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Abstract 1 

Background 2 

Carotid endarterectomy (CEA) and carotid artery stenting (CAS) are recommended for 3 

high stroke-risk patients with carotid artery stenosis to reduce ischemic events. However, we 4 

often face difficulty in determining the best treatment strategy. 5 

Objective 6 

We aimed to develop an accurate post-CEA/CAS outcome prediction model using machine 7 

learning that will serve as a basis for a new decision support tool for patient-specific treatment 8 

planning. 9 

Methods 10 

Retrospectively collected data from 165 consecutive patients with carotid stenosis 11 

underwent CEA or CAS were divided into training and test samples. The following five 12 

machine learning algorithms were tuned, and their predictive performance evaluated by 13 

comparison with surgeon predictions: an artificial neural network, logistic regression, support 14 

vector machine, random forest, and extreme gradient boosting (XGBoost). Seventeen clinical 15 

factors were introduced into the models. Outcome was defined as any ischemic stroke within 30 16 

days after treatment including asymptomatic diffusion-weighted imaging abnormalities. 17 

Results 18 

The XGBoost model performed the best in the evaluation; its sensitivity, specificity, 19 

positive predictive value, and accuracy were 31.9%, 94.6%, 47.2%, and 86.2%, respectively. 20 

These statistical measures were comparable to those of surgeons. Internal carotid artery peak 21 

systolic velocity, low density lipoprotein cholesterol, and procedure (CEA or CAS) were the 22 

most contributing factors according to the XGBoost algorithm. 23 

Conclusion 24 
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We were able to develop a post-procedural outcome prediction model comparable to 1 

surgeons in performance. The accurate outcome prediction model will make it possible to make 2 

a more appropriate patient-specific selection of CEA or CAS for the treatment of carotid artery 3 

stenosis. 4 

 5 

Keywords 6 

Carotid artery stenting, carotid endarterectomy, carotid stenosis, decision support tool, machine 7 

learning. 8 
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Introduction 1 

Carotid artery stenosis is an important cause of ischemic stroke, which remains a major 2 

public health problem worldwide [26]. To reduce the risk of ischemic stroke, carotid 3 

endarterectomy (CEA) and carotid artery stenting (CAS) are recommended for patients at high 4 

stroke risk with carotid artery stenosis. Based on the evidence that there are no significant 5 

differences in long-term outcomes after CEA and CAS [1,10,23], there are general guidelines 6 

for patient selection for CEA and CAS [10,13,27]. However, we often face difficulty in 7 

determining the best treatment method. Therefore, it is necessary to develop a useful decision 8 

support tool for patient-specific treatment planning for carotid artery stenosis. Recently, the use 9 

of artificial intelligence (AI) has been increasing in medical field because of advances in 10 

technology including robust machine learning (ML) algorithms for successful prediction and 11 

diagnosis [14]. However, no studies have applied modern ML models in the carotid stenosis 12 

cohort. 13 

In this study, we aimed to develop an accurate ML model for the prediction of ischemic 14 

events within 30 days after CEA or CAS with 17 clinical factors. The usefulness of the ML 15 

models was evaluated by comparing their predictions with those of surgeons. Because early 16 

periprocedural major and minor stroke is associated with long-term outcomes [18], our model to 17 

predict post-procedural ischemic events can serve as the basis for an effective decision support 18 

tool for patient-specific adaptation of CEA and CAS. Additionally, the relative importance of 19 

the clinical features was measured using an ML method. 20 

 21 

Materials and Methods 22 

Study population 23 

We enrolled 170 consecutive cases of carotid stenosis treated with CEA or CAS at a single 24 
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center in Japan between January 2013 and December 2018. Patient information was 1 

retrospectively collected from the hospital carotid stenosis database and anonymized before 2 

analysis. This retrospective study was approved by the institutional review board. Written 3 

informed consent was obtained from all patients before treatment. We excluded patients with 4 

arterial dissection and those who could not undergo MRI because of pacemaker implantation. 5 

The missing values were imputed by the k-nearest-neighbours (kNN) method [30]. We used the 6 

clinical data of patients until March 2018 as training data to optimize the hyperparameters and 7 

train the ML models, and used the data of more recent patients, from April to December 2018, 8 

as test data to evaluate the predictive performance of each model. The sample size was 9 

determined based on a previous study [8]. We conducted and reported this study in compliance 10 

with the transparent reporting of a multivariable prediction model for individual prognosis or 11 

diagnosis (TRIPOD) statement for multivariate prediction models [19]. 12 

 13 

Treatments 14 

Therapeutic approach was in accordance with the guidelines [13,27] based on stenosis 15 

degree assessed by NASCET criteria [7]. Basically, CAS was performed for CEA high-risk 16 

patients according to the inclusion criteria in the SAPPHIRE study [10]. The final treatment 17 

strategy was made by a multidisciplinary team. CEA was performed under general anaesthesia 18 

by three surgeons. Continuous neurophysiological monitoring was performed by 19 

neurophysiologists during surgery with a multimodality protocol involving 20 

electroencephalogram (EEG), median nerve somatosensory evoked potentials (SSEP), and 21 

bilateral regional cerebral oximetry (rSO2). Shunt placement was determined by the onset of 22 

alarm criteria for either EEG or SSEP, which was defined as a >50% decrease in amplitude [9]. 23 

