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Abstract 15 

Improved understanding of the effects of meteorological conditions on the transmission of SARS-CoV-2, 16 

the causative agent for COVID-19 disease, is urgently needed to inform mitigation efforts. Here, we 17 

estimated the relationship between air temperature or specific humidity (SH) and SARS-CoV-2 18 

transmission in 913 U.S. counties with abundant reported infections from March 15 to August 31, 2020. 19 

Specifically, we quantified the associations of daily mean temperature and SH with daily estimates of the 20 

SARS-CoV-2 reproduction number (Rt) and calculated the fraction of Rt attributable to these 21 

meteorological conditions. Both lower temperature and lower SH were significantly associated with 22 

increased Rt. The fraction of Rt attributable to temperature was 5.10% (95% eCI: 5.00 - 5.18%), and the 23 

fraction of Rt attributable to SH was 14.47% (95% eCI: 14.37 - 14.54%). These fractions generally were 24 

higher in northern counties than in southern counties. Our findings indicate that cold and dry weather are 25 

moderately associated with increased SARS-CoV-2 transmissibility, with humidity playing a larger role 26 

than temperature.   27 

  28 
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Introduction 29 

Since emerging in Wuhan, China, the novel severe acute respiratory syndrome coronavirus 2 (SARS-30 

CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has produced a major global 31 

pandemic. As of November 12, 2020, approximately 10.6 million COVID-19 cases and 243 thousand 32 

deaths had been reported in the U.S.1, more than any other country. The decreased stability of SARS-33 

CoV-2 in warmer temperatures and higher humidity in laboratory experiments2,3, and the documented 34 

seasonality of influenza4 and infections caused by other coronaviruses5-7, lead to the hypothesis that lower 35 

air temperature and lower humidity are associated with increased SARS-CoV-2 transmission. Quantifying 36 

this effect on a population level is urgently needed to help inform public health control efforts, including 37 

transmission prevention and communication with the public8. 38 

Numerous preliminary studies have found either positive or negative associations of air temperature and 39 

humidity with COVID-19 cases9-13. However, given the large number of undocumented SARS-CoV-2 40 

infections14, the variations in the lag between infection and symptom onset, and the inconsistent lag 41 

between testing and reporting, using daily new confirmed cases may not be optimal for examining 42 

meteorological effects15. As a result, a few studies have used the reproduction number to estimate SARS-43 

CoV-2 transmissibility16-18. One study reported high daily air temperature and high daily relative humidity 44 

(RH) to be associated with a reduced daily effective reproduction number (the mean number of new 45 

infections caused by a single infected person in a population in which some individuals may no longer be 46 

susceptible due to acquired immunity19) for SARS-CoV-2 in both China and the U.S.16. However, two 47 

early studies focused on the first few of months of the pandemic found no association between 48 

temperature or humidity and the basic reproduction number (the mean number of new infections caused 49 

by a single infected person in a population in which everyone is assumed to be susceptible and no public 50 

health measures have been implemented)17,18. 51 

Early analyses, in particular, should be interpreted with caution8, as the range of temperature and 52 

humidity measurements during the short observation period at the beginning of the pandemic was 53 
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relatively narrow in most studies9-12,16-18, thus limiting the ability to detect associations between these 54 

meteorological variables and SARS-CoV-2 transmission. In addition, many previous studies (whether 55 

using COVID-19 cases or reproduction number as the outcome) controlled for no or only a few potential 56 

confounders9-13,17,18, which include other environmental factors, socioeconomic factors, temporal changes 57 

in population immunity, and implementation of public health interventions.  58 

Furthermore, although most early studies found an association between air temperature or humidity and 59 

