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Abstract

The systematic identification of infected individuals is critical for the con-

tainment of the COVID-19 pandemic. Presently, the spread of the disease is

mostly quantified by the reported numbers of infections, hospitalizations, re-

coveries and deaths; these quantities inform epidemiology models that provide

forecasts for the spread of the epidemic and guide policy making. The veracity

of these forecasts depends on the discrepancy between the numbers of reported

and unreported, yet infectious, individuals.

We combine Bayesian experimental design with an epidemiology model and

propose a methodology for the optimal allocation of limited testing resources

in space and time, which maximizes the information gain for such unreported

infections. The proposed approach is applicable at the onset and spreading

of the epidemic and can forewarn for a possible recurrence of the disease after

relaxation of interventions. We examine its application in Switzerland; the open

source software is, however, readily adaptable to countries around the world.

We find that following the proposed methodology can lead to vastly less

uncertain predictions for the spread of the disease. Estimates of the effective
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reproduction number and of the future number of unreported infections are

improved, which in turn can provide timely and systematic guidance for the

effective identification of infectious individuals and for decision-making.

Keywords: Bayesian Optimal Experimental Design, Epidemiology, COVID-19

1. Introduction

The identification of unreported individuals infected by the SARS-CoV-2

virus is critical for the quantification, forecasting and planning of interventions

during the COVID-19 pandemic [1]. Presently the spread of the disease is mostly

quantified by the reported numbers of infections, hospitalizations, recoveries and5

deaths [2]. These quantities inform epidemiology models that provide short term

forecasts for the spread of the epidemic, help quantify the role of possible inter-

ventions and guide policy making. The veracity of these forecasts depends on

the discrepancy between the numbers of reported and unreported, yet infectious,

individuals.10

In recent months the estimation of unreported infections has been the sub-

ject of several testing campaigns [3, 4]. While there is valuable information be-

ing gathered, their estimates rely on testing individuals that are either already

symptomatic or have been selected based on certain criteria (hospital visits, air-

port arrivals, geographic vicinity to researchers, etc.). Generic, randomized tests15

of the population are broadly applied but they have been hampered either by

delays [5] or by insufficient numbers of test kits [6]. There is broad recognition

that efficient testing strategies are critical for the timely identification of infec-

tious individuals and the optimal allocation of resources [7]. However, targeted

testing entails bias while randomized tests require access to a high percentage20

of the population with commensurate high costs. The quality of the data as

well as the ways they are incorporated in the epidemiology models is critical for

their predictions and for estimating their uncertainties [8]. Having the capabil-

ity to minimize these uncertainties by suitably distributing in space and time a

given number of test kits is the subject of this work. This optimal allocation of25
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testing resources and the respective increase of the fidelity of forecasting models

are essential to effective policy making throughout the pandemic.

Here, we present a methodology for the OPtimal Allocation of LImited Test-

ing resourceS (OPALITS) that maximizes the information gain over any prior

knowledge regarding infections. The method relies on forecasts by epidemio-30

logical models with parameters adjusted through Bayesian inference as data

become available through suitable surveys [9]. The forecasts are combined with

Bayesian experimental design [10, 11, 12] to determine the optimal test alloca-

tion in space and time for various objectives (minimize prediction uncertainty,

maximize information gain of unreported infections). We emphasize that the35

proposed OPALITS is applicable in all stages of the pandemic, regardless of the

availability of data.

We employ the SEIrIuR model [13] that quantifies the spread of a disease

in a country’s population distributed in a number of communities that are in-

teracting through mobility networks. The SEIrIuR model predicts the number40

of susceptible (S), exposed (E), infectious reported (Ir), unreported (Iu), and

removed (R) individuals from the population. Here we focus on Switzerland

and consider its cantons as the respective communities. The model parameters

are: the relative transmission rate between reported and unreported infectious

individuals (µ), the virus latency period (Z), the infectious period (D) and the45

reporting rate (α). The transmission rate (β) and the mobility factor (θ) are

considered to be time dependent in order to account for government interven-

tions. For all stages of the epidemic, the respective uncertainties of the model

parameters are quantified and propagated using Bayesian inference. At the

onset of the epidemic, the uncertainty is quantified through prior probability50

distributions. As data of daily infections become available, the uncertainty in

model parameters is updated through Bayesian inference. The parameter prob-

ability distributions are used to propagate uncertainties in the model forecasts

and can assist decision makers in quantifying risks associated with the progres-

sion of the disease. The proper quantification of uncertainty bounds in the55

model parameters has a profound effect on predictions of the disease dynam-
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ics [8]. Large uncertainty bounds around the most probable parameter values

hinder the decision process for identifying effective interventions.

The OPALITS aims to assign limited test-kit resources to acquire data that

would reduce the model prediction uncertainties. Minimizing the uncertainty of60

the model parameters leads to more reliable predictions for quantities such as

the reproduction number [14]. Moreover, the reduced model uncertainties help

minimize risks associated with the decision making process including timing,

extent of interventions and probability of exceeding hospital capacity.

We quantify the information gain from these tests using a utility function65

[15, 12] based on the Kullback-Leibler divergence between the inferred posterior

distribution and the current prior distribution of the model parameters. The

prior can be formulated using the posterior distribution estimated from daily

data of the infectious reported individuals up to the current date (see Materials

and Methods). Hence, at any stage of the epidemic, the OPALITS provides70

guidance for the time and location/community where testing needs to be car-

ried out to maximize the expected information gain regarding infections in a

population.

We demonstrate the simplicity and applicability of the present method in

estimating the spread of the coronavirus disease in the cantons of Switzerland.75

We find that the OPALITS methodology outperforms non-specific, randomized

testing of sub-populations throughout the COVID-19 pandemic. The proposed

strategy is readily applicable to other countries and the employed open source

software can readily accommodate different epidemiological models.

2. Results80

Optimal Allocation of Limited Testing Resources (OPALITS) during

the COVID-19 pandemic

We present the optimal test-kit allocation strategy for three stages of the

epidemic: (i) starting phase (blue), (ii) containment after enforcement of inter-

ventions (red) and (iii) relaxing of interventions and monitoring for a possible85
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0. Initialization of  Epidemiology Model 
a. Select epidemiology model (SEI2R). 
b. Initialize probability density functions 

(PDF) for model parameter uncertainties. 

2. Optimize Test Allocation (Locations/Dates) 
a. Model predictions are used to compute a utility function 

 (Eq. 13).  quantifies the  gain of information in 

different locations/dates for unreported infections. 

b. Identify locations/dates maximizing  (Eqs. 14,15).

U U

U

3. Test and Update Model Parameters 
a. Deploy test-kits in optimal locations/dates from Step 2b. 
b. Process results and use data for a Bayesian update of 

the model parameter PDFs (Eq. 6). Return to Step 1.

1. Infection Predictions with Epidemiology  Model 
a. Sample parameter PDFs and use model (Eq. 9) to 

get infection predictions for all locations/dates. 
b. Test-kits available ?  

i. YES:  proceed to Step 2  
ii. NO: STOP

Figure 1: Schematic for the deployment of the Optimal Allocation of Limited Testing Re-

sources (OPALITS) methodology

second outbreak (green) (Fig.2). The strategy relies on Bayesian experimental

design and can operate when no data are available (as in the start of the epi-

demic) as well as when data have been accumulated, as in the last two stages

of the epidemic. Testing campaigns rely on acquiring randomized samples from

a population. The collected data, together with epidemiological models, help90

determine quantities of interest, such as the basic reproduction number of the

disease [14]. By suitably adapting the testing campaign, the data can help

reduce the model uncertainty, thus enabling improved estimates regarding the

severity of the epidemic.

A testing campaign consists of a set s of surveys si = (ki, ti) which are la-95

beled by i = 1, . . . My and performed in locations ki ∈ C and on days ti∈ T ,

where C and T are the set of all available locations and days, respectively.

