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ABSTRACT

There is growing interest in machine learning based approaches to assist clinicians in treatment selection. In
the treatment of epilepsy, a common neurological disorder that affects 70 million people worldwide, previous
research has employed scoring methods generated from traditional machine learning methods based on pre-
treatment patient characteristics to classify those with drug-resistant epilepsy (DRE). In this study, we used an
attention-based approach in predicting the response to different antiseizure medications (ASMs) in individuals
with newly diagnosed epilepsy. By applying a conventional transformer to model the patient’s response, we can
use the predicted probability to determine the success rate of specific ASMs. Applying the transformer allowed
the model to place attention on patient information and past treatments to model future drug responses. We
trained a conventional transformer model based on one cohort of 1536 patients with newly diagnosed epilepsy,
compared its performance with other trained models using RNN and LSTM, and applied it to a validation cohort
of 736 patients. In the development cohort, the transformer model showed the highest accuracy (81%) and AUC
(0.85), and maintained similar accuracy and AUC (74% and 0.79, respectively) in the validation cohort.

Keywords: D eep learning, transformer, self-attention mechanism, epilepsy, treatment, machine learning, pre-
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1. INTRODUCTION

Epilepsy is one of the common neurological diseases affecting approximately 0.8% of people during their lifetime.1

It is characterized by an increased tendency to have recurrent seizures at unpredictable times which can lead
to physical injury, impair social functioning, affect mental health and quality of life or even cause death.2

Despite advances in non-pharmacological treatment options over the years in the form of resective surgery,
neuromodulation and dietary therapies, the mainstay and first-line treatment remains as drug therapy, for which
over 20 antiseizure medications (ASMs) are currently available. However, drug selection still relies on a trial-
and-error approach and 30% of patients have drug-resistant epilepsy (DRE) that does not respond to currently
available ASMs.3 Although there are general guidelines based on broad seizure types, there is currently no
reliable way to predict the optimal drug choice for individual patients.

There is growing interest in applying machine learning in assisting healthcare decision making, fuelled by
advancements in the deep learning field such as BioBERT for natural language processing (NLP) tasks,4 gen-
erative adversarial networks (GANs) for medical image generation5 and convolutional neural networks (CNNs)
for detection through image classification.6 In epilepsy, the application of machine learning has been limited to
traditional models such as random forest (RF) algorithms7 and scoring based systems8 to predict a patient’s
ASM treatment outcome. Furthermore, recent advances with transformers which uses attention-mechanisms
have proven success in many domains4,9, 10 due to the ability to focus on specific parts of the data.

In this study, we applied an attention-based model to predict the optimal ASM prescription for individual
patients based on a broad range of demographic factors and epilepsy information. The performance and robust-
ness were verified through a separate cohort that was not used in the training or validation of the transformer
model.

Our contributions are as follows:
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Figure 1. High level overview of using the transformer model for longitudinal data. a) Each row of patient data corresponds
to an ASM taken for a duration of time. Individual patients may trial different ASMs. b) The raw data is normalized
across each variable to µ = 0 and σ = 1 within the training set and applied to the validation and test set. ASM trials are
grouped by patient and split into training/validation sets. c) The transformer is trained and tuned with the first cohort.
d) The transformer will output a treatment outcome probability for each patient based on the ASM provided. The model
can provide a prediction to the ASM treatment response for individual epilepsy patients.

• We are the first to utilise and show that an attention-based model can capture the latent structure for
individual epilepsy patient response to ASM treatment. The transformer model is able to capture additional
information from the demographic and ASM information due to the multi-headed self-attention mechanism.

• We show that the transformer model is more suitable for capturing the relevant longitudinal information
in predicting treatment response compared to other time-series based models.

• We achieve reasonable performance with an external validation cohort in Section 4.4 without further fine-
tuning of the model. The transformer model is able to generalise to an extent as seen in Section 4.5.