COVID-19 incidence, the fraction of cases or deaths attributable to meteorological conditions remains 60 

unclear. One modeling study predicted that as long as most of the population is susceptible to infection, 61 

any role of humidity in SARS-CoV-2 transmission would be overwhelmed by the lack of population 62 

immunity20. This prediction is supported by the rapid transmission of SARS-CoV-2 regardless of climate 63 

zone, including warmer locations such as tropical Brazil, India and southern states in the U.S. during the 64 

northern hemisphere summer1. 65 

Here we investigate the association between air temperature or specific humidity (SH; the mass of water 66 

vapor in a unit mass of moist air [g/kg]) and SARS-CoV-2 transmission, as measured by the reproduction 67 

number Rt (the mean number of new infections caused by a single infected person, given the public health 68 

measures in place, in a population in which everyone is assumed to be susceptible). We estimate Rt in the 69 

913 counties with at least 400 cumulative cases as of August 31, 2020 and calculate the fraction of Rt 70 

attributable to temperature or SH, adjusting for a wide range of potential confounders. 71 

Results 72 

Distribution of meteorological factors and Rt 73 

From March 15 to August 31, 2020, a total of 4,903,520 cases of COVID-19 were reported in the 913 74 

study counties (Extended Data Table 1). We estimated the county-specific Rt using a dynamic 75 

metapopulation model informed by human mobility data that represents the transmission of SARS-CoV-2 76 

in the U.S. (see Methods). Mean daily Rt averaged over all counties and days during the study period was 77 

1.40 and ranged from 0.46 to 5.43. Daily air temperature and SH also ranged widely (air temperature: -78 

14.61 - 39.98 °C; SH: 0.99 - 22.15 g/kg). Union County, New Jersey had the highest Rt averaged over the 79 
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study period (Fig. 1a). The largest number of cumulative cases per 100,000 people was observed in 80 

Chattahoochee County, Georgia, while Taylor County, Florida had the lowest number (Fig. 1b). Southern 81 

counties generally were hotter and more humid than northern counties; whereas the western U.S., coastal 82 

counties generally were cooler and more humid than inland counties (Fig. 1c-d). 83 

84 
Fig. 1. Map of the distribution of reproduction number, cumulative cases, air temperature 85 

and specific humidity in study counties. 86 

These maps display the distribution of the daily reproduction number (Rt), daily air temperature, and daily 87 

specific humidity (SH) averaged over the study period, and the cumulative cases per 100,000 population, 88 

in 913 U.S. counties. 89 

 90 
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Associations between meteorological factors and Rt 91 

We estimated the complex non-linear and temporally delayed associations of meteorological factors with 92 

the SARS-CoV-2 Rt using a generalized additive mixed model adjusting for spatiotemporal variations in 93 

Rt and potential measured confounders, described in detail in Methods. We then calculated the optimum 94 

values of temperature and SH, which correspond to the lowest Rt. We found an approximately linear 95 

inverse temperature-Rt relationship (Fig. 2a), with lower air temperatures significantly associated with 96 

increased transmission of SARS-CoV-2 when below the optimum temperature (32.57 °C). No significant 97 

associations were observed for temperatures above the optimum value. The relationship between SH and 98 

Rt was non-linear (Fig. 2b). Higher SH was significantly associated with decreased transmission, except 99 

for an increasing trend from approximately 9 to 15 g/kg. The optimum SH was estimated to be 19.78 100 

g/kg. Compared with the optimum value, the 10th percentile of the distribution of air temperature (8.8 °C) 101 

or SH (4.5 g/kg) was associated with a 14.10% (95% CI: 8.59 - 19.89%) and 27.49% (95% CI: 21.93 - 102 

33.30%) increase of Rt, respectively. Effect estimates showed a decreasing trend in the lag dimension, 103 

diminishing to a small non-significant effect on lag day 13 (Extended Data Fig. 1). Sensitivity analyses 104 

showed the estimated relationships between air temperature or SH and Rt were generally consistent under 105 

different modeling choices (Fig. 2a-b). 106 
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 107 