CAS was performed under local anaesthesia by four surgeons. The rSO2 was monitored during 24 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 28, 2021. ; https://doi.org/10.1101/2020.11.16.20231639doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.16.20231639
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

the procedure. Each patient treated with CAS was administered 100 mg aspirin and 75 mg 1 

clopidogrel daily for at least 7 days before and 90 days after the CAS. The choice of stent and 2 

interventional strategy were determined by the interventional team. 3 

 4 

Clinical parameters 5 

A total of 17 clinical parameters were used for the ML model development based on their 6 

known or expected influence on the outcome. These parameters consisted of age [28], 7 

pretreatment modified Rankin scale (mRS) [21], hypertension [21], diabetes mellitus [11,24,31], 8 

medical history of arteriosclerotic disease [5], serum low-density lipoprotein (LDL) cholesterol 9 

value (mg/dL) [24], internal carotid artery peak systolic velocity (ICA-PSV, cm/sec), 10 

symptomatic [24,28], crescendo transient ischemic attack (TIA) or stroke in evolution [11], 11 

previous neck irradiation [6], type III aorta [24], contralateral carotid occlusion [31], stenosis at 12 

a high position, mobile plaque, plaque ulceration [11,24], plaque with hyperintense signal on 13 

time-of-flight (TOF), and procedure (CEA or CAS) [4,18,20]. History of arteriosclerotic disease 14 

was defined as a history of acute coronary syndrome or peripheral artery disease requiring 15 

treatment. Crescendo TIA was defined as at least two similar TIAs in one week. Contralateral 16 

carotid occlusion, stenosis at a high position, and type III aorta were assessed using MRA, CTA, 17 

or angiography. Stenosis at a high position was defined as carotid stenosis that extends distally 18 

to the height of the vertebral body of C2. The ICA-PSV, mobile plaque, and plaque ulceration 19 

were assessed using echocardiogram. A plaque with hyperintense signal on TOF was defined as 20 

a plaque that appeared hyperintense on TOF-MRI compared with the signal of the adjacent 21 

sternocleidomastoid muscle. 22 

In our preliminary study, we first created a prediction model with 22 clinical parameters 23 

which included gender, arterial fibrillation, estimated glomerular filtration rate, stenosis degree 24 
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assessed by NASCET criteria, and the side of the lesion. We then find the effective parameters 1 

and narrowed it down to the 17 parameters with the highest predictive performance (data not 2 

shown). 3 

 4 

Outcomes 5 

Outcome was defined as minor or major ischemic stroke including asymptomatic diffusion 6 

weighted imaging (DWI) hyperintense lesions within 30 days after CEA or CAS. Minor stroke 7 

was defined as a National Institutes of Health Stroke Scale score of less than 3, and major stroke 8 

was defined as a score of 3 or higher. Postprocedural MRI was performed the day after the 9 

procedure for CAS and less than one week afterwards for CEA. Additional MRI was performed 10 

if any neurological deficit was observed. 11 

 12 

Development of machine learning models 13 

The following five ML models were applied: artificial neural network (ANN), logistic 14 

regression, random forest, support vector machine (SVM), and extreme gradient boosting 15 

(XGBoost) [3]. The logistic regression, random forest, and SVM were implemented using 16 

scikit-learn, which is a free ML library for Python. The ANN model was implemented using the 17 

Keras library with a TensorFlow backend. All the ML models were developed using Python 18 

version 3.7.7, Scikit-learn version 0.22.1, and TensorFlow version 2.2.0. First, we performed 19 

hyperparameter tuning of all models except for ANN using a grid-search algorithm with 20 

log-loss as the objective function on the training data. All numerical variables were standardized 21 

using centring and scaling. When applying grid-search, the value of the objective function was 22 

evaluated by stratified 5-fold cross-validation. The hyperparameters of the ANN model were 23 

hand-tuned using the holdout method on the training data with cross-entropy as the objective 24 
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function. The base ANN model consisted of three dense layers with two dropout layers and two 1 

batch normalization layers (Supplemental table 1). After identifying the optimal 2 

hyperparameters for every model that minimize the log-loss value, we evaluated the predictive 3 

performance of each model using 10 times repeated stratified 5-fold cross-validation on the 4 

training data. The averages of the area under the receiver operating characteristic curve (ROC 5 

