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One Sentence summary 

 

In this study, we explore the physiological significance of the COVID-19 severity associated 

genetic variants using detailed clinical, immunological and multi-omics data from large 

cohorts. Our findings allow a physiological understanding of genetic susceptibility to severe 

COVID-19, and indicate pathways that could be targeted for prevention and therapy. 
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Abstract 

 

A recent genome-wide association study of European ancestry has identified 3p21.31 and 

9q34.2 (ABO gene) to be significantly associated with COVID-19 respiratory failure (1). Here, 

we employed the detailed clinical, immunological and multi-omics data of the Human 

Functional Genomics Projects (HFGP) to explore the physiological significance of the host 

genetic variants that influence susceptibility to severe COVID-19. A functional genomics 

investigation based on functional characterization of individuals with high genetic risk for 

severe COVID-19 susceptibility identified several major patterns: i. a large impact of 

genetically determined innate immune responses in COVID-19, with increased susceptibility 

for severe disease in individuals with defective monocyte-derived cytokine production; ii. 

genetic susceptibility related to ABO blood groups is probably mediated through the von 

Willebrand factor (VWF) and endothelial dysfunction; and iii. the increased susceptibility for 

severe COVID-19 in men is at least partially mediated by chromosome X-mediated genetic 

variation. These insights allow a physiological understanding of genetic susceptibility to severe 

COVID-19, and indicate pathways that could be targeted for prevention and therapy.  
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Introduction 

The novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) (2)(3), firstly emerged in late December 2019 and has 

been spreading worldwide very quickly. The COVID-19 pandemic creates a severe disruption 

to the healthcare system and endangers the economy. As of the 21st of October, the World 

Health Organization has reported more than 40 million confirmed cases and over 1 million 

confirmed deaths (4). While much has been learned about the pathophysiology of the disease, 

treatment proven to be effective is restricted to dexamethasone (5), and there is no effective 

vaccine for COVID-19 yet. Therefore, there is an urgent need to better understand the exact 

host-pathogen interactions leading to increased severity and mortality, in order to design 

additional prophylactic and therapeutic strategies in future (6)(7). 

 

The severity of SARS-CoV-2 infection is highly variable, and ranges from asymptomatic to 

mild disease, and even to severe Acute Respiratory Distress Syndrome with a fatal outcome 

(8). However, the causes for this broad variability in disease outcome between individuals are 

largely unknown. A recent study indicates that human host factors rather than viral genetic 

variation affect COVID-19 severity outcome (9). Additionally, clinical and epidemiological 

data have shown that old age, male sex, and chronic comorbidity are associated with higher 

mortality (10)(11). A recent genome-wide association study in individuals with genetic 

European ancestry has identified several chemokine receptor genes, including CCR9, CXCR6 

and XCR1 and the locus controlling the ABO blood type to be associated with severe symptoms 

of COVID-19 (1). Nevertheless, little is known about the mechanisms through which these 

genetic variants influence COVID-19 severity. For example, several competing hypotheses 

may be envisaged for the involvement of immune genes in susceptibility to severe COVID-19: 

on the one hand, it may be hypothesized that genetic risk for severe COVID-19 is associated 
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with defective innate immune responses that would allow viral multiplication with high viral 

loads; on the other hand, the opposite hypothesis may also be true, with an exaggerated 

genetically-mediated cytokine production being responsible for the late phase 

hyperinflammation and poor outcome. A purely genetic study cannot respond to this crucial 

question, that would have important consequences for the approach to prophylaxis and therapy. 

 

By making use of resources from the Human Functional Genomics Project (HFGP) (12, 13), 

we assessed the impact of COVID-19 associated genetic polymorphisms on variability of 

immune responses at the population level. This study will help us to understand how genetic 

variability is related to disease susceptibility through the regulation of immune responses and 

endothelial function. 

 

Results 

This study was conducted in two Dutch cohorts of healthy volunteers from HFGP: 451 

participants from the 500 Functional Genomics (500FG) cohort (12, 13), and 313 volunteers 

from the 300 Bacillus Calmette–Guérin (300BCG) cohort (14). The basic characteristics of 

study populations are shown in Table S1. 

 

COVID-19 loci are enriched for expression in immune organs, chemokine signaling 

pathways and enhancer region 

To explore the functional impact of the identified COVID-19 loci, we firstly investigated if the 

identified independent genetic loci (<1´10-5) associated with severe COVID-19 are associated 

with any phenotypes available at the GWAS catalog (https://www.ebi.ac.uk/gwas/). We found 

that many of these loci are associated with immune traits such as blood protein, LDL and VLDL 

concentrations (Table S2). We next performed functional annotation of significant loci and 
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gene-mapping using FUMA(15). The SNP2GENE function identified 32 independent SNPs 

located in 26 different loci which reached suggestive significance in this study (p-value <1´10-

5, Table S3). Using multiple independent expression quantitative trait loci (eQTL) datasets, 

FUMA mapped 115 genes to these 26 genomic risk loci. Using RNA-seq data of 30 tissues 

from GTEx database (v8), we found significant enrichment of candidate genes in expression 

in immune organs such as spleen and blood (Fig.1A), suggesting that they are important tissues 

contributing to the pathophysiology of COVID-19 (16)(17). Moreover, we observed the 

enrichment of candidate genes to be mainly expressed in small intestine and lung (Fig. 1A), 

suggesting that COVID-19 represents a multisystem illness with involvement of different 

organs, consistent with the respiratory and intestinal symptoms of the disease (18). 

 

Pathway analysis using these 115 genes showed a strong enrichment in chemokine binding and 

chemokine receptors binding (Fig. 1B), which is in line with the fact that chemokines can 

recruit immune cells to the site of infection and are critical for the function of the immune 

response (19). In addition, chemokines have been reported as the most significantly elevated 

biomarkers in patients with severe COVID-19 on the intensive care unit (17). 