Fig. 2. The associations of air temperature (°C) and specific humidity (g/kg) with Rt, under 108 

different choices of model. 109 

This figure shows the estimated exposure-response curves for the associations of air temperature (°C) and 110 

specific humidity (g/kg) with reproduction number (Rt) for SARS-Cov-2, with different modelling 111 

choices: (1) main model with 95% confidence interval (grey area): tensor product smooths to control for 112 

the temporal and spatial variations, and a cross-basis term for air temperature and SH, which is defined by 113 

natural cubic splines with 3 df for both the exposure-response and lag-response association, with a 114 

maximum lag of 13 days; (2) redefine the lag dimension using a natural cubic spline and 3 equally placed 115 

internal knots in the log scale; (3) change the df to 4 in the cross-basis term for air temperature or SH in 116 

the exposure-response function; (4): use a thin plate spline to control for geographical coordinates and 117 

time instead of using the tensor product smooths. 118 

 119 

Fractions of Rt attributable to meteorological factors 120 

Based on the estimated exposure-response curves and daily county-specific Rt, we further calculated the 121 

fraction of Rt attributable to temperature or SH (i.e., the attributable fraction (AF), which can be 122 

interpreted as the fraction of Rt attributable to the deviation of temperature or SH from the optimum 123 

value). Across all 913 counties over the entire study period, the AF for temperature was 5.10% (95% 124 
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empirical confidence intervals [95% eCI]: 5.00 - 5.18%), and the AF for SH was 14.47% (95% eCI: 14.37 125 

- 14.54%) (Extended Data Table 2). The AF for temperature showed an increasing trend from south to 126 

north (Fig. 3a). The county with the highest AF for temperature was Whatcom County, Washington 127 

(12.88%) and the county with the lowest AF for temperature was Hidalgo County, Texas (0.52%). The 128 

AF for SH showed an increasing trend from south to north in the eastern U.S., whereas in the western 129 

U.S., the AF for SH was lower in counties in coastal states than in counties in interior states (Fig. 3b). The 130 

county with the highest AF for SH was Nye County, Nevada (27.47%), and the county with the lowest 131 

AF for SH was Plaquemines Parish, Louisiana (7.24%). The AF for temperature was the largest in March 132 

and April, and the lowest in July and August (Fig. 3c). The AF for SH showed a modest decline between 133 

March and August (Fig. 3d). 134 

Sensitivity analyses indicate that the AF for air temperature remains robust when excluding 135 

socioeconomic factors and when additionally adjusting for smoking and obesity prevalence, long-term air 136 

pollution, or short-term air pollution (Extended Data Table 2). However, the estimated AF for 137 

temperature decreased from 5.11% to 3.55% after additionally adjusting for daily ultraviolet (UV). The 138 

AF for SH was robust across all sensitivity analyses.  139 
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 140 

Fig. 3. Fractions of Rt attributable to meteorological factors by county and month 141 

a, b: the distribution of the fraction of reproduction number (Rt) attributable to temperature or specific 142 

humidity (i.e., attributable fraction [AF]) in each county; c, d: the distribution of AF across months in the 143 

study period. The black lines represent the 95% confidence interval, which were calculated by 1000 144 

Monte Carlo simulations. 145 

 146 

Discussion 147 

Using estimated reproduction numbers for 913 U.S. counties and controlling for temporal and spatial 148 

trends and other potential confounders, we assessed the associations of air temperature and SH with the 149 

transmission of SARS-CoV-2 and estimated the fractions of Rt attributable to temperature and SH. We 150 

found both lower air temperature and lower SH to be significantly associated with increased Rt. During 151 
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the study period, 5.10% of Rt was attributable to the deviation of temperature from its optimum value and 152 

14.47% of Rt was attributable to the deviation of SH from its optimum value. Temperature and SH 153 

contributed more to transmission of SARS-CoV-2 in colder and drier counties and months than in warmer 154 

and more humid counties and months. In March (the coldest month of our study period of March-155 