In this paper a survey aims to determine the number of unreported infectious

individuals in a particular location on a particular day. In the following we

assume limited testing resources, where N test-kits are available and each test-100

kit corresponds to testing one person. The goal is to allocate these test-kits in

different times and locations so that we maximize the information gain regard-

ing forecasts of the epidemiology model. The locations are the different Swiss

cantons, and C := {ZH, BE, LU, . . .} is the set of the strings with canton name

abbreviations.105

The results of the survey in a canton enable the estimation of a desired quan-
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tity of interest, such as the size of the unreported infected population (Iu). The

number of samples needed to estimate population proportions within a given

confidence interval, error tolerance, and probability of proportion is given by

Cochran’s formula [9] corrected for a finite population size. Using Cochran’s110

formula with confidence level 99%, error tolerance 1% and probability of infec-

tion 0.1 we find that the samples that would be required to survey the largest

Swiss canton (of Zurich) are approximately 5950. All the other cantons need up

to 14% less samples with the exception of the smallest canton that needs 27%

less samples (figure S7 of the Supplementary Information). Hence we assume the115

minimum sample size is the same for all cantons. Assuming random sampling of

a population with higher probability (up to 0.9) of infection or requiring tighter

error bounds, would have implied even more samples according to Cochran’s

formula. We note that as of October 2020, 1500 tests per one million people are

performed on a daily basis in Switzerland [16]. This amounts to approximately120

460 individual tests per canton, which is about an order of magnitude less than

what would be required from Cochrans’s formula for an informative random

sampling. In turn, by using the proposed OPALITS we can compensate for this

lack of test kits with an optimal and systematic process.

We outline the application of the proposed approach to a country with dis-125

tinct administrative units (cantons in the case of Switzerland) (see figure 1).

First, we determine how many cantons will be surveyed, given the number of

available test-kits N . Then, the sequential optimization of the expected utility

function is performed (see Materials and Methods) to identify optimal survey

locations (cantons). We then distribute the test-kits to the identified cantons130

and test a random subset of their population on the suggested day. After col-

lecting the results from all the surveys we update the prior distributions of the

model parameters. The collected data leads the maximal information gain in

the model parameters. This in turn translates into minimal uncertainty in pre-

dictions made with the model for quantities such as the number of unreported135

infections.

The expected information gain of a particular strategy for selecting the sur-
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vey locations/times s is quantified by a utility function Û(s) [15]. The maximum

of this function corresponds to an optimal strategy that yields the most infor-

mation about the quantities of interest. The expected utility function can be140

understood as a measure of the difference between prior knowledge of the model

parameters and the posterior knowledge, after surveys have been conducted in

a set of locations and dates. Given such a set, the utility function estimates the

expected difference, equivalently the information gain, by taking the expectation

over all possible survey results.145

The OPALITS relies on forecasts by suitable epidemiological models. In

turn, these forecasts rely on prior information and their predictions are fur-

ther adjusted as data become available in a Bayesian inference framework [17].

The set of Ordinary Differential Equations (ODEs) describing the SEIrIuR

model [13] are integrated to produce the model output. The uncertainty of the150

model output and its discrepancy from the available data is quantified through

a parametrized error model. The resulting stochastic model and its quantified

uncertainties are then used to identify the optimal spatio-temporal allocation

of limited test resources.

Case 1: Beginning of the epidemic - Optimal testing without data. At the start155

of an epidemic, there are no data and we assume no other prior information

regarding the spread of the pathogen in a country. The initial conditions for the

number of unreported infections (Iu
IC) were selected with non-zero values for

the cantons of Aargau, Bern, Basel-Landschaft, Basel-Stadt, Fribourg, Geneva,

Grisons, St.Gallen, Ticino, Vaud, Valais and Zurich based on their population160

and their large number of interconnections. Due to the lack of any prior in-

formation and relevant data, all the parameters are assumed to follow uniform

prior distributions (see table S5, for details).

The first infectious person in Switzerland was reported on February 25th in

the canton of Ticino (Ir
TI = 1) with no initial reported infections in all other165

cantons. The initial number of exposed individuals is set proportional to the

number of unreported infections Ek = 3Iu
k in accordance with the value of

7
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R0 ≈ 3 reported in [18] in the initial stage of the disease. The rest of the

population is assumed to be susceptible. The methodology involves parameters

of interest (ϑ = (β, µ, α, Z, D, θ, c)) and nuisance parameters (ϑ̃ = (Iu
IC, τ))170

that the testing strategy does not aim to determine (see Materials and Methods

section for definitions).

The estimated expected utility functions Û(s) for up to four surveys in the

cantons of Switzerland for a time horizon of 8 days is shown in Figure 3, T =

{Feb 25, . . . , Mar 3}. Higher values for expected utility are estimated in cantons175

with larger population reflecting the larger relative uncertainty for cantons with

only few reported cases. This implies that smaller cantons, with lower mobility

rates, are less preferred for performing tests since their contribution to the

information gain is not significant. This is reflecting the fact that the assumed

covariance matrix is shared among cantons (see Materials and Methods). This180

implies a smaller relative error, when surveying larger cantons with consequently

higher number of infections. The Bayesian analysis enables the inference of the

particular cantons and days for which a survey should be performed in order

to maximize the information gain. Accordingly, the most informative survey

should have been made in Zurich on March 2nd. The optimal location and185

time for the second survey is determined to be canton of Vaud on the 27th of

February. As expected, the information gained from tests in the canton of Vaud

is less than the information gained from the canton of Zurich. The information

that would have been gained by surveying the next two selected cantons of Vaud

and Basel-Landschaft on March the 3rd and February the 28th respectively, is190

progressively reduced to a small level that, given the testing costs, does not

justify carrying out surveys in more than 4 cantons. The values of the optimal

times are listed in table S1 in the Supplementary Information.

The results indicate that the proposed OPALITS methodology selects certain

populous and well interconnected cantons at specific times to acquire the most195

information for estimating the model parameters.
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Figure 2: Testing scenarios for the COVID19 outbreak in Switzerland. Daily reported

Coronavirus cases in Switzerland are plotted as gray bars. The period before (blue), during

(red) and after (green) imposing non-pharmaceutical interventions are marked with color.

Case 2: Exponential spreading and optimal testing strategy during non - phar-

maceutical interventions. When the spreading of the coronavirus entered an

exponential growth stage, several governments (including the Swiss) decided

to take non-pharmaceutical interventions such as requesting social distancing,200

closing schools and restaurants, or ordering a complete lockdown in order to

contain the epidemic. Here, the goal of the OPALITS is to propose surveys that

would help to better assess the effectiveness of these interventions.

In this case, probability distributions of model parameters are informed using

data from the existing spread of the COVID-19. The daily reported infections in205

Switzerland [19] from the 25th of February up to the 17th of March 2020 are used

to update the distributions, specified in the previous phase, by using Bayesian

inference. The marginal posteriors are plotted in figure S1 of the Supplementary

Information. The SEIrIuR models the non-pharmaceutical interventions with a

time-dependent transmission rate β and mobility factor θ. These parameters are210

calibrated by the data and provide an estimate on the timing and effectiveness

of the interventions[8].