2. RELATED WORK

Machine learning in epilepsy management can potentially assist epileptologists in clinical decision making in
diverse domains such as automated analysis of electroencephalography (EEG) and diagnosis though images,
prediction of responses to ASM, and resective surgery.11 Past papers that investigated epilepsy treatment
typically used traditional ML algorithms7 and there has been a recent shift towards deep learning ML algorithms
due to their exceptional performances in different domains.12 Other cases of modelling within epilepsy is to
predict seizure recurrence after withdrawal from ASMs by using a scoring system.8,13 These models generally
include demographic and clinical risk factors identified by standard statistical methods. There has also been
a recent paper that employed a manually tuned mathematical model to determine which ASM to use.8 A few
studies have also looked at developing individualized prediction models for early diagnosis of DRE14,15 and for
selecting the most appropriate ASM.6,14,15

In recent advances of deep learning, attention-based models have shown promise in various applications such
as NLP, image recognition, and even electronic health records (EHR) data.4,10,16 Attention-based models is a
method in deep learning that allows the network to break down complex inputs into smaller parts for a sequence
of data. The backbone of transformers utilises these attention-mechanisms in a modular fashion to focus its
attention on different parts of the data.17 Although there have been applications of transformers within the
medical domain, the usage of transformers to predict treatment outcomes has not been adapted before.
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3. METHODS

In this section, we will discuss the methodology applied to train and validate the model. Due to the nature of
longitudinal data encompassing a time aspect, time-series models are used for baselines to compare against the
transformer model. Recurrent neural networks (RNN) and long-short term memory cells (LSTM) are networks
that are used to compare against the transformer. Figure 1 depicts the high level overview of the procedure used
for using the transformer to predict ASM treatment response for patients.

3.1 Baseline models and transformer

This section explains the structure of the baseline models and the transformer architecture. Figure 2 highlights
the different structures of each model.
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Figure 2. In both figures, xt, ht, ht−1, zt represents input, output from current neuron, output from the previous time
period of the current neuron, and output at the final layer respectively. a) The top shows the common MLP connection
for a RNN and LSTM network. RNN cells have a direct recurrent connection to itself. LSTM cells have several gates to
control the long and short term memory of the inputs and previous outputs. b) High level overview of the transformer.

3.1.1 RNN

Recurrent neural networks (RNN) have a feedback aspect within the neuron to roll back input sequences for
time-series data.18 Basic RNNs follow a standard multi-layer perceptron (MLP) except for each neuron in the
hidden layer, there is a connection that feed back into itself. Hence, this weight can be updated and it allows
the neuron to retain temporal information for a sequence of data. However, due to the nature of a RNN having
a simple recurrent loop, the network cannot hold long term memory as the gradient flowing back in time will
either diminish or explode.18

Before the prevalence of transformers, RNNs were typically used for time series data due to the simplicity
of the network. However, RNNs are difficult to train and extending the complexity of the network results in
vanishing and exploding gradients during back propagation of the network.19

3.1.2 LSTM

LSTMs tackles the long term dependency by introducing ”gates” into the cell where the gates act as a switch
to control the reading and writing of inputs within the cell.18 As the gates control the read and write of past
input sequences, it mitigates the vanishing and exploding gradients problem encountered by a RNN. LSTMs are
more complex compared to a basic RNN, as it has several gates and additional activation functions within the
model.18

Although LSTMs were created to mitigate the vanishing and exploding gradient problems faced by RNNs,
LSTMs are unable to model extensively long term dependencies. Furthermore, LSTMs are difficult to train in
nature compared to a non-recurrent neural network.
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Figure 3. Overview of a single encoder-decoder pair for a transformer network. Note that the modularity of the transformer
arises from stacking encoder and decoders. The transformer model utilises the original structure17 except there is no input
embedding that needs to be learnt. Each ASM trial is fed into the network sequentially and the time period is encoded
via the positional encoder.

3.2 Transformer model

The transformer model is a relatively new deep learning model that uses an attention mechanism which allows
the model to pay attention to different parts of an input sequence of data.17 Transformers are able to focus on
different parts of the data by dividing the self-attention mechanism into parts and aggregating the results in the
latter part of the model.