August), the AF for temperature was 11.00% and the AF for SH was 18.22% (Fig. 3). We can anticipate 156 

higher AFs during the colder and drier months of January and February. 157 

Associations of lower temperature and lower humidity with increased COVID-19 outcomes have been 158 

reported by many previous studies. An early study in Wuhan, China reported that higher temperature and 159 

RH were associated with decreased COVID-19 deaths21. Many multicity analyses in China also supported 160 

such negative associations9,11,12,22. For example, using data of daily confirmed case counts from 30 161 

provincial capital cities of China, Liu et al. found that lower temperature and lower absolute humidity 162 

were associated with higher COVID-19 case counts11. Later, with the rapid spread of COVID-19 around 163 

the world, studies in other countries emerged23-25.  In the early stages of this pandemic in the U.S., a state-164 

level study of daily COVID-19 case counts observed a declining trend of reported cases with increasing 165 

temperature up to 52 ºF23. Based on data from 166 countries worldwide, another study reported that a 166 

1 °C increase in temperature and a 1% increase in RH were associated with a 3.08% and 0.85% reduction 167 

in daily new cases, respectively25. However, many of these earlier studies were limited by short study 168 

periods (e.g. 1-2 months), use of daily confirmed cases or deaths across countries for which there were 169 

varying reporting biases, failure to account for the time lag between observed weather conditions and 170 

when cases or deaths were recorded, or failure to account for time delays between infection acquisition 171 

and case confirmation15. 172 

By representing the transmissibility of SARS-CoV-2, the estimated daily reproduction number serves as a 173 

better outcome than daily case counts. While case counts are subject to the influence of reporting delay 174 

and underreporting, which vary across locations and are thus difficult to control, the reproduction number 175 

is a direct estimate of the transmission rate of SARS-CoV-2, quantifying the average number of infections 176 
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caused by one infection in the population. A small number of studies previously analyzed the association 177 

between temperature or humidity and reproduction number16-18. Wang et al. found that a 1 °C increase in 178 

temperature was associated with a reduction in the effective reproduction number by 0.023 in China and 179 

0.020 in the U.S., and a 1% increase in RH was associated with a reduction in the effective reproduction 180 

number by 0.0078 in China and 0.0080 in the U.S.16. These associations are consistent with our findings 181 

but were not supported by two studies in China that examined the basic reproduction number: the first 182 

found no association between temperature and SARS-CoV-2 transmission18; the second found no 183 

association between absolute humidity and SARS-CoV-2 transmission17. However, these early studies 184 

were limited by short observation periods at the beginning of the pandemic, and they did not account for 185 

variations of testing capacity, reporting, human mobility, and population susceptibility in estimating 186 

SARS-CoV-2 transmissibility.  187 

In our study, Rt was estimated using a dynamic metapopulation model informed by human mobility data. 188 

This mechanistic model accounted for unreported infections, reporting delays, and county-to-county 189 

movement. We explicitly estimated the population susceptibility in each county, and removed its 190 

influence in the calculation of Rt26 (see Methods). Further, model estimated population susceptibility has 191 

been validated against independent seroprevalence studies26.  Thus, our estimations account for spatial 192 

heterogeneity in population immunity. 193 

Another strength of our study was adjustment for a wide range of demographic and socioeconomic factors 194 

in the main analysis, as well as for smoking and obesity, air pollution, and UV radiation in sensitivity 195 

analyses. We also thoroughly controlled for spatially and temporally heterogenous unmeasured 196 

confounders, such as implementation of and compliance with public health measures26, by simultaneously 197 

controlling for temporal and spatial variations and including a random intercept to further account for 198 

unmeasured county-level confounding (see Methods). This approach accounted for substantial differences 199 

in the epidemic curves among counties (see Extended Data Fig. 2). 200 
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Our findings are supported by laboratory evidence on the stability of SARS-CoV-2 as a function of 201 

temperature and humidity. It has been reported that the virus’ half-life in human nasal mucus and sputum 202 

is shorter under conditions of higher temperature and RH than under conditions of lower temperature and 203 