Figure 4 shows the maximum values of the information gain for each survey

for T = {Mar 17, . . . , Mar 30}. For cantons with a small population and low
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Û
(t,
BL

)

Canton BL

Feb
 25
Feb

 26
Feb

 27
Feb

 28
Feb

 29
Ma
r 0
1
Ma
r 0
2
Ma
r 0
3

Days (t)

0

2

4

6

Û
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Û
(t,
O
W
)

Canton OW

Feb
 25
Feb

 26
Feb

 27
Feb

 28
Feb

 29
Ma
r 0
1
Ma
r 0
2
Ma
r 0
3

Days (t)

0

2

4

6

Û
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Û
(t,
TG

)

Canton TG

Feb
 25
Feb

 26
Feb

 27
Feb

 28
Feb

 29
Ma
r 0
1
Ma
r 0
2
Ma
r 0
3

Days (t)

0

2

4

6

Û
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Figure 3: Expected information gain during start of epidemic. The blue curve cor-

responds to the utility of making one survey. The green curve is the utility when a second

survey is added, provided the location and time of the first survey correspond to the maximum

of the blue curve (found in the canton of Zurich, on March 2nd). Similarly, the yellow and red

curves show the utilities for a third and fourth surveys, when the locations and time of the

previous surveys are fixed to their optimal values. The fixed dates and location of each survey

are plotted with black dashed lines. The shaded areas indicate the difference to the expected

information gain of the previous survey, which becomes thinner as additional surveys do not

yield a further significant information gain.
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connectivity to other cantons a low information gain is found. The opposite can215

be observed for cantons with large population and strong connections to other

cantons. The values for the maximum utility in time for the measurements are

listed in Table S2. If only a single canton were to be selected(due to limited

availability of test-kits in the country), then a survey in the canton of Vaud

carried out on the 30th of March were to be preferred over surveys in either of220

the cantons of Zurich, Bern or Geneva (blue in figure 4). If two surveys could

be afforded, the OPALITS methodology proposes to carry them out in the same

canton (Vaud) on the 17th and on the 30th March (blue and green in figure 4).

Note that the canton of Zurich, ranked as the next preferred canton for a single

survey (blue in figure 4), is not selected by the methodology since part of the225

information that would be gained from testing is already contained in surveys

performed in Vaud. In case more test kits were available, in addition to the two

tests in Vaud, the optimal location and time for a third survey would have been

the canton of Grisons on the 30th of March (yellow in figure 4). The canton of

Zurich is proposed as the fourth location to be surveyed on the 30th of March230

as well. However, the information gain from the fourth survey in the canton of

Zurich is approximately 10% of the total information gained from the surveys

carried optimally in the first three cantons.

The results suggest that surveys in two locations/times provide significant

information regarding assessing the effectiveness of interventions. Further tests235

on more locations/times did not add substantial information. It is evident that

a trade-off between the required information gain and cost of testing are decisive

for the number of necessary surveys and respective test kits.

Case 3: Optimal monitoring for a second outbreak. After the relaxation of mea-

sures that assisted in mitigating the initial spread of the disease, it is critical to240

monitor the population for a possible second outbreak. The OPALITS method-

ology supports such monitoring with surveys of the population based on data

up to and after the release of the measures.

First, Bayesian inference is performed with data available from February
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Figure 4: Optimal testing strategy for effect of non-pharmaceutical interventions.

The maximum gain of information is plotted on the map of Switzerland using an exponential

colormap. Here blue corresponds to taking one survey, green to adding a second, yellow to a

third and red to a fourth. Below the map we plot the magnitude of the expected information

gain of each survey, along with the optimal measurement dates per canton.

12

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.09.20228320doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.09.20228320
http://creativecommons.org/licenses/by-nc-nd/4.0/


the 25th up to June the 6th, to update the uniform priorsthe resulting marginal245

posteriors are shown in figure S2 of the Supplementary Information. This date

is in accordance to the first stage of major release of measures in Switzer-

land [20]. The effects of interventions are modeled by a parametrized time-

dependent transmission rate and mobility factor (see Materials and Methods).

The inferred probability distributions of these additional parameters are taken250

into account as the OPALITS maximizes the information gain. Note that

T = {Jun 7, . . . , Jun 14} in this case.

Subsequently, data from February the 25th up to July the 9th are included,

repeating the Bayesian inference and estimating the marginal distributions and

predictions shown in Figures S3 and S4, T = {Jul 10, . . . , Jul 17}. The results255

indicate that the relaxation of measures correlates with an increase in the num-

ber of reported infections (Figure 5). The information gain for each canton

indicates the most informative surveys should be performed a week after per-

forming the inference. The provided information could then assist in estimating

the severity of a second outbreak as indicated by the maximum of the utility in260

time (Tables S3 and S4). Given that tests should be carried out in four locations

and times, the methodology promotes optimal surveys for two different times,

within a week, in the cantons of Zurich and Vaud. First, surveys should be

performed in Zurich, providing high information gain for both considered cases.

The next two surveys are to be performed in Zurich and Vaud, with a rank that265

depends on the considered case, while the fourth test should be performed in

Vaud. We find that the information gain from the last test is approximately 10%

of the cumulative information gain from the first three surveys. The number of

surveys can be then selected according to the available test-kits N .

Case 4: Effectiveness of Optimal Testing. We demonstrate the importance of270

following the OPALITS by comparing it with a non-specific testing campaign

that is based on heuristics. We first re-examine the situation at the start of an

epidemic and assume that the available resources allow for two surveys. Surveys

are simulated by evaluating the epidemiological model with the maximum a-
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Figure 5: Optimal testing strategy to monitor a second outbreak. Bayesian inference

determines the parameters of the first infection wave using the data (black dots) of the daily

new reported infections up to the 6th of June (upper plot) and to the 9th of July (lower

plot). The 99% confidence intervals are plotted in gray. The proposed testing strategy is

plotted with vertical bars at the found optimal days. Here blue indicated the utilities for the

first survey. The green bars correspond to the gain in utility when adding a second survey

assuming the first was chosen in the optimal location, where the yellow and red correspond

to adding a third and fourth survey.
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posteriori estimate (MPE) of the parameters obtained from the inference in275

phase II (exponential growth) of the epidemic. We used data of the first 21

days of the infection spread in Switzerland [19] (February 25th to March 17th).

After evaluating the model, artificial surveys are obtained by adding a stochastic

error term.

For the optimal strategy, data are collected by consulting figure 3. Thus,280

the two surveys are performed in the cantons of Zurich and Vaud, on the 2nd

of March and the 27th of February respectively. For a non-specific strategy, the

cantons of Ticino and Bern were selected, on the 28th of February. We remark

that this is the canton where the first infection was reported and the capital of

the country. These artificial data, obtained for the two strategies, are added to285

the real data of the daily reported cases from the first 8 days after the outbreak

in Ticino. For the expanded data-set D the posterior distributions p(ϑ|ϑ̃MPE, D)

are found by sampling the model parameters using nested sampling [14].

The resulting one- and two-dimensional marginalized posterior distributions

for both strategies are shown in figure 6. We note that the dispersion coefficient290

r (defined in the Materials and Methods) in the error model for the real data

(the reported infections) and the correlation parameter are almost the same

for both strategies. However the model parameters show significant differences

even when only two new data-points are added to a set of 208 data-points. The

posterior distributions of the parameters of interest are propagated through the295

epidemiology model to provide the uncertainties in the number of unreported

infectious individuals. In figure 7 the model output for the total number of

unreported infections is plotted together with a 99% confidence interval along

with the true value of the unreported cases obtained by using the selected pa-

rameters. The predictions from the OPALITS have a much higher certainty300

with a confidence interval that is up to four times narrower than the one from

a non-specific strategy. The same figure also shows the relative histogram plots

for the effective reproduction number, which for the employed model is given

from Rt = βDα + βDµ(1 − α) [13]. Not only is the histogram more peaked,

when data is optimally collected, but also the mean value of the two histograms305
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Figure 6: Marginal posterior distributions for two strategies. The diagonal shows the

histogram for the marginal distribution for every parameter. Purple indicates posterior for

the survey following the optimal testing strategy, gray the one for the non-specific strategy.

The lower half and upper half show the samples of the joint distribution of two parameters

for the optimal and the non-specific strategy respectively. Here black indicates low density

and yellow high density.
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is different. When data is optimally collected, the found mean value for the

effective reproduction number is 2.1, whereas when the non-specific strategy is

followed the average value is 3.2. A mean value of 3.2 could lead to more strict

non-pharmaceutical interventions, which might prove unnecessary and harmful

for the economy.310

Further comparisons, demonstrating the value of the OPALITS, include

model predictions with higher certainty, as indicated by confidence intervals

that are narrower than the ones obtained from from a non-specific strategy (fig-

ures S5 and S6, see Supplementary Information). Narrower uncertainty bounds

provide higher confidence for decisions related to possible interventions to con-315

tain the epidemic.