 

Considering that all SNPs in LD with the 32 independent loci (p-value <1´10-5) identified by 

the COVID-19 GWAS, were significantly enriched in the non-coding intronic region (p value 

= 0.036, Fisher's exact test) (Table S4), we next examined whether the COVID-19 associated 

variants are enriched in regulatory DNA elements. We interrogated all significant SNPs (p-

value<1´10-5 and stricter thresholds) with histone marks and chromatin states of 24 blood cell-

types in the Roadmap Epigenome Project (20). We found that the COVID-19 genetic loci were 

strongly enriched for enhancer markers and weakly enriched in promoter marker (Table S5). 

The strong enrichment of COVID-19 loci in enhancer marks indicates that the associated 
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genetic variants are likely to be involved in the regulation of immunologically related functions. 

This finding also suggests that epigenetic mechanisms may play an important role in the 

pathogenesis of COVID-19 infection. 

 

3p21.31 loci are associated with lower production of monocyte-derived cytokines 

Severe COVID-19 is characterized by complex immune dysregulation, combining immune 

defective features with hyperinflammatory innate immune traits (21)(22). However, these 

analyses in patients could be done only late during the disease, and whether genetic risk for 

severe COVID-19 is characterized by low or high innate immune responses in a non-infected 

person is not known. We therefore used the cytokine QTL data from the 500FG cohort (13) of 

the HFGP to test whether SNPs in 3p21.31 influence cytokine production upon stimulation. 

We checked all SNPs located within a 50 kilobase window of top variant rs11385942, and 

showed all nominal significant associations (p-value < 0.05, Fig. 2A). Interestingly, we 

observed that the risk alleles for a severe course of COVID-19 are consistently associated with 

lower production of monocyte-dependent cytokines (IL-6, IL-1b and TNF-α) upon various in-

vitro stimulations (Fig. 2A). Of note, COVID-19 risk alleles also correspond to lower 

monocyte-derived cytokine production after influenza stimulation, a viral stimulus(Fig. 2A and 

B). It is thus tempting to speculate that the people who carry risk alleles may not respond 

properly to an initial virus infection, leading to high viral loads, subsequent systemic 

inflammation and poor outcome. Next, we tested whether the COVID-19 risk SNPs are 

associated with the levels of circulating cytokines in blood. Using the same cohort, we found 

that IL-18 and IL-18BP show a suggestive positive association with genetic risk of COVID-19 

(Fig. S1).  

 

Von Willebrand Factor (VWF) and lymphocytes are strongly colocalized with ABO loci 
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It is known that ABO blood group influences the plasma levels of von Willebrand factor 

(VWF)(23) and elevated VWF levels are associated with severe COVID-19 (24). We therefore 

tested the association of ABO locus with VWF circulating concentrations from the individuals 

in the 500FG cohort. Of note, we found the risk allele rs687621-G is significantly associated 

with elevated levels of VWF (p-value = 9.58´10-20) (Fig. 3A and B). Recent studies have 

reported that the VWF level is highly related to COVID-19 severity (25, 26). As VWF level in 

plasma is an indicator of inflammation, endothelial activation and damage (27), our results 

suggest that the association of VWF and COVID-19 severity is very likely mediated through 

genetic regulation. 

 

We next tested if this specific locus is associated with immune functions. Interestingly, we 

observed consistent negative correlation of VWF and T-cell derived cytokine production in 

response to various ex-vivo stimulations (Fig. 3C and Fig. S2). In addition, the ABO locus led 

by the variant rs687621 also showed statistically significant co-localization with several 

immune-mediated traits, including cell counts of lymphocytes (Coloc analysis H4: 0.98), 

monocytes (Coloc analysis H4: 1), neutrophils (Coloc analysis H4: 0.8) and whole blood cells 

(Coloc analysis H4: 1) (Fig. 3D).  

 

Men have a higher genetic severity risk of COVID-19 than women 

Polygenic risk scores (PRS) combine multiple risk alleles and capture an individual’s load of 

common genetic variants associated with a disease phenotype (28). Using the summary 

statistics provided in the GWAS study (1), we calculated the PRS for the samples from 500FG 

and 300BCG cohorts. Since higher mortality of COVID-19 has been reported to be associated 

with male sex and BMI (10, 11), we investigated whether these host factors are associated with 

the PRS, a predictive measure of risk for development of severe COVID-19. 
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We firstly assessed if males have a higher genetic risk compared to females in 500FG. Hereby, 

we defined people with top 10% PRS as a high-risk group and those with bottom 10% PRS as 

a low-risk group. As shown in Fig. 4A, male tend to have higher severe COVID-19 risk than 

female (odd ratio: 1.47, 95% CI: 0.98-2.22, p-value = 0.045 (Fisher’s exact test)) (Table S6). 

We next used different percentile cut-offs (15%, 20%, 25% and 30%) to re-define low and 

high-risk groups. Interestingly, we observed a consistent pattern that males have higher genetic 

risk (PRS) than females at different percentile cut-offs. These results can be replicated in a 

similar, but independent, cohort (300BCG, Fig. 4B). Meanwhile, the genetic risk difference 

between male and female can be attenuated when a loose cut-off has been defined. The meta-

analysis of two cohorts showed a significant p-value at various percentile cut-offs (10%, 15%, 

20%, 25%) and marginal significant p-value of 0.051 at the percentile cut-off of 30%. 

Furthermore, this result persisted when PRS was computed using summary statistics from the 

GWAS model after age and sex correction, reported in the original GWAS study (Table S7). 

When computing PRS while excluding variants from the X and Y chromosomes, the 

enrichment of men in the higher PRS group was less pronounced at most thresholds (Fig. 4C 

and D). This suggested that higher genetic severity risk at least partially originates from the 

SNPs in the sex chromosomes. 

 

As obesity or overweight has been reported as a risk factor for serious illness or death 

from COVID-19, we tested if the PRS is associated with BMI (Fig. S3). We did not observe 

any significant correlation between PRS and BMI. 

 

Discussion 
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Understanding the pathophysiology of COVID-19 is urgently needed for designing novel 

preventive and therapeutic approaches against the disease. One important tool for identifying 

the most important mechanisms mediating a disease is genomics: genetic variants that 

influence susceptibility or severity to a disease are usually located in genetic loci that impact 

important mechanisms for that particular disease. Using the information of a recently published 

GWAS assessing the severity of COVID-19 (1), and the rich datasets available in the HFGP, 

we interrogated the mechanisms through which genetic variants associated with severe 

COVID-19 exert their effects. 