RH2. Similar findings were reported by other studies testing virus stability in virus transport medium3, in 204 

aerosols, and on various surfaces27. Further, the SARS-CoV-2 half-life was found to be longer at lower 205 

temperatures, and at both 22 °C and 27 °C, the half-life decreased as RH increased from 40% to 65% but 206 

increased as RH increased from 65% to 85%28. This result is consistent with the non-linear relationship 207 

between SH and Rt observed in our study (Fig. 2b), in which there was an increasing trend of Rt from 9 to 208 

15 g/kg of SH superimposed on the overall decreasing trend.  209 

The associations between temperature and humidity and SARS-CoV-2 transmissibility may be mediated 210 

by airway antiviral defenses. Inhalation of cold and dry air can impair mucociliary clearance, a crucial 211 

mechanism for elimination of inhaled pathogens29. Further, during the colder winter months people spend 212 

more time indoors, which may facilitate virus transmission30. During these months, whether indoors or 213 

outdoors, people are exposed to less UV radiation from the sun and therefore may produce less vitamin D 214 

and other UV-induced mediators of immune function31. 215 

We found that SH contributes more to SARS-CoV-2 transmission than temperature, which is consistent 216 

with studies of influenza32. SH is more strongly associated with the observed seasonality of influenza in 217 

temperate regions than either temperature or RH32-34. In developed countries, such as the U.S., people 218 

spend approximately 90% of their time indoors35, especially during winter30. Although indoor temperature 219 

is usually controlled, indoor humidity generally is not, and closely mirrors outdoor levels36-38, perhaps 220 

explaining why ambient outdoor SH is more strongly associated with SARS-CoV-2 transmission than 221 

ambient outdoor temperature. However, it remains unclear whether SH is the causative modulator of 222 

SARS-CoV-2 transmission or is simply a useful indicator of the indoor environment and the combined 223 

effects of temperature and RH.  224 
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In the sensitivity analyses, after adjusting for daily UV radiation, the estimated AF for temperature 225 

decreased by about 30% (Extended Data Table 2), indicating that UV radiation acted as a confounder. 226 

This result is consistent with a recent study that found higher levels of solar UV radiation have a stronger 227 

association than temperature or humidity with a decreased growth rate (exponential increase in cases) of 228 

COVID-1939. In contrast, the fraction of Rt attributable to SH remained stable after adjusting for UV 229 

radiation. Although it is unclear why UV radiation would serve as a confounder for temperature, but not 230 

for SH, this result does suggest that SH is a more robust predictor than temperature. 231 

Several limitations should be noted. First, this is an ecological rather than an individual-level study, thus 232 

making the study susceptible to the ecological fallacy. Second, due to the high correlation between 233 

temperature and SH, we were unable to explore whether the effects of temperature and humidity are 234 

independent. Third, our study period was restricted to March-August; if we had been able to include an 235 

entire year, including the colder months of November-February, our AF estimates for the entire study 236 

period would likely have been larger.   237 

Conclusion 238 

Our findings indicate that cold and dry weather are moderately associated with increased SARS-CoV-2 239 

transmissibility in the U.S., with absolute humidity (i.e., SH) playing a greater role than temperature. 240 

More extensive public health interventions are needed to mitigate the increased transmissibility of SARS-241 

CoV-2 in winter months. 242 

Methods 243 

Data collection 244 

We extracted hourly air temperature and SH from the North America Land Data Assimilation System 245 

project40, a near real-time dataset with a 0.125° × 0.125° grid resolution. We spatially and temporally 246 

averaged these data into daily county-level records. SH is the mass of water vapor in a unit mass of moist 247 

air (g/kg). 248 
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Other characteristics of each county, including geographic location, population density, demographic 249 

structure of the population, socioeconomic factors, intensive care unit (ICU) bed capacity, health risk 250 

factors, and long-term and short-term air pollution were collected from multiple sources. Geographic 251 

coordinates, population density, median household income, percent of people older than 60 years, percent 252 

black residents, percent Hispanic residents, percent owner-occupied housing, and percent residents aged 253 