3. Discussion

We introduce a systematic approach to identify optimal times and locations

for epidemiological surveys to quantify infectious individuals in a country’s pop-

ulation during the COVID-19 epidemic. The proposed OPALITS methodology320

exploits prior information and available data to maximize the expected informa-

tion gain in quantities of interest and to minimize uncertainties in the forecasts

of epidemiological models.

The present study addresses the need for an accurate assessment of COVID-

19 infections [21] and it is shown to be far more accurate than the currently325

applied random testing. The proposed methodology is, to the best of our knowl-

edge, the first method to propose an optimal spatio-temporal allocation of lim-

ited test-kit resources . A first study for the estimate of unobserved COVID-19

infections [5] in the USA indicated that early testing would have decreased the

surveillance gap during a critical phase of the epidemic. More recently a num-330

ber of studies have emerged that address the optimal allocation of resources.

The “Test and Contain” process suggested in [7] addresses an idealized popu-

lation of 10’000 and solves an allocation problem using predictions of the SIR

model. They assume an isolation of the positively identified individuals and
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Figure 7: Prediction uncertainty for different testing strategies. Up: The black

dots show the actual unreported infectious for an artificial spread in Switzerland. The error

bounds show the 99% confidence intervals of the model output for samples of the parameters

with data obtained by optimal (purple) and non-specific testing (gray). Down: Relative

frequency histograms for effective reproduction number, predicted with data obtained by

optimal (purple) and non-specific testing (gray).
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showed that just one test a day can reduce the peak of infected individuals335

by 27%. This study is similar to ours in casting the test allocation problem

in an optimization framework using linear programming in contrast to infor-

mation maximization that we propose. However, their approach is not data

informed and does not address a realistic country scenario. Another study [22]

focused on test-kit allocation in the Philippines. They use a statistical approach340

and non-linear programming to determine the optimal percentage allocation of

COVID-19 test-kits among accredited testing centers in the Philippines aiming

for an equitable chance to all infected individuals to be tested. Their goal of

optimal percentage allocation differs from ours that is optimal space and time

allocation of test-kits.345

The proposed method is demonstrated by focusing on the outbreak of the

epidemic in Switzerland. We compare OPALITS with random testing and

demonstrate its advantages in producing forecasts with far reduced uncertain-

ties. We note that the existing testing capacity of 1500 tests per million people

in Switzerland can be better allocated than the ongoing random testing. More-350

over we show that the present methodology will be of particular importance to

countries with testing capacity that is far lower than that of Switzerland [16].

The methodology relies on Bayesian experimental design using prior infor-

mation and available data of reported infections along with forecasts from the

SEIrIuR model. We compute the optimal testing strategy for three phases of355

the epidemic. At the onset of the epidemic the method identifies the most cru-

cial dates and locations for randomized tests in the country’s population. The

deployment of OPALITS at this phase would have allowed authorities to per-

form randomized testing in a period of high uncertainty, well in advance of the

disease outbreak. Moreover, the presented approach is applicable to any newly360

arising epidemic and can be used to identify important surveying locations and

a general protocol of action, whenever an unknown disease starts to spread. In

the case of COVID-19, such course of action would limit early inaccurate esti-

mates of metrics such as the virus mortality rate, estimated around 3% in early

March 2020 by the World Health Organization [23] and currently believed to be365
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lower than 1%, [24].

During the period of non-pharmaceutical interventions the proposed strat-

egy would help quantify their effectiveness assisting decision making for further

interventions or retraction of measures that may be harmful to the economy.

In this study, available data for the daily reported infections prior to any inter-370

ventions, combined with the proposed methodology, indicated that conducting

two surveys after measures are imposed is sufficient. This can help to identify

the new virus dynamics quickly and adjust interventions accordingly. Similarly,

the OPALITS can assist monitoring for a recurrence of the disease after preven-

tive measures have been relaxed and help guide further planing of interventions.375

Since massive testing for a new disease might not be a possibility during its first

outbreak and cheap individual tests might become available only later, applying

the proposed methodology at this point provides a useful guideline on how to

use the individual tests to conduct large-scale surveys. For instance, in Switzer-

land it was not before mid-April 2020 that rapid COVID-19 tests were released380

on the market [25]. Collecting data for the reported cases before that and using

it to inform the proposed approach to find an OPALITS (after cheap individual

tests become available) that will be applied during a possible lock-down would

be the suggested course of action in this case.

There are a number of issues that the model should be able to accommodate385

in the future. These include accounting for virological test sensitivity, delays

in the reporting of the test results and bias on the estimate of the unreported

infected individuals (Cochran’s formula). Further developments may include

models that account for different transmission dynamics in cantons while the

classical Bayesian inference methods may be replaced with Hierarchical Bayesian390

Method to account for heterogeneous data.

We remark that the proposed OPALITS does not depend on a particular

type of data/model or to the country of Switzerland. The open source code is

modular, scalable and readily adaptable to different scenarios for the epidemic

and countries around the world. We believe that the present work can be a395

valuable tool for decision makers to allocate resources efficiently for testing the
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population, providing a reliable quantification of the spread of the disease and

designing effective interventions.
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1. Materials and Methods

The optimal time (day) and location (canton) for surveying a population

to detect infectious individuals is determined via Bayesian optimal experimen-

tal design [1]. This optimal testing allocation (OPALITS) relies on combining

Bayesian inference and utility theory with forecasting models of the epidemic.

We remark that the OPALITS does not depend on a particular epidemiologi-

cal model or type of data. The methodology is applicable at all stages of the

epidemic (inception to re-occurrence). It can operate without data at the early

stages of the pandemic and takes advantage of data available at later stages of

the pandemic. The methodology is rendered computationally efficient using a

sequential optimization algorithm [2].

Bayesian Inference from randomized testing. We consider a testing campaign

including a set (s) of surveys si = (ki, ti), i = 1, . . .My performed in location

ki∈ C and on day ti∈ T . These surveys measure a quantity of interest (QoI),

that is denoted by y(s) = (y1, . . . , yMy
). Here, yi is the number of unreported

∗These authors contributed equally to this work.
∗∗Corresponding author (petros@seas.harvard.edu)

Preprint submitted to Medrxiv November 9, 2020

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.09.20228320doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.09.20228320
http://creativecommons.org/licenses/by-nc-nd/4.0/


infectious individuals, measured through survey si. The QoI can be predicted

by a model g(s,ϑ, ϑ̃) (here the SEIrIuR epidemiological model) that depends

on parameters of interest ϑ ∈ R
N and nuisance parameters ϑ̃ ∈ R

Ñ . The

distinction between model and nuisance parameters is discussed in later sections.

We note that both sets of parameters are uncertain and the proposed method

aims to reduce the uncertainty only in the parameters of interest.

A stochastic error term ε(s) links the model prediction with the QoI

y(s) = g(s,ϑ, ϑ̃) + ε(s) . (1)

The error ε(s) is assumed to follow a zero-mean multivariate normal distribution

N (0,Σ) with covariance matrix Σ ∈ R
My×My . The elements of the covariance

matrix (Σs,s′) correspond to surveys taken at s = (k, t) and s′ = (k′, t′) and are

given by

Σs,s′ = σt σt′ exp

(
−
|t− t′|

τ

)
δkk′ , (2)

where δkk′ is the Kronecker delta, which is 1 for k = k′ and 0 otherwise. The

correlation time τ ∈ [0.5, 3.5] is considered a nuisance parameter. These as-

sumptions about the covariance imply that surveys in different locations are

not correlated, while those in the same location have an exponentially decaying

temporal correlation. The latter avoids clustering of surveys in small time in-

tervals [3]. The factor σt ∈ R is assumed proportional to the expectation of the

QoI, taken over all possible survey locations and over the range of model and

nuisance parameters

σt = c
1

K

K∑

i=1

E
ϑ,ϑ̃

[
g(si,ϑ, ϑ̃)

]
, (3)

where si = (i, t). The parameter c ∈ [0, 0.25] is considered a model parameter.