In this work, we will apply a vanilla transformer17 to predict ASM treatment responses at the individual
patient level, using longitudinal registries of new onset epilepsy patients containing comprehensive diagnostic
and follow-up information. Transformers have demonstrated prominence in modelling of longitudinal electronic
health records (EHR) for personalised diagnosis.16,20 We adopt the transformer to predict individual patient
response to ASM treatment with longitudinal data.

To adapt the transformer to the longitudinal data, each ASM trial is a separate input to the transformer
as seen in Figure 3. The inputs are passed on sequentially for each patient with the inputs being reset when it
reaches the next patient. The inputs are first passed through a positional encoder to encode the time step for
the ASM trial. The encoded data is passed through a multi-head attention layer described as:

Tout = softmax(
(TinK)(TinQ)T√

dk
)(TinV ))

where Tin, Tout are input and output data in the mult-head attention layer. K,Q, V are key, query, and value
vectors that retrieves corresponding values for each of the inputs. 1√

dk
represents a scaling factor for the queried
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value. The multi-attention layer analyses the encoding of the current ASM trial and its encoded information such
as demographic and past ASM trials, and relates it to other ASM trials. There are several multi-head attention
layers within the network as the transformer builds its own representation of the data within the feedforward
layers. The inputs to the decoder are the treatment responses from previous ASM trial outcomes and current
ASM trial information passed from the encoder.

We utilise the transformer in this setting due to its ability to capture hidden latent dependencies between each
patient ASM trial, and the ability of the attention mechanism to focus on different ASM treatment outcomes.
The transformer model also allows a variable length of patient visits, hence it is not restricted to only training
and validating the model on the first few regimen. This allows the transformer model to effectively utilise the
entire dataset.

3.3 Model training

To utilise the data effectively, the model was trained on each progressive ASM trial. For example, a patient
treated with 2 regimens will be used to train the model 2 times, with the first time only using the first regimen
and the second time utilising both ASM trials. Furthermore, the final treatment outcome for the current sequence
of data is always masked within the training data to avoid the model from seeing the current treatment outcome.
The transformer model uses a 5-fold cross validation approach on the Glasgow dataset to obtain optimal hyper-
parameters. Table 4 in the Appendix shows the final hyper parameter values that were used. The model was
used to validate its performance on the Perth cohort without any further training of the models using the Perth
dataset as seen in section 4.5.

4. EXPERIMENTS

4.1 Dataset
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Figure 4. Side-by-side comparison of the Glasgow and Perth cohort patient data. The y-axis represents the % of patients
within that cohort with the coloured label.

The data was obtained from two longitudinal registries of patients maintained in UK (Glasgow) and in
Australia (Perth). These registries include a total of 2,272 adults with newly diagnosed and treated epilepsy.
The Glasgow dataset (n=1536) includes patients seen at the Epilepsy Unit of Western infirmary in Glasgow,
Scotland from 1 July 1982 to 31 October 2012 and followed up prospectively till 30 April 2016 or death. The Perth
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Table 1. Discretizing continuous variables. Numbers represent (µ± σ)

Variables Accuracy (%) AUC

Continuous 76.71± 0.45 0.78± 0.01

Discretized 80.93± 0.57 0.85± 0.01

dataset (n=736) has started registering patients seen at First Seizure Clinics in Western Australia since 1999
and is being actively maintained. The patients’ characteristics, treatment approach, and database structure are
similar across the registries. The registries collect similar patient data including demographics, medical history,
family history, epilepsy risk factors, ASM regimens, pre-treatment seizure number and frequency, EEG and MRI
results, and treatment response (including seizure control and tolerability).

Between the two cohorts, there are differences in the distribution with the demographic information such as
the patient history, EEG, age initiated and MRI results as seen in Figure 4. The Perth dataset is more dispersed
across the age group whereas the Glasgow dataset has a younger population. There is also a lower proportion of
epileptogenic abnormalities on brain imaging and higher proportion of patients with unknown aetiology in the
Glasgow cohort which could be due low field MRI scans before the year 2000. The list of variables describing
the patients used in this work∗ can be found in table 5.