25 years and over without a high school diploma were collected from the U.S. Census Bureau41.  The 254 

prevalence of smoking and obesity among adults in each county was obtained from the Robert Wood 255 

Johnson Foundation’s 2020 County Health Rankings42. Total ICU beds in each county were derived from 256 

Kaiser Health News43. We extracted annual PM2.5 concentrations in the U.S. from 2014 to 2018 from the 257 

0.01° × 0.01° grid resolution PM2.5 estimation provided by the Atmospheric Composition Analysis 258 

Group44, and calculated average PM2.5 levels during this 5-year period for each county to represent long-259 

term PM2.5 exposure (Extended Data Fig. 3). Short-term air quality data during the study period, including 260 

daily mean PM2.5 and daily maximum 8-hour O3, were obtained from the United States Environmental 261 

Protection Agency45. Daily downward UV radiation at the surface was extracted from the European 262 

Centre for Medium-Range Weather Forecasts ERA5 climate reanalysis46, with data available before 263 

August 2020. 264 

Estimation of reproduction number 265 

We estimated the daily reproduction number (Rt) in all 3,142 U.S. counties using a dynamic 266 

metapopulation model informed by human mobility data26. Rt is the mean number of new infections 267 

caused by a single infected person, given the public health measures in place, in a population in which 268 

everyone is assumed to be susceptible. In the metapopulation model, two types of movement were 269 

considered: daily work commuting and random movement. The transmission dynamics are depicted by a 270 

set of ordinary differential equations26. 271 

We explicitly simulated reported and unreported infections, for which separate transmission rates are 272 

defined, and allowed transmission rates and ascertainment rates to vary across different counties. To infer 273 
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key epidemiological parameters, we fit the transmission model to county-level daily cases and deaths 274 

reported from March 15, 2020 to August 31, 2020. The estimated reproduction number is computed as 275 

𝑅𝑅𝑡𝑡 = 𝛽𝛽𝛽𝛽[𝛼𝛼 + (1 − 𝛼𝛼)𝜇𝜇], where β is county-specific transmission rate, μ is the relative transmissibility of 276 

unreported infections, α is the county-specific ascertainment rate, and D is the average duration of 277 

infectiousness. To avoid possible inaccurate estimation for counties with few cases, we inferred Rt in the 278 

913 U.S. counties with at least 400 cumulative confirmed cases as of August 31, 2020 (Fig. 1). Details of 279 

the model fitting and Rt estimation are reported elsewhere26. 280 

Statistical analysis 281 

All statistical analyses were conducted with R software (version 3.6.1) using the mgcv and dlnm package. 282 

Exposure-response curves 283 

Given the potential non-linear and temporally delayed effect of air temperature or SH, a distributed lag 284 

non-linear model (DLNM)47 combined with generalized additive mixed models (GAMM) was applied to 285 

estimate the associations of daily mean temperature or daily mean SH with SARS-CoV-2 Rt. Because of 286 

the high correlation between air temperature and SH (r = 0.80, Extended Data Table 3), we analyzed 287 

these two variables separately. The full model can be expressed as: 288 

log(E(Ri,t)) = α + te(s(latitudei, longitudei, k=30), s(timet, k=30)) + cb.temperature (or cb.SH) + 289 