The expectation E
ϑ,ϑ̃

[ · ] is taken with respect to all parameters ϑ and ϑ̃ that

follow the prior probability distribution with density p(ϑ, ϑ̃) = p(ϑ)p(ϑ̃).

Under these assumptions, the conditional probability of y on ϑ, ϑ̃ and s is

given by

p(y|ϑ, ϑ̃, s) =
1√

(2π)My |Σ(s)|
exp

(
−
1

2
z
⊤Σ(s)

−1
z

)
, (4)

2
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where |Σ(s)| is the determinant of the covariance matrix and z = y(s) −

g(s,ϑ, ϑ̃).

In the present study, the QoI measured by a survey is the number of unre-

ported infectious individuals in a particular canton on a particular date. This

implicitly assumes that there no restrictions on when the survey can be con-

ducted and that there are no observational delays, which means the the QoI is

instantaneously obtained. Both assumptions are not restrictive however. Re-

strictions on the possible survey dates can be accounted for by simply excluding

those dates from the dates on which the utility function is evaluated. Also,

a delay of one day (meaning that two days are needed to survey a canton k,

starting from day t) would mean that y = (Iuk (t)+ Iuk (t+1))/2 is measured. In

other words, when there is a delay the measured quantity can still be mapped

to a model quantity, which allows us to perform Bayesian inference. There

are several types of measurements (Rapid testing [4], PCR [5], Schwabs [6])

being proposed for testing asymptomatic individuals. We emphasize that our

methodology is compatible with any of these types. Data related issues such as

uncertainties, test sensitivities and delays in processing can be accommodated

in the Bayesian inference framework and in the input to the SEIR model.

Expected Information Gain. The most informative surveys y provide the least

uncertainty in the estimates of the model parameters ϑ. Starting with a user-

postulated prior distribution p(ϑ), Bayesian learning is used to update the un-

certainties in the model parameters leading to a posterior distribution p(ϑ|y, ϑ̃, s),

based on the information contained in the test data y. The Kullback–Leibler

(KL) divergence between the posterior p(ϑ|y, ϑ̃, s) and the prior distributions

p(ϑ) of the model parameters measures the distance between the two distri-

butions. Informative data produce posterior distributions that differ from the

prior; greater differences lead to higher information gain. Therefore, the most

informative data y correspond to the testing strategy (measurement locations

and times) with the highest information gain [7, 8].

The OPALITS is identified by maximizing a utility function [1]. One choice
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is the KL divergence u(y, ϑ̃, s) = DKL

(
p(ϑ|y, ϑ̃, s)‖p(ϑ)

)
quantifying the in-

formation gain from the data [1]. However, since data are not available in the

experimental design phase, the utility function is selected here to be the ex-

pected KL divergence E
y|ϑ̃,s

[
u(y, ϑ̃, s)

]
over all data generated by the model

prediction error equation 1. Also, to account for the uncertainty in nuisance

parameters ϑ̃, encoded in the prior distribution p(ϑ̃), the expectation is also

taken with respect to ϑ̃, which results in the utility function [1]

U(s) = E
ϑ̃

[
E
y|ϑ̃,s

[
u(y, ϑ̃, s)

]]
=

∫∫∫
log

(
p(ϑ|y, ϑ̃, s)

p(ϑ)

)
p(ϑ|y, ϑ̃, s) dϑ p(y|ϑ̃, s) dy p(ϑ̃)dϑ̃ .

(5)

By using Bayes’ theorem

p(ϑ|y, ϑ̃, s) =
p(y|ϑ, ϑ̃, s) p(ϑ)

p(y|ϑ̃, s)
, (6)

the utility function can be simplified to

U(s) =

∫∫∫
log

(
p(y|ϑ, ϑ̃, s)

p(y|ϑ̃, s)

)
p(y|ϑ, ϑ̃, s) p(ϑ) p(ϑ̃) dy dϑ dϑ̃ . (7)

Note that the expected utility only depends on the locations and times of the

measurements via s. The term p(y|ϑ̃, s) is the model evidence given by

p(y|ϑ̃, s) =

∫
p(y|ϑ, ϑ̃, s) p(ϑ) dϑ . (8)

The choice of the prior distribution p(ϑ) for the parameters allows to incorporate

prior knowledge from epidemiology. If no information is available from data, a

case encountered in the beginning of the infection, a uniform prior distribution

can be assumed. Table S5 summarizes our choice of prior distributions for all

the involved uncertain quantities. If data d of the daily number of reported

infectious individuals is available, Bayesian inference can be used to inform the

prior distribution, as described later on. In this case, the prior p(ϑ) in equation

7 is replaced by the distribution p(ϑ|d) informed from the data d.

In the present work, the assumed nuisance parameters are the correlation

time τ and the initial condition of the unreported infections in the cantons

4
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of Aargau, Bern, Basel-Landschaft, Basel-Stadt, Fribourg, Geneva, Grisons,

St.Gallen, Ticino, Vaud, Valais and Zurich

Iu
IC = (IuAR, I

u
BE, I

u
BL, I

u
BS, I

u
FR, I

u
GE, I

u
GR, I

u
SG, I

u
TI, I

u
VD, I

u
VS, I

u
ZH)

with prior distributions Iu
IC ∼ U([0, 50]12) and τ ∼ U([0.5, 3.5]).

Epidemiological Model. Here we employ the SEIrIuR epidemiological model

[9] to forecast the dynamics of the coronavirus outbreak in Switzerland

dSk

dt
= −

βSkI
r
k

Nk

−
µβSkI

u
k

Nk

+ θ
K∑

l=1

MklSl

Nl − Irl
− θ

K∑

l=1

MlkSk

Nk − Irk

dEk

dt
=

βSkI
r
k

Nk

+
µβSkI

u
k

Nk

−
Ek

Z
+ θ

K∑

l=1

MklEl

Nl − Irl
− θ

K∑

l=1

MlkEk

Nk − Irk

dIrk
dt

= α
Ek

Z
−

Irk
D

dIuk
dt

= (1− α)
Ek

Z
−

Iuk
D

+ θ

K∑

l=1

MklI
u
l

Nl − Irl
− θ

K∑

l=1

MlkI
u
k

Nk − Irk

dNk

dt
= θ

K∑

l=1

(Mkl −Mlk) ,

(9)

where Sk, Ek, Irk and Iuk denote the number of individuals in canton k =

{1, . . . ,K} that are susceptible, exposed, reported infectious and unreported

infectious, respectively. We denote by K the number of cantons (26 in Switzer-

land), by Nk the total population of the canton k, while the population mobility

between cantons k and l is denoted by Mkl with values obtained from the Swiss

Federal Statistical Office [10]. The model parameters are the transmission rate

(β), the relative transmission rate between reported and unreported infectious

individuals (µ), the virus latency period (Z), the infectious period (D), the

reporting rate (α) and the mobility factor (θ).