 

Among the genetic loci associated with severe COVID-19, the 3p21.31 gene cluster has been 

well replicated by independent studies from the COVID-19 Host Genetics Initiative 

(https://www.covid19hg.org), and it was reported to be inherited by Neanderthals (29). This 

locus is currently regarded as a marker of COVID-19 severity, but crucial information is 

missing: are the risk alleles in this locus (that encode several cytokines and chemokines) 

associated with a lower or higher cytokine production. The answer to this question is crucial 

for understanding COVID-19: a genetic risk associated with low cytokine production would 

imply that severe COVID-19 is the consequence of a relative immunodeficiency, while a high 

cytokine production associated with genetic risk would mean that severe COVID-19 is a 

genetic hyperinflammatory disease. In our study, the 3p21.31 genetic polymorphisms 

associated with a high risk of severe COVID-19 were associated with lower production of 

monocyte-derived cytokines, especially to viral (influenza) stimuli. This important discovery 

has significant prophylactic and therapeutic consequences. On the one hand, it implies that 

improvement of innate immune responses in healthy individuals would decrease the probability 

that they undergo a severe form of COVID-19: this supports the rationale of clinical trials that 

improve innate immune responses through induction of trained immunity, e.g. by vaccination 
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with BCG (6). On the other hand, this also implies that the dysregulated immune responses that 

have been described at late time points in patients with severe COVID-19 (30)(31) are likely 

the consequence of accelerated viral multiplication due to defective innate immune responses, 

and subsequent systemic inflammation due to high viral loads.  

 

Several studies have shown that ABO blood types are associated with COVID-19 severity 

(32)(33) and susceptibility (34)(35)(36). It is still not well-known how ABO gene regulates 

COVID-19 susceptibility. As ABO blood group are also expressed on endothelial cells and 

platelets, it has been speculated that this effect may manifest itself via elevated plasma VWF 

(37). Our results provide evidence supporting this hypothesis, by showing that the risk alleles 

in the ABO locus are associated with high concentrations of VWF. Moreover, interesting 

associations have been found between polymorphisms in this locus and the number of various 

immune cell populations, especially lymphocytes, since lymphopenia is also consistently 

associated with severe COVID-19 (38). This suggests that genetic factors are relevant to the 

host thrombo-inflammatory response. However, a note of caution should be mentioned , as the 

association between the genetics of ABO group with severity in COVID-19 Host Genetics 

Initiative data did not reach a genome-wide level of significance (p value <5´10-8) (Table S8) 

(as of 21st of October 2020, and thus the association might be population specific. 

 

Another important observation is that an important component of the impact of genetic 

polymorphisms on the severity of COVID-19 is mediated through sex chromosomes, most 

likely chromosome X which is known to encode many genes related to the immune system. 

Indeed, men in both 500FG and 300BCG cohorts had a higher genetic risk then women, and 

this difference was largely lost when sex chromosomes were excluded from the analysis. These 

data strongly argue that at least part of the well-known increase of COVID-19 severity in men 
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is genetically determined. The recent description by our group of rare mutations in the RNA 

receptor TLR7 located on chromosome X as a cause of very severe COVID-19 in young men 

supports this hypothesis (39). 

 

While our study sheds further light on how COVID-19 genetic risk affects the human immune 

system, there are several limitations of this study: firstly, due to different sets of stimuli used 

in measuring cytokine production to stimulations in the two healthy cohorts, we are not able to 

replicate all our findings of genetic associations with cytokine responses from the 500FG 

cohort in the 300BCG cohort. Secondly, young adults (< 30 years) are overrepresented in both 

healthy cohorts (500FG and 300BCG), which may lead to a biased conclusion which cannot 

be generalized to the whole population, especially since the severe COVID-19 cases often 

occur in the elderly population. Thirdly, 500FG and 300BCG cohorts are designed to 

understand the genetic regulation of immune function in healthy individuals. Therefore, a 

COVID-19 patients’ cohort will be needed for better characterization of disease mechanism, 

which will be our future research goal. 

 

Collectively, our data demonstrate that genetic variability explains an important component of 

the increased susceptibility to severe COVID-19. The genetic risk for severe COVID-19 is 

associated with defective innate immune responses (low cytokine production), dysregulated 

endothelial function, and is strongly influenced by polymorphisms in sex chromosomes. These 

findings may contribute to the development of novel treatment and prevention strategies for 

severe COVID-19. 

 

Materials and Methods 

Study cohort 
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The cohorts involved in this study are from the Human Functional Genomics Project 

(HFGP)(40). 500FG consists of 451 healthy individuals of European ancestry with genotype 

measurement. Within this cohort, immune cell counts, cytokine production upon stimulations, 

platelets, globulins, and gut microbiome were measured (for detailed information see (12, 13, 

41, 42)). 300BCG consists of 313 healthy Europeans that participated in a BCG vaccination 

study (14)(43). Within this cohort, blood was collected before vaccination and cytokine 

production was measured upon ex-vivo stimulation of PBMCs with microbial stimuli.  

 

Genotype quality control and imputation 

Genotyping on samples from 500FG and 300BCG was performed using Illumina 

humanOmniExpress Exome-8 v1.0 SNP chip Calling by Opticall 0.7.0(44) with default settings. 

All individuals of non-European ancestry, ambiguous sex, call rate ≤ 0.99, excess of autosomal 

heterozygosity (F<mean-3SD), cryptic relatedness (π>0.185) were removed. SNPs with low 

genotyping rate (<95%), with low minor allele frequency (<0.001), deviation from Hardy-

Weinberg equilibrium (p<10-4) were excluded. The detailed QC steps have been published in 

reference(13). Genotype data of 500FG and 300BCG were imputed respectively. The 

imputation was performed on the Michigan imputation server(45). The cohorts were phased 

using Eagle v2.4 with the European population of HRC 1.1 2016 hg 2019 reference panel. 