β1(population densityi) + β2(percent black residentsi) + β3(percent Hispanic residentsi) + β4(precent people 290 

older than 60 yearsi) + β5(median household incomei) + β6(percent owner-occupied housingi) + β7(percent 291 

residents older than 25 years without a high school diplomai) + β8(number of ICU beds per 10,000 292 

peoplei) + ui 293 

where E(Ri,t) refers to the expected Rt in county i on day t, and α is the intercept. The time trend was 294 

controlled by a flexible natural cubic spline over the range of study dates with a maximum of 30 knots; a 295 

thin plate spline with a maximum of 30 knots was used to control the coordinates of the centroid of each 296 

county. Due to the unique pattern of the non-linear time trend of Rt in each county (Extended Data Fig. 297 
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2), we constructed tensor product smooths (te) of the splines of geographical coordinates and time, to 298 

better control for the temporal and spatial variations. Cb.temperature or cb.SH is a cross-basis term for the 299 

mean air temperature or mean SH. We modeled exposure-response associations using a natural cubic 300 

spline with 3 degrees of freedom (df), and modeled the lag-response association using a natural cubic 301 

spline with an intercept and 3 df with a maximum lag of 13 days. We adjusted for county-level 302 

characteristics, including population density, percent black residents, percent Hispanic residents, percent 303 

people older than 60 years, median household income, percent owner-occupied housing, percent residents 304 

older than 25 years without a high school diploma, and number of ICU beds per 10,000 people. The 305 

random effect of county (ui) was considered in the model to further control for unmeasured county-level 306 

confounding. To obtain more precise estimates, we excluded from the analysis days during which Rt was 307 

less than 0.2. 308 

Based on the estimated exposure-response curves, between the 1st and the 99th percentiles of the 309 

distribution of air temperature and SH, we determined the value of exposure associated with the lowest Rt 310 

to be the optimum temperature or the optimum SH, respectively. The natural cubic spline functions of the 311 

exposure-response relationship were then re-centered with the optimum temperature and SH as reference 312 

values. We report the cumulative relative risk of Rt associated with daily temperature or SH exposure in 313 

the previous two weeks (0 to 13 lag days) as the percent changes of Rt when comparing the daily 314 

exposure with the optimum reference values (i.e., the cumulative relative risk of Rt equals one and the 315 

percent change of Rt equals zero when the temperature or SH exposure is at its optimum value).  316 

Attribution of Rt to temperature or SH 317 

We used the optimum value of temperature or SH as the reference value for calculating the fraction of Rt 318 

attributable to temperature or SH; i.e., the attributable fraction (AF). For these calculations, we assumed 319 

that the associations of temperature and SH with Rt were consistent across the counties. For each day in 320 

each county, based on the cumulative lagged effect (cumulative relative risk) corresponding to the 321 

temperature or SH of that day, we calculated the attributable Rt in the current and next 13 days, using a 322 
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previously established method48. Specifically, in a given county, the Rt attributable to a temperature or a 323 

SH (xt) for a given day t was defined as the attributable absolute excess of Rt (AEx,t, the excess 324 

reproduction number on day t attributable to the deviation of temperature or SH from the optimum value) 325 

and the attributable fraction of Rt (AFx,, the fraction of Rt attributable to the deviation of temperature or 326 

SH from the optimum value), each accumulated over the current and next 13 days. The formula can be 327 

expressed as 328 

𝐴𝐴𝐴𝐴𝑥𝑥,𝑡𝑡 = 1 − exp (−∑ 𝛽𝛽𝑥𝑥𝑡𝑡,𝑙𝑙
13
𝑙𝑙=0 ) and 𝐴𝐴𝐴𝐴𝑥𝑥,𝑡𝑡 = 𝐴𝐴𝐴𝐴𝑥𝑥,𝑡𝑡 × ∑ 𝑛𝑛𝑡𝑡+1

13+1
13
𝑙𝑙=0  , where nt is the Rt on day t, and ∑ 𝛽𝛽𝑥𝑥𝑡𝑡,𝑙𝑙

13
𝑙𝑙=0  329 

is the overall cumulative log-relative risk for exposure xt  on day t obtained by the exposure-response 330 

curves re-centered on the optimum values. Then, the total absolute excess of Rt attributable to 331 

temperature or SH in each county was calculated by summing the absolute excesses of all days during the 332 

study period, and the attributable fraction was calculated by dividing the total absolute excess of Rt for the 333 

county by the sum of the Rt of all days during the study period for the county. The attributable fraction for 334 

the 913 counties combined was calculated in a similar manner at the national level. We derived the 95% 335 

empirical confidence intervals (95% eCI) for the attributable absolute excess and attributable fraction by 336 

