Antidepressant 

Treatment Responders and Non-responders Divided Based on which Individuals Matched the Group 

WPLI Patterns 

 Responders 
(N = 25) 

Non-responders 
(N = 18) 

 Responder pattern 
only (N = 10) 

Other categories  
(N = 15) 

Non-responder 
pattern only (N = 7) 

Other categories 
(N = 11) 

Sex (F/M) 4/6 10/5 4/3 5/6 

Age 38.0 ± 3.7  
(range: 23-57) 

32.5 ± 2.5 
(range: 19-46) 

40.3 ± 4.6  
(range: 20-57) 

47.6 ± 3.3  
(range: 28-63) 

Education (years) 16.7 ± 0.8*  14.5 ± 0.6 15.1 ± 0.8 17.1 ± 0.9 

Ethnicity 9 Caucasian; 1 
Asian 

13 Caucasian; 1 
Asian; 1 South 

Asian 

7 Caucasian 10 Caucasian; 1 
African 

Comorbid anxiety (Yes/No) 0/10 3/12 0/7 2/9 

Treatment regimen 
(ESC+BUP/BUP+placebo/ 
ESC+placebo) 

4/2/4 8/4/3 2/2/3 3/4/4 

Baseline MADRS score 29.4 ± 1.4  29.4 ± 1.3  33.1 ± 1.0  31.5 ± 1.7 

MADRS score at 1 week 23.9 ± 2.8  22.6 ± 2.0  29.7 ± 2.6  26.7 ± 2.7 

MADRS score at 12 weeks 5.1 ± 1.5  6.7 ± 1.3  25.4 ± 3.1  24.5 ± 2.5 

Correlation with own group 
WPLI pattern (>.4/<.4) 

9/1* 6/9 3/4 3/8 

Correlation with own group 
WPLI pattern 

0.67 ± 0.09** 0.13 ± 0.15 0.51 ± 0.07 0.30 ± 0.09 

Correlation with own group 
MSE pattern 

0.44 ± 0.16 0.26 ± 0.12 0.40 ± 0.15 0.40 ± 0.18 

Group differences were examined using independent samples t-tests and Fisher’s exact test in Excel. ** 

Significant differences between groups at p < .05 (with Holm’s sequential Bonferroni test to correct for 

multiple comparisons, as these were unplanned comparisons). * Group differences with p < .05 that did 

not survive the correction. F = female, M = male, ESC = escitalopram, BUP = bupropion, MADRS = 

Montgomery-Åsberg Depression Rating Scale 
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Individual analyses - MSE 

Non-rotated PLS-SVD was performed for all participants with two predefined contrasts: 1 0 -1 as the 

responder pattern (change from baseline to week 12, top of Figure 3) and 1 1 -2 as the non-responder 

pattern (no change from baseline to week 1, change from weeks 1 to 12, top of Figure 3). While all 

individual analyses revealed significant results for both predefined LVs (all p < .001), 16% of patients did 

not show the same pattern of change over assessment sessions as defined in their own group contrast. 

 The correlation procedure showed that 53.5% of individual outcome patterns correlated positively 

with moderate-high strength (r ≥ .4; [49]) to that of their groups. Another 9.3% showed a weak (.1 < r < 

.4) positive correlation between their individual outcome and that of their group. Of the remaining 

individuals’ analyses, 11.6% yielded negative correlations, while 25.6% either showed negligible 

correlations (-.1 < r < .1) or did not show the predefined contrast and were therefore not correlated with 

group patterns (Figure 5).  

Participants were characterized as fitting the responder pattern if they showed a meaningful 

decrease in coarse scale MSE from baseline to week 1 in their first LV, and characterized as fitting the 

non-responder pattern if they demonstrated no meaningful change in coarse scale MSE from baseline to 

week 1, and any change in coarse scale MSE from week 1 to week 12 in their second LV. Again, two 

raters examined the significant patterns found in each individual analysis and independently decided 

whether they conformed to these definitions. Inter-rater reliability yielded 𝜿=0.91 for rating whether 

patients fit the responder pattern, and 𝜿=0.96 for ratings on whether patients fit the non-responder pattern. 

Based on consensus, 46.5% of patients exclusively showed the pattern of their own group, 25.6% fit both 

patterns, 14.0% exclusively showed the opposite pattern, and 14.0% showed neither. Patients in this last 

group, including 4 responders and 2 non-responders, showed an early increase in coarse scale complexity 

instead. The characteristics of patients rated as conforming to their own group pattern exclusively versus 

those who did not are presented in Table 3. Again, the most notable difference was that responders 

exclusively showing the responder pattern exhibited higher correlations between their individual and 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 1, 2021. ; https://doi.org/10.1101/2020.11.09.20227280doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.09.20227280
http://creativecommons.org/licenses/by-nc/4.0/


 26 

group MSE patterns compared to responders assigned to the other categories; this comparison did not 

survive Holm’s sequential Bonferroni test to correct for multiple comparisons (p = .006). 