4.2 Pre-processing

The dataset was normalized before being used for training and validation of the model . Before normalization, the
categorical variables were binarised into separate columns for each category and continuous variables were split
into discrete categories to reduce the complexity for the model. Furthermore, ASMs that were not commonly
prescribed were removed from both cohorts.

To prevent information from leaking between the training and validation cohorts, the normalization step was
calculated from the training samples for each input variable (µi = 0, σi = 1, where i is the ith input variable)
and the normalization values were applied to the validation samples. This allows the transformer model to
predict treatment outcomes of new patients by applying the same normalization. Moreover, the complexity of
the input variables were further reduced by categorising continuous variables into discrete categories based on
quartiles. This was shown to improve the model performance as shown in Section 4.3.

4.3 Ablation studies

In this section, we perform ablation studies on the techniques described in Section 4.2 to isolate their individual
contributions. The studies were performed with a 5-fold cross validation with the Glasgow cohort. Accuracy
is determined by the predicted treatment outcome by the model based on each ASM trial, with a threshold of
0.5 to separate successful and unsuccessful treatment outcomes. This predicted treatment outcome is compared
with the actual result from the ASM trial, and the accuracy is calculated across each ASM trial in the 5-fold
cross validation. AUC is derived from the predicted treatment outcome values compared to the ground truth (0
= unsuccessful, 1 = successful) as the model predicts values between 0 to 1.

Categorising continuous variables To reduce the complexity of the data, continuous variables such as age
were categorised into equal segments. The results in Table 1 highlights the effectiveness of reducing the complexity
of the input data by discretizing the continuous variables.

Multi-head attention Here, we study the effects of tuning the number of heads for the multi-head attention
mechanism. The results in Table 2 highlight the use of additional heads in improving the performance of the
model. This shows that the model benefits from separating the embedding spaces within the network.

∗Detailed explanation of the Glasgow data can be found in21
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Table 2. Effect of multi-head attention. Numbers represent (µ± σ)

# of heads Accuracy (%) AUC

1 80.54 ± 0.36 0.84 ± 0.01

2 80.93± 0.57 0.85± 0.01

3 80.53 ± 0.60 0.83 ± 0.01

4.4 Results

The model performances were based off a 5-fold cross validation split of the Glasgow dataset. Table 3 highlights
the capability of the transformer to model the variable lengths between epilepsy treatment outcomes. In contrast,
RNN and LSTM have trouble modelling the different time lengths across the patient dataset. LSTM converges
to classifying a single treatment outcome for each ASM treatment while the RNN converges to a performance
that is lower than the transformer model. This can also be explained with the sequences of data typically being
around 2-4 trials long, with the highest number of trials within the dataset being 13 trials for an individual
patient. Due to the nature of the dataset, the longer term dependencies are not as prevalent compared to the
shorter term dependencies for each treatment response.

Table 3. Model testing performance comparison on Glasgow cohort. Numbers represent (µ± σ)

Model Accuracy (%) AUC

RNN 75.18± 0.85 0.78± 0.02

LSTM 75.83± 0.73 0.69± 0.03

Transformer 80.93± 0.57 0.85± 0.01

Overall, the performance of the transformer can be attributed to the architecture of the model, as it focuses
on relevant embeddings within the network due to the multi-head attention mechanism. It is also able to capture
the time aspect effectively without the direct use of recurrent connections compared to RNNs and LSTMs.

4.5 Cross-Cohort validation

To ensure that the model is generalising well, a cross-cohort validation was used to test the transformer model.
The trained transformer model from the Glasgow dataset was applied directly to the Perth dataset without
further fine-tuning of the model. The accuracy and AUC on the Perth dataset are 74.05% and 0.79 respectively.
Figure 5 shows the similarities of the two cohorts captured by the encoder of the transformer but there are
still distinct clusters of each cohort that the transformer cannot capture. Figure 6 shows the misclassifications
(indicated by the blue points) are clustered closely with the correctly classified treatment outcomes. The cluster
of Perth data towards the bottom right of the Figure 5 indicates that the model has not been able to generalise
information from the Glasgow patients as there are clusters of Perth patients resulting in misclassifications of the
Perth cohort towards bottom right of Figure 6. This indicates that the transformer model requires additional
relevant variables and data to further separate the treatment outcomes within the latent space of the model.