We employ different time-dependent expressions for the transmission rate

and the mobility factor for each stage of the epidemic. Constants are chosen for

the start of an epidemic while in the cases of monitoring of interventions, the

5
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following expressions are used:

β(t) =





b0, 0 ≤ t ≤ δ1

b1, δ1 < t

, θ(t) =





θ0, 0 ≤ t ≤ δ1

θ1, δ1 < t

, (10)

where b0, b1, θ0 and θ1 are the transmission rates and mobility factors before

and after the intervention. Time t = 0 corresponds to the 25th of February 2020,

and δ1 = 21 to the 17th of March 2020, when the lockdown was announced in

Switzerland [11]. Finally, for the third case (monitoring of a second outbreak)

we assume that

β(t) =





b0, 0 ≤ t ≤ δ1

b1, δ1 < t ≤ δ2

b2, δ2 < t ≤ δ3

b3(t), δ3 < t

, θ(t) =





θ0, 0 ≤ t ≤ δ1

θ1, δ1 < t ≤ δ2

θ2, δ2 < t ≤ δ3

θ0, δ3 < t

. (11)

As in equation 10, b0 is the transmission rate before the intervention while

b1 = c1 b0 and b2 = c2 b0 with c1, c2 ∈ [0, 1] are the transmission rates after the

two interventions. Similarly, θ0 is the mobility factor before any interventions

took place, while θ1 = c3 θ0 and θ2 = c4 θ0 with c3, c4 ∈ [0, 1] are the mobility

factors after the two interventions. Moreover, δ1 and δ2 correspond to the days

of the interventions. The day when the measures are loosened is denoted by δ3.

After that day, the transmission rate is gradually increasing

b3(t) = min(b2 + λ(t− δ3), b0) , (12)

with λ ∈ [0, 0.03], while the mobility factor regains its initial value of θ0.

Estimation of the Expected Information Gain. The calculation of the expected

utility from equation 7 is performed with Monte-Carlo integration. Samples

from the prior distribution are denoted by ϑ(i) ∼ p(ϑ) and by ϑ̃(i) ∼ p(ϑ̃), while

samples on the measurement space are denoted by y(i,j) ∼ p(y|ϑ(i), ϑ̃(i), s),

where i ∈ {1, . . . , Nϑ} and j ∈ {1, . . . , Ny}. With these samples, an estimate of

6
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the expected utility is computed as

Û(s) =
1

NϑNy

Nϑ∑

i=1

Ny∑

j=1

[
log

(
p
(
y(i,j)|ϑ(i), ϑ̃(i), s

)

p(y(i,j)|ϑ̃(i), s)

)]
,

p(y(i,j)|ϑ̃(i), s) :=
1

Nϑ

Nϑ∑

n=1

p
(
y(i,j)|ϑ(n), ϑ̃(i), s

)
.

(13)

In our implementation the samples ϑ(i) and ϑ̃(i), (i = 1, . . . , Nθ), remain the

same for different values of s. Thus, the model evaluations g(s,ϑ(i), ϑ̃(i)) are

only carried out once and are stored and used in the iteration process involved in

the optimization. This allows to separate the computational cost of the model

evaluation from the cost of computing the utility, which scales as O(N2
ϑNy).

Optimal Location and Time of Testing. We define the optimal survey times and

locations as

s∗ = argmax
s1,...,sMy

Û(s) , (14)

where s∗ = (s∗1, . . . , s
∗
My

) with s∗i = (k∗i , t
∗
i ) denote the locations k∗i and times

t∗i for the optimal surveys with i ∈ {1, . . . ,My}. For a grid search, the associ-

ated computational cost is O((KT )My ) and thus grows exponentially with the

number of surveys. This curse of dimensionality is avoided by using a sequen-

tial optimization method [2] to approximate the global optimum by iteratively

solving

s∗n = argmax
s

Ûn(s) , ∀n = 1, . . . ,My , (15)

where s = (k, t) is the location and time to be estimated sequentially starting

with n = 1 and

Ûn(s) = Û
(
s
)
, s = (s∗1, . . . , s

∗
n−1, s) . (16)

Following this, we define the expected information gain for survey n as

∆Ûn(s) =





Û1(s), n = 1

Ûn(s)− Ûn−1(s
∗
n−1), n > 1.

(17)

7
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Quantification of Uncertainty. A data informed prior p(ϑ|d) of the model pa-

rameters ϑ can be computed from available data d =
(
d1, . . . , dMd

)
, collected

at Md locations and days. Here, available data d refer to the daily number of

reported infectious individuals and they are contrasted from the data y of the

number of unreported infectious individuals. The latter are obtained from test-

ing strategies at selected populations using optimal experimental design. The

data is mapped via a distinct model output f(s,ϑ, ϑ̃) through the following

error model

p(di|ϑ, ϑ̃, ν) = NB
(
di | f(si,ϑ, ϑ̃), ν

)
, i = 1, . . . ,Md . (18)

where NB is the negative binomial distribution with mean f and dispersion ν.

Also, si = (ki, ti) is the location and time the data di was collected. The choice

of a different error model, compared to equation 1, is based on the assumption

that the data are independent and identically distributed. Such an assumption

would not be acceptable in the measurement model in equation 1, as it may

result in uncorrelated measurements that can become clustered in small time

intervals [3].

The data d =
(
d1, . . . , dMd

)
are the daily number of reported infections per

canton in Switzerland [12] which corresponds to the following model quantity

f(si,ϑ, ϑ̃) :=

∫ ti+0.5

ti−0.5

α

Z
Eki

(τ)dτ ≈
α

Z
Eki

(ti) . (19)

The posterior distribution that will be used subsequently as a data informed

prior is obtained using Bayes’ theorem

p(ϑ, ϑ̃|d) =
p(d|ϑ, ϑ̃) p(ϑ, ϑ̃)

p(d)
, (20)

and is sampled with a nested sampling algorithm [13]. Note the difference

to equation 6 and the optimal testing methodology, where we are interested

to reduce the uncertainty in p(ϑ|y, ϑ̃, s), which excludes the nuisance param-

eters ϑ̃. For the dispersion parameter in equation 18, it is assumed that

ν = r f(si,ϑ, ϑ̃). The coefficient r is unknown and included in the parame-

ter set, where r ∼ U([0, 2]).

8
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Figure 1: Marginal posterior distributions with data up to 17th of March 2020. The

used data correspond to the daily reported infectious persons in the cantons of Switzerland.

The marginals with a canton label XY correspond to the initial condition Iu
XY

(t = 0) for the

unreported cases in that canton.

The three inferences performed are summarized in table S5, which shows the

involved model parameters in each case. The histograms for the found samples

are shown in figures S1, S2, and S3.

We remark that, using the present methodology, the inferred date for the

beginning of the intervention is δ1 = 22.5, which is the 18th of March 2020,

corresponding well with the 17th of March 2020 on which the lockdown was

introduced in Switzerland [11]. Moreover, we infer a significant reduction in the

mobility factor, which indicates that traffic between cantons was also minimized.

For the inference III we plot the fit using the inferred parameters in figure S4.

The daily reported cases per canton are shown, together with the data used for

the inference.
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Figure 2: Marginal posterior distributions with data up to 6th of June 2020. The

used data correspond to the daily reported infectious persons in the cantons of Switzerland.

The marginals with a canton label XY correspond to the initial condition Iu
XY

(t = 0) for the

unreported cases in that canton.
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Figure 3: Marginal posterior distributions with data up to 9th of July 2020. The

used data correspond to the daily reported infectious persons in the cantons of Switzerland.