After imputation, variants with a MAF < 0.01, an imputation quality score R2 < 0.5, or a Hardy-

Weinberg-Equilibrium P < 10-12 were excluded. All quality control steps were performed using 

Plink v1.9. After imputation and quality control, 451 individuals from 500FG and 313 

individuals from 300BCG were available for downstream analyses. 
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Immune parameter quantitative trait locus (QTL) profiles 

We acquired summary statistics of cytokine QTLs (13), cell proportion QTLs(41) and 

circulating metabolite QTLs(46) from our previous studies performed with 500FG. We 

performed QTL mapping for circulating mediators and platelet traits in 500FG using an R 

package MatrixeQTL(47). The measurement of circulating mediators including IL-18BP, 

resistin, leptin, adiponectin, alpha-1 antitrypsin (AAT), and IL-18 have been described 

previously(12). Platelet traits(48) include Thrombin-Antithrombin Complex (TAT), Beta-

thromboglobulin total, beta-thromboglobulin, fibrinogen binding, collagen-related peptide 

(CRP) P-selectin, CRP fibrinogen, ADP P-selectin, ADP fibrinogen, P-selectin, 

platelet−monocyte complex, total platelet count, and von Willebrand factor (VWF). The 

circulating mediator levels and platelet traits were log2 transformed. A linear model was 

applied to the platelet data and genetic data by taking age and sex as covariates. We considered 

p-value < 5×10-8 to be genome-wide significant. 

 

Colocalization analysis. 

We performed co-localization analysis (49) to look at the overlapping profile between 

molecular QTLs, COVID-19 GWAS, and other GWAS profiles using the R package ‘coloc’. 

 

PRS calculation 

Polygenic risk scores (PRS) were calculated by first intersecting the variants from the COVID-

19 summary statistics(1) with the variants present in our samples. Clumping was done starting 

at the most significant variant. All variants within a 250kb window around that variant were 

excluded if they were in greater LD than 0.1 before continuing to the most significant variant 

outside of the previous window. For each sample specifically, we then multiplied the dosage 

of the effect allele with its effect size while substituting missing genotype data with the average 
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dosage of that variant in the entire sample set. These values were then summed to form the 

PRS for each specific sample. As the GWAS summary statistics for creating PRS from 

Eillinghaus et.al (1) did not correct age and sex, we also performed a sensitivity analysis with 

the PRS created from the GWAS model corrected for age and sex. 

 

PRS based correlations 

Linear models were constructed using the computed PRS and various phenotype data available 

for each cohort. Samples within the top/bottom 10% PRS were classified as high/low-risk, 

respectively. Using the PRS of the samples in these risk groups, we performed a Student T-test 

to test for significant correlation between gender and PRS. Furthermore, we tested for 

enrichment of any specific gender in these risk groups using a Fisher’s exact test. 

 

Functional analysis of genomic loci 

We used the FUMA pipeline in order to identify genes linked to COVID-19 with severe 

respiratory failure. FUMA identified significant independent SNPs as variants with P < 1×10-

5 that were independent from each other using an LD threshold of r2 < 0.6. Within these 

independent significant SNPs variants lead SNPs are identified as the most significant variants 

that are independent using an LD threshold of r2 < 0.1. We mapped Genes to these SNPs based 

on their genomic position allowing for a maximum distance of 10kb. In addition to this, genes 

were also mapped based on eQTL effects. Genes were selected based on significant SNP-gene 

pairs at FDR < 0.05 using cis- and trans-eQTLs from eQTLGen. 

 

As part of the FUMA pipeline we used these mapped genes in order to generate gene expression 

heatmaps using GTEx v8 (54 tissue types and 30 general tissue types). Gene expression values 

with a pseudocount of 1 were normalized across tissue types using winsorization at 50 and log2 
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transformed. Using the hypergeometric test, we tested for significant enrichment of our input 

genes in DEG sets for the different tissue types using a Bonferroni corrected P value ≤ 0.05. 

Finally, we tested for overrepresentation of our input genes in predetermined gene-sets using 

hypergeometric tests. Gene-sets were obtained from MsigDB, WikiPathways, and GWAS-

catalog reported gene-sets. We used Benjamini-Hochberg FDR correction for each of the 

categories within these gene-set sources separately using a threshold of 0.05 for our adjusted P 

value. 

 

Roadmap epigenetic state enrichment 

Based on the Roadmap 15-core epigenetic state database(20), we used data obtained from 23 

blood samples spanning 127 epigenomes to map the QTLs in the summary statistics to their 

respective epigenetic states. Epigenetic state information was available for bins of 200bp. we 

aggregated this information into 4 categories; active enhancer states (Enh, EnhG), active 

promotor states (TssA, TssAFlnk), all enhancer states (Enh, EnhG, EnhBiv), and all promotor 

states (TssA, TssAFlnk, TssBiv). We tested for enrichment using a Fisher's exact test based on 

the number of unique 200bp bins variants mapped to. This was done after filtering the QTL's 

down based on their p value using different thresholds (1×10-5, 1×10-6 and 1×10-7). Enrichment 

P values were obtained after FDR correction. 

 

Visualization. 

R package ggplot2 was used to perform bar charts, box plots and scatter plots. We applied an 

online tool Locus zoom to present genes within candidate loci. We used R package pheatmap 

to generate heat maps.  
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Fig.1. Functional annotation of COVID-19 loci using the FUMA pipeline. This was done 

based on genes identified after using FUMA to map QTLs based on their genomic location, 

eQTL associations, and histone activity. A) MAGMA Tissue expression results on 30 general 

tissues type (GTEx v8), B) The top 10 significant enriched gene sets. 
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Fig. 2. The correlations between 3p21.31 loci and immune traits. Red bar in heatmap indicates 

higher cytokine production leaded by risk allele in COVID-19 GWAS profiles, Blue bar 

indicates lower cytokine production leaded by risk allele in COVID-19 GWAS profiles. A) the 

correlation between 3p21.31 with cytokine production upon in vitro stimulations B) a boxplot 

showing COVID-19 risk allele(rs6441930-C) associated with reduced IL6 production with 

influenza stimulation  of PBMC for 24 hours (p-value = 0.026). 
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Fig 3. Functional annotation of ABO loci. A) locus zoom plot showing the significant 

association between ABO loci and VWF level. B) a boxplot showing COVID-19 risk 

allele(rs687621-G) associated with increasing VWF level (p-value = 9.58´10-20). C) a barplot 

showing consistent negative correlations between VWF levels and T cell-derived cytokines 