Table 3. Demographic and Clinical Characteristics (Means ± Standard Error) of Antidepressant 

Treatment Responders and Non-responders Divided Based on which Individuals Matched the Group 

MSE Patterns 

 Responders 
(N = 25) 

Non-responders 
(N = 18) 

 Responder pattern 
only (N = 12) 

Other categories  
(N = 13) 

Non-responder pattern 
only (N = 8) 

Other categories 
(N = 10) 

Sex (F/M) 5/7 9/4 3/5 6/4 

Age 30.6 ± 3.2 
 (range: 21-46) 

38.5 ± 2.4 
(range: 19-57) 

46.5 ± 4.0  
(range: 33-63) 

43.4 ± 3.9 
(range: 20-57) 

Education (years) 15.8 ± 0.5  15.0 ± 0.8 16.0 ± 0.9 16.6 ± 0.9 

Ethnicity 11 Caucasian; 1 
Asian 

11 Caucasian; 1 
Asian; 1 South 

Asian 

7 Caucasian; 1 African 10 Caucasian 

Comorbid anxiety (Yes/No) 1/11 2/13 1/7 1/9 

Treatment regimen 
(ESC+BUP/BUP+placebo/ 
ESC+placebo) 

7/2/3 5/4/4 0/4/4 5/2/3 

Baseline MADRS score 28.8 ± 1.4  29.9 ± 1.3 32.0 ± 1.5  32.3 ± 1.7 

MADRS score at 1 week 20.3 ± 2.5  25.8 ± 1.9 27.5 ± 2.4  28.2 ± 2.9 

MADRS score at 12 weeks 4.4 ± 1.1  7.5 ± 1.5 24.5 ± 2.4  25.2 ± 2.9 

Correlation with own group 
MSE pattern (>.4/<.4) 

9/3* 3/10 6/2 4/6 

Correlation with own group 
MSE pattern 

0.59 ± 0.10* 0.10 ± 0.13 0.51 ± 0.23 0.32 ± 0.12 

Correlation with own group 
WPLI pattern 

0.44 ± 0.15 0.26 ± 0.16 0.25 ± 0.12 0.48 ± 0.07 

Group differences were examined using independent samples t-tests and Fisher’s exact test in Excel. * 

Group differences with p < .05 that did not survive the Holm’s sequential Bonferroni correction for 

multiple comparisons. F = female, M = male, ESC = escitalopram, BUP = bupropion, MADRS = 

Montgomery-Åsberg Depression Rating Scale 
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Discussion 

The current study examined the extent of individual deviation from group results in EEG characteristics 

(connectivity/complexity) related to antidepressant treatment response in a typical dataset. Although our 

group analyses differentiated pharmacotherapy responders/non-responders overall, single-subject analyses 

revealed that differentiating group features only existed unambiguously in up to 61% of individuals. This 

suggests that, although group analyses are able to detect neural characteristics of treatment success that 

apply to certain patients at an individual level, a substantial proportion of individuals is poorly 

represented by such analyses. Critically, these findings indicate that group analyses may be insufficient 

for determining reliable EEG characteristics of treatment response in individual patients. A more nuanced 

approach, focused on individual patients, will likely be needed when applying brain-based markers of 

response in clinical practice.  

 For both EEG connectivity and complexity, our group findings were in line with some previous 

findings, but not others. Namely, responders showed a decrease in alpha connectivity over treatment, 

most notably in left fronto-temporal and right occipito-parietal electrode pairs, similar to Iseger et al. and 

Lee et al. [6, 7]. Contrarily, increased alpha connectivity has also been observed in response to 

antidepressant pharmacotherapy [9]. In line with the work of Olbrich et al. [9], we observed beta 

connectivity increases with successful treatment in left central, parietal and frontal areas, while others did 

not [6]. In line with yet others’ work [17], we found that EEG complexity at lower temporal resolution 

(20-40ms) decreased with treatment, and this was prominent only in responders. This differs from 

findings highlighting a decrease in complexity at high temporal resolutions instead [16, 17].  

 Together, these variable group-level findings and the substantial individual variation found in our 

single-subject analyses provide a possible explanation as to why reliable EEG characteristics associated 

with antidepressant treatment response have not yet emerged. Depending on the EEG characteristic and 

how it was MSE identified, 39-61% of our sample did not unambiguously show the same outcomes as 

their group, which is consistent with the idea that multiple response patterns to antidepressant treatment 

exist [50]. Taking alpha connectivity as an example, recent work shows that alpha connectivity profiles 
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may differentially predict response to placebo versus antidepressant pharmacotherapy (setraline; [51]), 

highlighting the possibility that different alpha connectivity patterns may distinguish responders to 

different types of interventions. The decrease in alpha connectivity in treatment responders using group 

analyses in this and previous studies might thus only represent one of several response profiles that exist 

in patients with MDD.  