The marginals with a canton label XY correspond to the initial condition Iu
XY

(t = 0) for the

unreported cases in that canton.
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Figure 4: Maximum a-posteriori prediction with data up to 9th of July 2020. The

red points correspond to the daily reported cases per cantons and the blue curve shows the

maximum a-posteriori prediction. The 99% confidence interval is plotted in green and based

on the sample shown in figure S3.
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Figure 5: Comparison of prediction uncertainty per canton. The predictions are based

on optimal strategies and non-specific testing for collection of data. They are also based on

the SEIrIuR model output. The error bounds show the 99% confidence intervals of the

unreported infectious model output for samples of the parameters with data obtained by

optimal (purple) and standard testing (gray). The black dots show the actual unreported

infectious for an artificial spread in Switzerland.
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Figure 6: Comparison of propagated uncertainty per canton. The predictions are

based on optimal strategies and non-specific testing. The SEIrIuR model output with added

model error for the unreported infectious is shown. The error bounds show the 99% confidence

intervals of the model output with added model error for samples of the parameters with data

obtained by optimal (purple) and standard testing (gray). The black dots show the actual

unreported infectious for an artificial spread in Switzerland.
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Maximum of Expected Information Gain

Canton 1st measure-

ment

2nd measure-

ment

3rd measure-

ment

4th measure-

ment

AG 2.297 (01-03) 1.080 (27-02) 0.530 (28-02) 0.436 (27-02)

AI 0.240 (03-03) 0.167 (28-02) 0.152 (27-02) 0.123 (28-02)

AR 0.538 (03-03) 0.189 (28-02) 0.157 (03-03) 0.127 (26-02)

BE 2.547 (02-03) 1.130 (27-02) 0.558 (03-03) 0.432 (28-02)

BL 2.224 (29-02) 1.099 (27-02) 0.567 (28-02) 0.458 (28-02)

BS 1.930 (29-02) 0.969 (27-02) 0.545 (27-02) 0.445 (27-02)

FR 2.046 (01-03) 0.983 (27-02) 0.533 (28-02) 0.424 (27-02)

GE 2.338 (02-03) 1.074 (27-02) 0.512 (03-03) 0.410 (28-02)

GL 0.344 (03-03) 0.171 (28-02) 0.152 (27-02) 0.124 (01-03)

GR 2.174 (01-03) 1.039 (27-02) 0.517 (29-02) 0.416 (28-02)

JU 0.408 (03-03) 0.176 (29-02) 0.154 (01-03) 0.125 (03-03)

LU 1.220 (03-03) 0.340 (29-02) 0.225 (01-03) 0.173 (01-03)

NE 0.828 (03-03) 0.234 (29-02) 0.176 (01-03) 0.137 (01-03)

NW 0.246 (03-03) 0.168 (01-03) 0.152 (02-03) 0.123 (03-03)

OW 0.225 (03-03) 0.168 (03-03) 0.152 (02-03) 0.124 (03-03)

SG 2.067 (01-03) 0.981 (27-02) 0.519 (28-02) 0.425 (27-02)

SH 0.456 (03-03) 0.182 (29-02) 0.156 (01-03) 0.126 (01-03)

SO 1.515 (03-03) 0.455 (28-02) 0.256 (27-02) 0.199 (27-02)

SZ 0.785 (03-03) 0.221 (29-02) 0.167 (29-02) 0.134 (28-02)

TG 1.214 (03-03) 0.334 (28-02) 0.209 (28-02) 0.163 (28-02)

TI 2.362 (02-03) 1.077 (27-02) 0.516 (03-03) 0.409 (28-02)

UR 0.210 (03-03) 0.167 (03-03) 0.152 (02-03) 0.124 (28-02)

VD 2.666 (02-03) 1.233 (27-02) 0.594 (03-03) 0.314 (29-02)

VS 2.254 (01-03) 1.061 (27-02) 0.514 (28-02) 0.417 (28-02)

ZG 0.701 (03-03) 0.206 (28-02) 0.161 (29-02) 0.130 (28-02)

ZH 2.721 (02-03) 1.187 (27-02) 0.556 (28-02) 0.449 (27-02)

Table 1: Maximum expected information gain for outbreak of a new disease. The

corresponding optimal dates are shown in parenthesis.
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Maximum of Expected Information Gain

Canton 1st measure-

ment

2nd measure-

ment

3rd measure-

ment

4th measure-

ment

AG 2.307 (30-03) 1.128 (17-03) 0.399 (30-03) 0.264 (30-03)

AI 0.211 (30-03) 0.169 (17-03) 0.146 (21-03) 0.112 (26-03)

AR 0.474 (30-03) 0.205 (17-03) 0.154 (29-03) 0.115 (29-03)

BE 2.927 (30-03) 1.738 (17-03) 0.691 (17-03) 0.459 (17-03)

BL 1.663 (30-03) 0.710 (17-03) 0.241 (17-03) 0.167 (17-03)

BS 1.359 (30-03) 0.518 (17-03) 0.196 (17-03) 0.140 (17-03)

FR 2.149 (30-03) 1.093 (17-03) 0.256 (17-03) 0.176 (17-03)

GE 2.825 (29-03) 1.760 (17-03) 0.483 (21-03) 0.327 (21-03)

GL 0.364 (30-03) 0.183 (17-03) 0.149 (28-03) 0.114 (29-03)

GR 1.783 (30-03) 1.256 (17-03) 0.754 (17-03) 0.222 (21-03)

JU 0.736 (30-03) 0.251 (17-03) 0.163 (30-03) 0.121 (30-03)

LU 1.830 (30-03) 0.738 (17-03) 0.316 (30-03) 0.210 (30-03)

NE 1.573 (30-03) 0.626 (17-03) 0.205 (17-03) 0.145 (17-03)

NW 0.369 (30-03) 0.181 (17-03) 0.149 (30-03) 0.114 (29-03)

OW 0.332 (30-03) 0.176 (17-03) 0.148 (30-03) 0.114 (29-03)

SG 2.056 (30-03) 1.003 (17-03) 0.471 (17-03) 0.247 (17-03)

SH 0.625 (30-03) 0.215 (17-03) 0.158 (29-03) 0.119 (30-03)

SO 1.642 (30-03) 0.663 (17-03) 0.224 (30-03) 0.155 (30-03)

SZ 1.066 (30-03) 0.330 (17-03) 0.186 (30-03) 0.135 (30-03)

TG 1.495 (30-03) 0.548 (17-03) 0.250 (30-03) 0.168 (30-03)

TI 2.640 (29-03) 1.639 (17-03) 0.668 (17-03) 0.436 (17-03)

UR 0.315 (30-03) 0.175 (17-03) 0.148 (29-03) 0.114 (29-03)

VD 3.139 (30-03) 1.961 (17-03) 0.415 (22-03) 0.311 (23-03)

VS 2.313 (30-03) 1.251 (17-03) 0.397 (17-03) 0.264 (17-03)

ZG 0.920 (30-03) 0.285 (17-03) 0.172 (30-03) 0.127 (30-03)

ZH 2.980 (30-03) 1.695 (17-03) 0.735 (17-03) 0.494 (17-03)

Table 2: Maximum expected information gain of non-pharmaceutical interven-

tions. The corresponding optimal dates are shown in parenthesis.
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Maximum of Expected Information Gain

Canton 1st measure-

ment

2nd measure-

ment

3rd measure-

ment

4th measure-

ment

AG 1.356 (13-06) 0.434 (06-06) 0.292 (06-06) 0.210 (13-06)

AI 0.171 (13-06) 0.167 (09-06) 0.159 (09-06) 0.142 (08-06)

AR 0.207 (13-06) 0.169 (08-06) 0.159 (08-06) 0.142 (11-06)

BE 1.877 (13-06) 0.746 (06-06) 0.435 (06-06) 0.339 (13-06)

BL 0.712 (13-06) 0.236 (07-06) 0.186 (06-06) 0.156 (13-06)

BS 0.512 (13-06) 0.202 (06-06) 0.172 (06-06) 0.148 (13-06)

FR 0.973 (13-06) 0.330 (06-06) 0.208 (13-06) 0.184 (13-06)

GE 1.490 (13-06) 0.644 (06-06) 0.381 (13-06) 0.328 (13-06)

GL 0.189 (13-06) 0.168 (08-06) 0.159 (12-06) 0.142 (08-06)

GR 0.567 (13-06) 0.219 (06-06) 0.173 (06-06) 0.152 (13-06)

JU 0.255 (13-06) 0.173 (07-06) 0.161 (06-06) 0.143 (13-06)

LU 0.936 (13-06) 0.286 (07-06) 0.213 (06-06) 0.168 (13-06)

NE 0.576 (13-06) 0.222 (06-06) 0.172 (13-06) 0.153 (13-06)