D) scatter plots showing colocalization between ABO loci with VWF, lymphocytes, 

monocytes, neutrophils and white blood cell counts. 
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Fig. 4. Correlation of COVID-19 PRS with gender. A) bar plot representing the ratio of low 

risk versus high risk in 500FG. The X-axis shows the range of different quantiles (e.g.,10% 

corresponds to those individuals with PRS between 0th and 10th percentile of the population), 

and the Y-axis shows the odds ratio when comparing low PRS risk and high PRS risk in the 

male and female group from different quantiles. B) bar plot representing the ratio of low risk 

versus high risk in 300BCG. C) Bar plot representing the ratio of low versus high PRS based 

risk between men and women in 500FG calculated without including the sex chromosomes. 

D). Bar plot representing the ratio of low versus high PRS based risk between men and women 

in 300BCG calculated without including the sex chromosomes. 
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Fig. S1 Heatmap of the genetic correlations between 3p21.31 loci and circulating mediator. 
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Fig. S2 A barplot showing correlations between VWF levels and cytokines.  
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Fig. S3 Scatter plot showing the correlation between PRS with BMI  A) in 500FG B) in 

300BCG. 
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Table S1:  Numbers and basic characteristics of participants included in the study. 
 
 
  500FG (N = 451) 300BCG (N = 313) 

Age (years) 
  

    mean (SD) 28.1  (13.5) 25.9 (10.6) 

    median [Min, Max] 23 [18, 75] 23 [18, 71] 

Sex 
  

   Male sex: N (%) 211 (43.1%) 141 (43.3%) 

BMI 
  

    mean (SD) 22.8 (2.91) 22.5 (2.56) 

    median [Min, Max] 22.2 [15.1, 34.6] 22.1 [17.8, 34.2] 

Smoking behaviour 
  

    Smoker *: N (%) 85 (20.3%) 63 (20.2%) 

    Missing 32 0 

 

SD = standard deviation 
* Smokers were classified as people who regularly smoked or did so in the past. 

 

 

 

Tabel S2 the assoication of COVID-19 risk loci with phenotypes in GWAS catalog (last 

accessed on 15-July-2020) 

 

SNP Mapped gene Trait(s) Study accession 

rs505922-C ABO venous thromboembolism GCST000354 

rs505922-C ABO pancreatic carcinoma GCST000456 

rs8176719-G ABO malaria GCST001637 

rs505922-T ABO von Willebrand factor measurement GCST001798 
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rs505922-? ABO tumor necrosis factor-alpha measurement GCST000189 

rs507666-G ABO ICAM-1 measurement GCST000210 

rs505922-? ABO Graves disease GCST001982 

rs8176719-G ABO venous thromboembolism GCST001557 

rs2519093-A ABO venous thromboembolism GCST001557 

rs507666-A ABO ICAM-1 measurement GCST001047 

rs505922-T ABO duodenal ulcer GCST001433 

rs505922-T ABO Graves disease GCST001200 

rs612169-G ABO metabolite measurement GCST001217 

rs505922-C ABO venous thromboembolism GCST001253 

rs8176685-G ABO platelet component distribution width GCST004616 

rs505922-C ABO type II diabetes mellitus GCST005414 

rs507666-? ABO e-selectin measurement GCST004365 

rs2519093-C ABO low density lipoprotein cholesterol 

measurement 

GCST007141 

rs2519093-C ABO low density lipoprotein cholesterol 

measurement 

GCST007141 

rs2519093-C ABO low density lipoprotein cholesterol 

measurement 

GCST007141 

rs2519093-C ABO low density lipoprotein cholesterol 

measurement 

GCST007141 

rs507666-G ABO low density lipoprotein cholesterol 

measurement 

GCST007141 

rs507666-G ABO low density lipoprotein cholesterol 

measurement 

GCST007141 

rs507666-G ABO low density lipoprotein cholesterol 

measurement 

GCST007141 

rs507666-A ABO low density lipoprotein cholesterol 

measurement 

GCST002321 
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rs507666-A ABO total cholesterol measurement GCST002321 

rs505922-? ABO pancreatic carcinoma GCST002991 

rs505922-? ABO alkaline phosphatase measurement, 

clinical laboratory measurement 

GCST003540 

rs2519093-T ABO coronary artery disease GCST003116 

rs8176685-G ABO basophil count, eosinophil count GCST004624 

rs2519093-C ABO total cholesterol measurement GCST007143 

rs2519093-C ABO total cholesterol measurement GCST007143 

rs2519093-C ABO total cholesterol measurement GCST007143 

rs507666-G ABO total cholesterol measurement GCST007143 

rs507666-G ABO total cholesterol measurement GCST007143 

rs507666-G ABO total cholesterol measurement GCST007143 

rs115478735-T ABO blood protein measurement GCST005806 

rs115478735-T ABO blood protein measurement GCST005806 

rs2519093-? ABO alkaline phosphatase measurement GCST006016 

rs8176719-? ABO factor VIII measurement GCST007445 

rs8176719-? ABO factor VIII measurement GCST007445 

rs2519093-T ABO e-selectin measurement GCST008202 

rs2519093-T ABO ICAM-1 measurement GCST008210 

rs2519093-? ABO sleep duration, low density lipoprotein 

cholesterol measurement 

GCST009365 

rs2519093-T ABO venous thromboembolism GCST009030 

rs2519093-T ABO low density lipoprotein cholesterol 

measurement 

GCST006612 

rs507666-A ABO Eczema, allergic rhinitis GCST009717 

rs507666-? ABO blood protein measurement GCST010104 

rs507666-? ABO blood protein measurement GCST010104 

rs507666-? ABO blood protein measurement GCST010104 

rs507666-A ABO blood protein measurement GCST008478 
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rs2519093-? ABO eosinophil count GCST007065 