1000 Monte Carlo simulations48. We also calculated the attributable fractions by month in the study 337 

period. 338 

Sensitivity analyses 339 

We conducted several sensitivity analyses to test the robustness of our results: a) the lag dimension was 340 

redefined using a natural cubic spline and three equally placed internal knots in the log scale; b) an 341 

alternative four df was used in the cross-basis term for air temperature or SH in the exposure-response 342 

function; c) time trend and geographical coordinates were controlled by a thin plate spline, instead of the 343 

tensor product smooth; d) all demographic and socioeconomic variables were excluded from the model; 344 

e) adjustment for the prevalence of smoking and obesity among adults was included in the model; f) 345 

additional adjustment was made for the average PM2.5 concentration in each county during 2014-201849; 346 
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g) additional adjustment was made for daily mean PM2.5, daily maximum 8-hour O3, and daily downward 347 

UV radiation at the surface. For daily covariates with available data in only some of the counties or study 348 

period, the results of sensitivity analyses were compared to the main model re-run on the same partial 349 

dataset.   350 
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Data availability 364 

Estimates of county-level reproduction number are available at https://github.com/shaman-365 

lab/Counterfactual 366 

The data sets used in the study are publicly available from the following locations: 367 

Hourly air temperature and specific humidity data: 368 

https://disc.gsfc.nasa.gov/datasets/NLDAS_FORA0125_H_002/summary?keywords=NLDAS 369 

Population density, median household income, percent of people older than 60 years, percent black 370 

residents, percent Hispanic residents, percent owner-occupied housing, and percent residents aged 25 371 

years and over without a high school diploma: https://www.census.gov/data/tables.html 372 
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U.S. county boundary: https://www.census.gov/geographies/mapping-files/time-series/geo/cartographic-373 

boundary.html 374 

Prevalence of smoking and obesity among adults in each county: 375 

https://www.countyhealthrankings.org/explore-health-rankings/rankings-data-documentation 376 

Total ICU beds in each county: https://khn.org/news/as-coronavirus-spreads-widely-millions-of-older-377 

americans-live-in-counties-with-no-icu-beds/ 378 

Annual PM2.5 concentrations in the U.S. from 2014 to 2018: 379 

http://fizz.phys.dal.ca/~atmos/martin/?page_id=140 380 

Short-term daily mean PM2.5 and daily maximum 8-hour O3: https://www.epa.gov/outdoor-air-quality-381 

data/download-daily-data 382 

Daily downward UV radiation at the surface: 383 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview 384 

Code availability 385 

R code for this analysis will be available at https://github.com/CHENlab-Yale/COVID-Climate 386 
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Extended Data Fig. 1. Lag-response relationships of air temperature (°C) or specific 493 

humidity (g/kg) with reproduction number (Rt). 494 

These curves are computed for the 10th percentile of air temperature and specific humidity vs. the 495 

optimum values on different lag days; the grey areas display the 95% confidence interval. The effect 496 

estimates show a decreasing trend in the lag dimension, diminishing to a small non-significant effect on 497 

lag day 13. 498 

Extended Data Fig. 2. Daily Rt from March 15 to August 31 in the largest county in each 499 

state. 500 

Black dots represent the daily value of reproduction number (Rt) in the largest county in each U.S. state. 501 

Blue lines show the trend of Rt through time, fitted by local polynomial regression; the light blue areas 502 

display the 95% confidence interval. 503 

Extended Data Fig. 3. Distribution of average PM2.5 concentration during 2014-2018. 504 

This map displays the county-level average PM2.5 concentration during 2014-2018, extracted from the 505 

PM2.5 estimation provided by Atmospheric Composition Analysis Group. 506 
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