 The responder group pattern we report here involved a decrease in alpha connectivity and coarse 

scale complexity, and an increase in beta connectivity. Although increased alpha connectivity in patients 

with MDD compared to healthy controls has been interpreted in varying ways [7, 52], the decrease in 

alpha connectivity with successful treatment reported here supports the notion that this feature plays a key 

role in MDD pathology and its treatment. The importance of this frequency band is further highlighted by 

frequent findings of altered alpha power and hemispheric asymmetry (e.g. [53, 54]). Given that intra-

hemispheric anterior-posterior beta connectivity has been associated with emotion regulation in healthy 

populations [55], increased beta over successful treatment could reflect increased top-down control over 

disturbed emotional processing in MDD in response to treatment [56]. Increased overall EEG complexity 

in MDD has been linked to recruiting more neural resources when performing an emotion processing task 

than healthy controls [15]. Generally, increased signal complexity has been associated with a greater 

number of simultaneously activated systems [57]. As MDD has been associated with reduced ability to 

suppress default mode network (DMN) activation and greater interconnectedness between affective and 

other information processing systems [58, 59], the decrease in complexity over successful treatment 

found here might indicate decreased dominance and interference by emotional processing circuits. 

 While our findings are in keeping with multiple response patterns existing within the population 

of patients with MDD, they do not provide proof of this, as we only tested whether the patterns appearing 

at the group level were also present in individual patients. Indeed, our approach is markedly different 

from other studies aiming to address applicability of neuroimaging to individual patients. For example, 

clustering approaches aim to divide patients into functionally relevant MDD subcategories, and machine 

learning (ML) methods aim to identify features that predict individual treatment outcomes. Although 
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encouraging work has emerged [60-62], subtyping research has had limited success so far [50], and these 

studies are far from perfect: Most existing research relies on study samples that are too small and 

homogeneous to provide reliable results [63, 64]. Additionally, findings from a recent machine learning 

study using a large multi-site dataset (N=1188) were not replicated, highlighting methodological 

challenges in analyzing high dimensional datasets using such approaches [50, 65, 66]. Thus, examining 

the brain characteristics associated with antidepressant treatment response likely warrants the use of 

multiple, complementary approaches. We propose that the use of single-subject analyses could help 

advance this field by determining the degree of individual variation and capturing the range of patterns 

present at the individual level. Future studies could take this further towards individual predictions of 

treatment outcomes, by building a library of individual brain patterns and associated treatment outcomes 

which can then be clustered and matched to new patients.   

 

Limitations & future directions 

Despite the novelty of the presented work, certain limitations exist. Most importantly, the limited sample 

size led us to group patients receiving different treatment regimens (i.e. escitalopram, bupropion or both) 

together to maintain sufficient statistical strength for our main analyses. While our sample was fairly 

balanced in terms of sex, we were also unable to test for sex differences. In addition, our sample included 

patients with different MDD symptom subtypes (e.g. melancholic, atypical) and several patients had 

comorbid anxiety disorders (given the high co-occurrence of anxiety in depressed individuals, we did not 

see the justification for excluding these individuals). Again, this heterogeneity in the sample might 

contribute to the individual variation we found in the individual analyses. We did compare the 

characteristics of patients who were and were not rated as exclusively conforming to their own group 

pattern. Specifically, we explored whether different regimens, comorbidity profiles and other clinical and 

demographic characteristics were associated with different patterns of change in EEG connectivity and 

complexity (see Table 2 & 3). While these comparisons did not reveal obvious differences, future studies 
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with larger samples should be conducted to explore the influence of heterogeneity of treatment and 

patient characteristics in more detail. 

In addition, there are numerous ways to quantify similarity between individual and group 

patterns. The correlation procedure was objective, but also led to arbitrary limits for categorizing who did 

and did not match the group patterns (i.e. r ≥ .4). The independent ratings avoided setting such arbitrary 

limits, relying instead on human judgements of similarity according to set criteria. While inter-rater 

reliability was high for ratings of MSE (𝜿 = 0.91-0.96), there was less agreement for the ratings of WPLI 

(𝜿 = 0.57-0.76), highlighting the subjectivity of this method. The lower inter-rater reliability for WPLI 

was likely due to the larger number of elements included in this analysis (378*99 compared to 28*20 for 

MSE), or could reflect more variety in WPLI response patterns compared to MSE patterns. Finally, we 

applied no correction for multiple comparisons in the individual analyses, as this would have made it 

more difficult to find the group patterns in individuals, and therefore bias the results towards our 

hypotheses that there would be much individual divergence from group findings. That being said, 

lowering the significance threshold to ⍺ = .001 using Bonferroni did not alter our MSE findings, and only 

changed 16% of the individual WPLI analyses (7 patients) from being significant to being insignificant. 

Overall, both measures of similarity showed that there was substantial individual variation in the 

connectivity and complexity group patterns.  

  

Conclusion 

Most existing work involving neural characteristics of antidepressant treatment success is based on 

responder/non-responder group differences. We show that substantial individual variation in EEG 

connectivity and complexity existed in a typical sample of patients receiving pharmacotherapy for MDD. 

Future research should take this individual variation into account when developing and considering the 

utility of EEG characteristics in informing clinical practice. The single-subject approach is one of the 

ways current research could be advanced towards meaningfully changing the trajectory of depressed 

patients obtaining treatment. 
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