rs2519093-? ABO leukocyte count GCST007070 

rs495828-A AL772161.2, ABO angiotensin converting enzyme activity 

measurement 

GCST000565 

rs495828-T AL772161.2, ABO erythrocyte count GCST000588 

rs495828-T AL772161.2, ABO hematocrit GCST000583 

rs495828-T AL772161.2, ABO alkaline phosphatase measurement GCST000583 

rs495828-T AL772161.2, ABO hemoglobin measurement GCST000583 

rs579459-C ABO, AL772161.2 e-selectin measurement GCST000476 

rs579459-C ABO, AL772161.2 coronary heart disease GCST000998 

rs579459-T ABO, AL772161.2 adhesion molecule measurement, soluble 

P-selectin measurement 

GCST000599 

rs579459-T ABO, AL772161.2 alkaline phosphatase measurement GCST001276 

rs495828-T AL772161.2, ABO venous thromboembolism GCST001557 

rs579459-C ABO, AL772161.2 stroke, coronary heart disease GCST002287 

rs579459-C ABO, AL772161.2 coronary heart disease GCST002289 

rs579459-? ABO, AL772161.2 large artery stroke, coronary heart disease GCST002290 

rs579459-T ABO, AL772161.2 urinary metabolite measurement GCST002364 

rs579459-T ABO, AL772161.2 urinary metabolite measurement GCST002364 

rs579459-T ABO, AL772161.2 total cholesterol measurement GCST004231 

rs579459-T ABO, AL772161.2 low density lipoprotein cholesterol 

measurement 

GCST004233 

rs579459-T ABO, AL772161.2 low density lipoprotein cholesterol 

measurement 

GCST004233 

rs579459-T ABO, AL772161.2 low density lipoprotein cholesterol 

measurement 

GCST007141 

rs579459-T ABO, AL772161.2 low density lipoprotein cholesterol 

measurement 

GCST007141 
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rs579459-T ABO, AL772161.2 low density lipoprotein cholesterol 

measurement 

GCST007141 

rs579459-T ABO, AL772161.2 low density lipoprotein cholesterol 

measurement 

GCST007141 

rs495828-T AL772161.2, ABO blood metabolite measurement GCST002442 

rs579459-T ABO, AL772161.2 blood metabolite measurement GCST002442 

rs579459-T ABO, AL772161.2 erythrocyte count GCST001765 

rs633862-A AL772161.2, ABO Malignant epithelial tumor of ovary GCST002576 

rs579459-C ABO, AL772161.2 total cholesterol measurement GCST003214 

rs579459-C ABO, AL772161.2 low density lipoprotein cholesterol 

measurement 

GCST003216 

rs579459-C ABO, AL772161.2 HbA1c measurement GCST007954 

rs579459-T ABO, AL772161.2 total cholesterol measurement GCST007143 

rs579459-T ABO, AL772161.2 total cholesterol measurement GCST007143 

rs579459-T ABO, AL772161.2 total cholesterol measurement GCST007143 

rs495828-T AL772161.2, ABO triglyceride measurement, alcohol 

drinking 

GCST008083 

rs495828-T AL772161.2, ABO low density lipoprotein cholesterol 

measurement, alcohol drinking 

GCST008079 

rs495828-T AL772161.2, ABO triglyceride measurement, alcohol 

drinking 

GCST008083 

rs495828-T AL772161.2, ABO low density lipoprotein cholesterol 

measurement, alcohol drinking 

GCST008079 

rs495828-T AL772161.2, ABO low density lipoprotein cholesterol 

measurement, alcohol consumption 

measurement 

GCST008078 

rs495828-T AL772161.2, ABO triglyceride measurement, alcohol 

consumption measurement 

GCST008074 

rs600038-C ABO, AL772161.2 heart failure GCST009541 
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rs579459-C ABO, AL772161.2 venous thromboembolism GCST009030 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 
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rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-C ABO, AL772161.2 blood protein measurement GCST006585 

rs495828-T AL772161.2, ABO blood protein measurement GCST008478 

rs495828-? AL772161.2, ABO Eczema GCST007075 

rs507666-A ABO total cholesterol measurement GCST002896 

rs2519093-? ABO allergy GCST003990 

rs507666-G ABO pulse pressure measurement GCST007096 

rs507666-G ABO diastolic blood pressure GCST007094 

rs8176643-A ABO hemoglobin measurement GCST004615 

rs8176643-? ABO susceptibility to childhood ear infection 

measurement 

GCST005013 

rs505922-C ABO CD209 antigen measurement GCST004365 

rs505922-C ABO Ischemic stroke, von Willebrand factor 

measurement, homocysteine 

measurement 

GCST004598 

rs2519093-T ABO venous thromboembolism GCST004256 

rs8176645-A ABO venous thromboembolism GCST004256 

rs8176643-A ABO hematocrit GCST004604 

rs612169-G ABO von Willebrand factor measurement GCST004365 

rs507666-A ABO coronary artery disease GCST004787 

rs2519093-T ABO blood protein measurement GCST005806 

rs2519093-T ABO blood protein measurement GCST005806 

rs2519093-T ABO blood protein measurement GCST005806 

rs2519093-T ABO blood protein measurement GCST005806 
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rs2519093-T ABO blood protein measurement GCST005806 

rs2519093-T ABO blood protein measurement GCST005806 

rs2519093-T ABO blood protein measurement GCST005806 

rs2519093-T ABO blood protein measurement GCST005806 

rs2519093-T ABO blood protein measurement GCST005806 

rs2519093-T ABO blood protein measurement GCST005806 

rs505922-C ABO pancreatic carcinoma GCST005434 

rs2519093-T ABO coronary artery disease GCST005195 

rs2519093-? ABO hematocrit GCST005994 

rs2519093-? ABO hemoglobin measurement GCST005995 

rs2519093-? ABO erythrocyte count GCST005996 

rs507666-A ABO coronary artery disease GCST005196 

rs505922-C ABO peripheral arterial disease GCST008474 

rs8176685-? ABO von Willebrand factor measurement GCST007446 

rs8176719-? ABO von Willebrand factor measurement GCST007446 

rs8176643-A ABO blood protein measurement GCST005806 

rs8176643-A ABO blood protein measurement GCST005806 

rs8176643-A ABO blood protein measurement GCST005806 

rs8176643-A ABO blood protein measurement GCST005806 

rs8176685-? ABO von Willebrand factor measurement GCST007446 

rs505922-C ABO type II diabetes mellitus GCST009379 

rs2519093-? ABO sleep duration, low density lipoprotein 

cholesterol measurement 

GCST009366 

rs507666-A ABO e-selectin measurement GCST009572 

rs507666-A ABO low density lipoprotein cholesterol 

measurement, physical activity 

GCST007284 

rs2519093-T ABO allergic rhinitis GCST006409 

rs505922-C ABO blood protein measurement GCST005806 

rs505922-C ABO blood protein measurement GCST005806 
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rs507666-A ABO blood protein measurement GCST005806 