5. LIMITATIONS AND DISCUSSION

We present a novel approach in adapting a transformer architecture to model epilepsy treatment responses. The
approach in this work can greatly advance the application of machine learning in predicting treatment outcome
in epilepsy, by using novel deep learning techniques in this area. While previous attempts at the same were done
largely through surrogate markers of treatment response,14,15,22 we have the advantage of being able to train
our predictive model using relevant clinical information with known standard treatment outcome measures in
two large cohorts of newly diagnosed and treated epilepsy patients.3,23
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Figure 5. Projection of the Glasgow validation and Perth patients within the last encoder layer of the transformer network
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Although the preliminary results show promise of the transformer architecture being able to predict the
outcome of epilepsy treatment, our study has notable limitations such as limited patient information and data.
We plan to improve the prediction models by incorporating more clinically relevant input variables for model
training such as the latest etiological classification of epilepsy proposed by International League Against Epilepsy
(ILAE),24 electroencephalographic abnormalities, relevant imaging abnormalities, comorbidities considered dur-
ing drug selection and concomitant medication use.

In clinical practice, safety of ASM is also factored in while prescribing. An efficacious and tolerable drug
may not be the safest to use in a given situation.21 For instance, although valproate is efficacious for idiopathic
generalised epilepsy, it is not recommended for women of child bearing age due to its teratogenic potential.
These sorts of decisions require more nuanced knowledge of balancing pros and cons of selecting a particular
regimen. As the model does not naturally account for this limitation, a generalized approach needs to be further
investigated to implement these additional considerations.

6. CONCLUSION AND CLINICAL OUTCOMES

The usage of an attention-based model to capture relationships within treatment outcomes for epilepsy patients
has yielded promising results. The model was able to generalise well to an external cohort without further fine-
tuning of the model. In the future, the model can be improved upon with additional variables, which will allow
the model to aid clinicians in selecting the most suitable ASM based on its predicted efficacy in an individual.
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APPENDIX A. HYPER-PARAMETERS

Figure 4 the list of hyper-parameters that were tuned with with the training/validation split of the Glasgow
dataset.

Table 4. Tuned hyper-parameters for the final transformer model

Hyper-parameter Final value

Number of encoder/decoder pairs 3

Number of heads 2

Learning rate 3e-4

Learning rate decay factor 7e-1

Early stopping epochs 10

Number of epochs 50

APPENDIX B. LIST OF VARIABLES

Figure 5 outlines the patient variables that were used to train the model. The ASMs that were used in the
Glasgow and Perth datasets are not shown in this section. Further information on the variables can be found
in.21
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Table 5. List of variables describing the patient.

Variable Description

Sex Biological gender of the patient

Age initiated Age at initiation with the first antiseizure medication

treatment

Epilepsy class Epilepsy classification

Focal Dichotomised epilepsy classification, whether it is focal

epilepsy or not

Family history Prior to the treatment initiation, whether the patient has

family history of epilepsy or not

Febrile Prior to the treatment initiation, whether the patient has

history of febrile seizure or not

Cerebral infection Prior to the treatment initiation, whether the patient has

history of cerebral infection or not

Birth trauma Prior to the treatment initiation, whether the patient has

history of birth trauma or not

Head injury Prior to the treatment initiation, whether the patient has

history of head injury or not

Drug Prior to the treatment initiation, whether the patient has

history of drug abuse or not

Alcohol Prior to the treatment initiation, whether the patient has

history of alcohol abuse or not

Cerebrovascular disease Prior to the treatment initiation, whether the patient

has history of cerebrovascular disease or not

Psychiatric comorbidities Prior to the treatment initiation, whether the patient has

history of psychiatric comorbidities or not

Learning disability Prior to the treatment initiation, whether the patient

has history of learning disability or not

Brain MRI Categorized CT/MRI findings

EEG category Categorized EEG findings

Outcome Terminal treatment outcome, at the end of study period
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