NW 0.193 (13-06) 0.168 (07-06) 0.159 (06-06) 0.142 (08-06)

OW 0.187 (13-06) 0.167 (06-06) 0.159 (07-06) 0.142 (11-06)

SG 1.084 (13-06) 0.330 (06-06) 0.238 (06-06) 0.179 (13-06)

SH 0.247 (13-06) 0.172 (07-06) 0.161 (06-06) 0.142 (07-06)

SO 0.701 (13-06) 0.235 (06-06) 0.184 (06-06) 0.154 (13-06)

SZ 0.403 (13-06) 0.187 (07-06) 0.167 (06-06) 0.145 (13-06)

TG 0.651 (13-06) 0.223 (06-06) 0.183 (06-06) 0.153 (13-06)

TI 1.241 (13-06) 0.539 (06-06) 0.367 (13-06) 0.322 (13-06)

UR 0.186 (13-06) 0.167 (09-06) 0.158 (09-06) 0.142 (08-06)

VD 1.881 (13-06) 0.873 (06-06) 0.505 (13-06) 0.443 (13-06)

VS 1.138 (13-06) 0.420 (06-06) 0.256 (13-06) 0.223 (13-06)

ZG 0.337 (13-06) 0.180 (07-06) 0.163 (07-06) 0.144 (13-06)

ZH 2.092 (13-06) 0.862 (06-06) 0.592 (06-06) 0.276 (09-06)

Table 3: Maximum expected information gain for monitoring of a second outbreak

with uninformed b3. The corresponding optimal dates are shown in parenthesis.

17

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.11.09.20228320doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.09.20228320
http://creativecommons.org/licenses/by-nc-nd/4.0/


Assume we want to estimate the proportion of a population with some mar-

gin of error d and a small risk α, i.e., we want Pr(|P − p| ≥ d) = α. Here, the

proportion corresponds to the proportion of unreported infected population.

The minimum number of samples to achieve this is given by Cochran’s formula

[14],

n0 =
z2α
d2

p(1− p) ,

where zα is the inverse of the standard normal cumulative distribution function

evaluated at 1− α/2. In this formula, we have assumed that the population is

of infinite size. In order to correct for a finite size population N , we compute

n =
n0

1 + n0/N
.

In the next figure we present the minimum number of samples needed to sample

the cantons of Switzerland for d = 0.01 and α = 0.01. Notice that α = 0.01

corresponds to a 99% confidence interval.

If the available test-kits are more than 26×5950 = 154700 then the maximum

information gain will be achieved by deploying all tests uniformly in all cantons.

However, when it is not realistic to conduct over 154700 tests, we consider

testing with limited resources. For example assuming 30000 available tests, will

be enough to test 5 cantons 5 × 5950. The question we answer then is which

5 cantons (from the 26) should we test given that we must test a minimum

population of 5950 per canton?.

Distributing less than a particular number of tests (5950) in a canton will not

provide a statistically reliable estimate for the number of unreported infections

there. Thus, in such a case, the measured unreported infections should not be

used to estimate the expected information gain.

Finally, we note that in this work we ignore the bias in the estimate of

Iu. This means that the estimates of unreported infected enter the Bayesian

framework without explicitly accounting for this known error.
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Maximum of Expected Information Gain

Canton 1st measure-

ment

2nd measure-

ment

3rd measure-

ment

4th measure-

ment

AG 1.233 (17-07) 0.328 (10-07) 0.220 (17-07) 0.194 (10-07)

AI 0.170 (17-07) 0.167 (17-07) 0.154 (13-07) 0.136 (17-07)

AR 0.198 (17-07) 0.169 (10-07) 0.154 (14-07) 0.136 (16-07)

BE 1.596 (17-07) 0.460 (10-07) 0.347 (17-07) 0.267 (10-07)

BL 0.616 (17-07) 0.202 (10-07) 0.166 (17-07) 0.147 (10-07)

BS 0.441 (17-07) 0.184 (10-07) 0.159 (17-07) 0.141 (10-07)

FR 0.636 (17-07) 0.209 (10-07) 0.193 (17-07) 0.156 (17-07)

GE 0.896 (17-07) 0.326 (17-07) 0.308 (17-07) 0.225 (17-07)

GL 0.184 (17-07) 0.168 (13-07) 0.154 (17-07) 0.136 (10-07)

GR 0.418 (17-07) 0.182 (10-07) 0.162 (17-07) 0.141 (10-07)

JU 0.219 (17-07) 0.169 (10-07) 0.155 (17-07) 0.136 (17-07)

LU 0.834 (17-07) 0.234 (10-07) 0.178 (17-07) 0.157 (10-07)

NE 0.378 (17-07) 0.180 (10-07) 0.165 (17-07) 0.142 (17-07)

NW 0.187 (17-07) 0.168 (10-07) 0.154 (15-07) 0.135 (10-07)

OW 0.183 (17-07) 0.168 (10-07) 0.154 (10-07) 0.136 (12-07)

SG 0.994 (17-07) 0.267 (10-07) 0.191 (17-07) 0.169 (10-07)

SH 0.232 (17-07) 0.170 (10-07) 0.154 (15-07) 0.136 (11-07)

SO 0.581 (17-07) 0.197 (10-07) 0.166 (17-07) 0.145 (10-07)

SZ 0.362 (17-07) 0.178 (10-07) 0.157 (10-07) 0.139 (10-07)

TG 0.591 (17-07) 0.200 (10-07) 0.164 (17-07) 0.145 (10-07)

TI 0.556 (17-07) 0.318 (17-07) 0.296 (17-07) 0.224 (17-07)

UR 0.181 (17-07) 0.168 (11-07) 0.154 (16-07) 0.135 (16-07)

VD 1.297 (17-07) 0.452 (17-07) 0.433 (17-07) 0.281 (10-07)

VS 0.655 (17-07) 0.245 (17-07) 0.228 (17-07) 0.176 (17-07)

ZG 0.303 (17-07) 0.174 (10-07) 0.155 (15-07) 0.137 (11-07)

ZH 1.976 (17-07) 0.675 (10-07) 0.276 (14-07) 0.250 (13-07)

Table 4: Maximum expected information gain to monitor a second outbreak with

informed b3. The corresponding optimal dates are shown in parenthesis.
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ParameterPrior distribution / fixed

value

Inference I Inference II Inference

III

b0 U([0.8, 1.8]) yes yes yes

α U([0.01, 1]) yes yes yes

µ U([0.2, 1]) yes yes yes

Z U([1, 6]) yes yes yes

D U([1, 6]) yes yes yes

θ0 U([0.5, 1.5]) yes yes yes

c1 U([0, 1]) no yes yes

c2 U([0, 1]) no yes yes

c3 U([0, 1]) no yes yes

c4 U([0, 1]) no yes yes

δ1 U([20, 30]) no yes yes

δ2 U([30, 40]) no yes yes

δ3 102 no yes yes

λ U([0, 0.03]) no no yes

r U([0, 2]) yes yes yes

Iu
IC U([0, 50]12) yes yes yes

Table 5: Parameters and prior distributions used in Bayesian inference. Here the

data corresponds to the daily reported infections. In all cases, data are used from the 25th of

February 2020, when the first reported case was found in the canton of Ticino. Inference I uses

data up to the day non-pharmaceutical interventions were announced (17th of March 2020).

Inference II uses data up to the day measures were relaxed (6th of June 2020). Inference III

uses data up to the 9th of July 2020. The choice of prior distributions is consistent with the

choice found in [9]; the ranges used in our study are slightly extended.
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Figure 7: Estimated sample size using Cochran’s [14] formula for every canton for confidence

level 99%, margin of error 1% and probability of infection 0.1. The cantons are sorted in

descending order of their population. The maximum sample size is estimated for Zurich and

is equal to 5950. All the other cantons need up to 14% less samples with the exception of the

smallest canton that needs 27% less samples.
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