rs507666-A ABO blood protein measurement GCST005806 

rs2519093-T ABO HMG CoA reductase inhibitor use 

measurement 

GCST007931 

rs507666-? ABO total cholesterol measurement GCST008045 

rs2769071-A ABO fibroblast growth factor 23 measurement GCST006491 

rs507666-? ABO low density lipoprotein cholesterol 

measurement 

GCST008037 

rs505922-C ABO disposition index measurement GCST008111 

rs495828-? AL772161.2, ABO erythrocyte count GCST004008 

rs495828-T AL772161.2, ABO hematocrit GCST004003 

rs579459-T ABO, AL772161.2 erythrocyte count GCST004008 

rs495828-T AL772161.2, ABO hemoglobin measurement GCST004005 

rs495828-? AL772161.2, ABO hemoglobin measurement GCST004005 

rs579459-T ABO, AL772161.2 low density lipoprotein cholesterol 

measurement 

GCST004236 

rs579459-T ABO, AL772161.2 total cholesterol measurement GCST004235 

rs579459-T ABO, AL772161.2 total cholesterol measurement GCST004235 

rs495828-T AL772161.2, ABO coronary artery disease GCST005194 

rs495828-T AL772161.2, ABO low density lipoprotein cholesterol 

measurement, alcohol drinking 

GCST008086 

rs495828-T AL772161.2, ABO low density lipoprotein cholesterol 

measurement, alcohol drinking 

GCST008086 

rs579459-? ABO, AL772161.2 platelet reactivity measurement GCST008457 

rs495828-T AL772161.2, ABO low density lipoprotein cholesterol 

measurement, alcohol drinking 

GCST008086 

rs495828-T AL772161.2, ABO low density lipoprotein cholesterol 

measurement, alcohol drinking 

GCST008086 
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rs495828-T AL772161.2, ABO low density lipoprotein cholesterol 

measurement, alcohol consumption 

measurement 

GCST008078 

rs495828-T AL772161.2, ABO low density lipoprotein cholesterol 

measurement, alcohol consumption 

measurement 

GCST008078 

rs495828-T AL772161.2, ABO low density lipoprotein cholesterol 

measurement, alcohol consumption 

measurement 

GCST008078 

rs495828-T AL772161.2, ABO low density lipoprotein cholesterol 

measurement 

GCST008077 

rs495828-T AL772161.2, ABO low density lipoprotein cholesterol 

measurement 

GCST008077 

rs495828-T AL772161.2, ABO low density lipoprotein cholesterol 

measurement, alcohol drinking 

GCST008079 

rs495828-T AL772161.2, ABO low density lipoprotein cholesterol 

measurement, alcohol drinking 

GCST008079 

rs495828-T AL772161.2, ABO low density lipoprotein cholesterol 

measurement 

GCST008077 

rs579459-T ABO, AL772161.2 low density lipoprotein cholesterol 

measurement 

GCST008676 

rs495828-T AL772161.2, ABO tissue factor measurement GCST009731 

rs495828-T AL772161.2, ABO hemoglobin measurement GCST010083 

rs579459-C ABO, AL772161.2 alkaline phosphatase measurement GCST010047 

rs579459-T ABO, AL772161.2 blood protein measurement GCST006585 

rs579459-? ABO, AL772161.2 total cholesterol measurement GCST008045 

rs579459-? ABO, AL772161.2 low density lipoprotein cholesterol 

measurement 

GCST008037 

rs17764831-? LZTFL1 eosinophil count GCST007065 
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Table S3: Independent lead GWAS loci reported in NEJM (hg38) and in hg19*. 

 

uniqID rsID p nIndSigSNPs IndSigSNPs 

1:88993151:C:T rs75558547 4.49E-06 1 rs75558547 

2:15724310:A:G rs2080811 1.12E-06 1 rs2080811 

3:45876459:G:GA rs11385942 1.15E-10 3 rs11385942;rs34901975;rs3774641 

3:149805983:C:G rs144582715 7.17E-06 1 rs144582715 

4:180344873:A:G rs1455662 9.60E-06 1 rs1455662 

6:20314719:C:T rs911360 4.09E-06 1 rs911360 

6:23379360:A:AT rs5874914 4.64E-06 1 rs5874914 

6:91010824:A:ATTAC rs3073485 5.72E-06 1 rs3073485 

7:123006727:A:G rs12706520 9.63E-06 1 rs12706520 

7:158020147:A:G rs6970487 4.89E-06 1 rs6970487 

8:122848829:A:G rs10091098 4.55E-06 1 rs10091098 

8:126952467:A:T rs28730361 8.11E-06 1 rs28730361 

9:136139265:A:C rs657152 4.95E-08 3 rs657152;rs550057;rs647800 

11:5691474:C:G rs12796811 3.62E-06 1 rs12796811 

12:62463979:G:T rs10877786 6.89E-07 1 rs10877786 

14:32422746:C:G rs7152677 1.52E-06 1 rs7152677 

16:74936031:A:G rs2059266 4.01E-06 1 rs2059266 

16:82338406:C:T rs114093749 3.86E-06 2 rs114093749;rs4569267 

17:10376558:G:T rs117438562 7.49E-06 1 rs117438562 

18:3724602:A:G rs13381043 1.13E-07 2 rs13381043;rs4797120 

18:22624707:A:G rs56132597 8.94E-06 1 rs56132597 

19:4717672:A:G rs12610495 5.20E-06 1 rs12610495 

19:5518492:C:T rs183544391 7.29E-06 1 rs183544391 

19:17923554:T:TC rs3833287 4.24E-06 1 rs3833287 

23:15138357:C:T rs55634010 9.75E-06 1 rs55634010 
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23:146325425:A:T rs10126492 8.81E-06 1 rs10126492 

 

 

Table S4 Functional annotation of SNPs on genes by ANNOVAR* 
 

 

annotation ref.count ref.prop count prop enrichment fisher.P 

UTR3 233824 0.0093225 13 0.016 1.694 0.066 

UTR5 71546 0.00285252 3 0.004 1.278 0.512 

downstream 284177 0.01133006 8 0.010 0.858 0.868 

exonic 254736 0.01015625 8 0.010 0.957 1.000 

intergenic 11684523 0.46585868 378 0.459 0.986 0.727 

intronic 9137749 0.36431951 329 0.400 1.097 0.036 

ncRNA_exonic 259951 0.01036417 2 0.002 0.234 0.015 

ncRNA_intronic 2884355 0.11499843 79 0.096 0.835 0.090 

ncRNA_splicing 1313 5.23E-05 0 0.000 0.000 1.000 

splicing 2830 0.00011283 0 0.000 0.000 1.000 

upstream 266686 0.0106327 3 0.004 0.343 0.058 
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Table S5 Roadmap epigenetic state enrichment analysis 

 

 

Regulatory* 

elements 

total 

Bins 

1.00E-05 1.00E-06 1.00E-07 P. 1E-5 P. 1E-6 P. 1E-7 

Active 

enhancer 

states 

2068209 129 34 10 2.96E-25 6.76E-12 0.042 

Active 

promotor 

states 

513015 31 15 0 4.86E-06 1.59E-08 0.63 

All 

enhancer 

states 

2133264 133 37 10 7.26E-26 1.35E-13 0.042 

All 

promotor 

states 

525189 31 15 0 8.36E-06 1.62E-08 0.63 

Whole 

Genome 

15282831 368 71 34 
   

 

*Enhancer and promoter states were derived from a 15-state model based on five chromatin 
marks; the core set of five histone modification marks was shared by 127 reference epigenomes 
of 24 blood cells from the Roadmap Epigenomics project. Promoter states include active 
promoter states (TssA , TssAFlnk) and inactive states (TssBiv); Enhancer states include active 
enhancer states (Enh, EnhG) and inactive states (EnhBiv). Enrichment of COVID-19 loci in 
regulatory elements was estimated by using Fisher’s exact test.  
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Table S6 Comparsion polygeneic risk score(PRS) between male and female in 500FG 

(N=451) and 300BCG (N=313). 

 

Table continued (part 1) 

Fraction Risk group Male -500FG Female -500FG OR (95% CI) Pvalue-500FG* 

10% high risk 26 19 1.496 (0.980 - 2.283) 0.045 

10% low risk 17 28 

15% high risk 32 35 1.235 (0.883 - 1.727) 0.147 

15% low risk 25 42 

20% high risk 41 49 1.171 (0.876 - 1.566) 0.182 

20% low risk 34 56 

25% high risk 53 59 1.176 (0.907 - 1.526) 0.140 

25% low risk 44 68 

30% high risk 61 73 1.154 (0.909 - 1.465) 0.149 

30% low risk 52 83 

      

Table continued (part 2) 

 

Male -300BCG Female -300BCG OR (95% CI) Pvalue-300FG* Meta-Pvalue** 

15 17 1.434 (0.894 - 2.300) 0.115 0.011 

9 22 

25 21 1.770 (1.182 - 2.650) 0.005 0.004 

12 34 

33 29 1.524 (1.075 - 2.163) 0.014 0.010 

20 42 

41 37 1.397 (1.022 - 1.910) 0.026 0.011 

28 50 

45 48 1.163 (0.874 - 1.549) 0.188 0.051 
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38 55 

* the p value is obtained using the fisher extact test  
** the p value is obtained using the meta analyzed z score approach 

 

 

Table S7  Comparsion polygeneic risk score(PRS) between male and female in 500FG 

(N=451) and 300BCG (N=313) (age and gender corrected model)   

     

Table continued (part 1) 

 

Fraction Risk group Male -500FG Female -500FG OR (95% CI) Pvalue-500FG* 

10% high risk 23 22 1.498 (0.997 - 2.249) 0.043 

10% low risk 14 31 

15% high risk 32 35 1.442 (1.036 - 2.006) 0.025 

15% low risk 20 47 

20% high risk 43 46 1.296 (0.969 - 1.734) 0.057 

20% low risk 32 58 

25% high risk 53 58 1.231 (0.948 - 1.599) 0.079 

25% low risk 42 70 

30% high risk 58 76 1.070 (0.841 - 1.361) 0.336 

30% low risk 54 81 

 

Table continued (part 2) 

 

Male -300BCG Female -300BCG OR (95% CI) Pvalue-300FG* Meta-Pvalue** 

16 15 1.477 (0.903 - 2.415) 0.099 0.030 

10 21 

25 21 1.770 (1.182 - 2.650) 0.005 0.005 

12 34 
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31 31 1.48 (1.048 - 2.090) 0.022 0.008 

19 43 

43 35 1.397 (1.018 - 1.917) 0.027 0.039 

30 48 

47 46 1.241 (0.932 - 1.652) 0.092 0.214 

37 56 

 

* the p value is obtained using the fisher extact test  
** the p value is obtained using the meta analyzed z score approach 

 

 

Table S8  The replication of ABO loci in COVID-19 Host genetics initiative(HGI) data

  

RSid Effect Allele Other Allele Beta SE P^ P-HGI* 

rs8176719 T TC -0.2772 0.052 9.93E-08 8.88E-07 

rs633862 T C 0.2534 0.0515 8.79E-07 2.80E-06 

   

^Pvalue from D. Ellinghaus et.al New England Journal of Medicine 2020, DOI: 10.1056/NEJMoa2020283 

*Pvalue from COVID-19 HGI (https://www.covid19hg.org/results/, last accessed 21st of October 2020). The 

effect allele has been aligned. 
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