AUC), sensitivity, specificity, positive prediction value (PPV), and prediction accuracy were 6 

calculated through the cross-validation, and 95% confidence intervals were estimated. We also 7 

created and evaluated an ensemble model which comprises of the three models with the highest 8 

ROC AUC on the training data. 9 

 10 

Test of machine learning models 11 

The data of 22 consecutive patients treated by CEA or CAS at the same institution from 12 

April to December 2018 were used as a test data. Their post-procedural outcomes were 13 

predicted using the trained ML models with the 17 factors. In this procedure, we used the 14 

standard bootstrap method as an additional internal validation technique. In this study, the 15 

number of resampling repetitions, which should be as large as possible to ensure the stability of 16 

the estimates, was set to 1000 repetitions. The bootstrap averages of sensitivity, specificity, PPV, 17 

and prediction accuracy were calculated, and 95% confidence intervals were estimated. Using 18 

the same 17 factors, four surgeons (board-certified neurosurgeons who had at least 10 years of 19 

experience) also predicted the post-procedural outcomes for each patient based on the test data 20 

within 10 minutes. When surgeons performed the outcome prediction test, to ensure that other 21 

information was never leaked, a paper test with information on only the 17 clinical factors for 22 

each patient was used. These surgeons were independent of the CEA and CAS performed during 23 

the designated study period. The average sensitivity, specificity, PPV, and prediction accuracy of 24 
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the predictions of the four surgeons were compared with those of the ML models. 1 

 2 

Feature importance measurement 3 

The relative importance of the clinical features was measured by the total gain of the 4 

XGBoost algorithm. The gain is the relative contribution of a feature to the model, calculated by 5 

taking each feature's contribution to each tree in the gradient boosting decision tree model. Thus, 6 

the features with higher gain are more important for generating the prediction of the XGBoost 7 

model. 8 

 9 

Statistical Analysis 10 

Descriptive and comparative statistics were used to describe clinical characteristics of the 11 

patients. We performed a statistical comparison between training and test groups using Welch's 12 

t-test for numerical values, Fisher's exact test for categorical variables, and the Mann–Whitney 13 

U test for pretreatment mRS. A 2-tailed probability value of 0.05 or lower was considered 14 

statistically significant. Statistical analysis was performed using EZR version 1.38. 15 

 16 

Results 17 

Study participants 18 

The flow diagram of model development and validation is presented in Figure 1. Among 19 

the 170 patients with carotid stenosis, five (2.9%) were excluded. Thus, the data of a total of 20 

165 patients with carotid stenosis were included for analysis and separated into training and test 21 

data. The baseline characteristics before missing value imputation are shown in Table 1. There 22 

were 36 (22%) patients over 80 years of age, and 127 (77%) patients in good condition (mRS 23 

0-1). Severe carotid stenosis, which was defined as an ICA-PSV of more than 200 cm/s, was 24 
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observed in 115 (70%) patients. CEA and CAS were performed on 95 (58%) and 70 (42%) 1 

patients, respectively. The outcome was observed in 45 (27%) patients. Major stroke, minor 2 

stroke, and asymptomatic DWI hyperintense lesions were diagnosed in 3 (1.8%), 3 (1.8%), and 3 

39 (24%) patients, respectively. All missing values were imputed using the kNN method. No 4 

significant difference was found in the comparison before and after imputation of the missing 5 

values (data not shown). Although age and follow-up duration were significantly older and 6 

shorter, respectively, in the test data, there was no significant difference between the training 7 

and test data for the other factors that were used for analysis after imputation (Table 1). The test 8 

data tended to have more CAS and fewer outcomes, but there were no significant differences. 9 

The differences in patient characteristics between the CEA and CAS groups were shown in 10 

Supplemental table 1. The patients with hypertension, plaque ulceration, plaque with 11 

hyperintense signal on TOF, and symptomatic stenosis were significantly more common in the 12 

CEA group. Asymptomatic DWI hyperintense lesion was significantly increased in CAS group. 13 

Other variables did not differ between the CEA and CAS groups. 14 

 15 

Prediction of post-procedural ischemic events on the training dataset 16 

To evaluate the predictive performance of five ML models for post CEA/CAS outcomes, 17 

10 times repeated stratified 5-fold cross-validation was first performed on the 143-patient 18 

training data. The prediction results showed that the ROC AUC of XGBoost was highest at 19 

0.719, sensitivity of SVM was highest at 36.2%, and the specificity, PPV, and accuracy of 20 

random forest were highest at 98.3%, 78.9%, and 75.4%, respectively (Table 2). Then, an 21 

ensemble model of the logistic regression, XGBoost, and ANN models, which were the three 22 

most highest ROC AUC models, was also created and evaluated. It yielded a ROC AUC of 23 

0.739, sensitivity of 15.1%, specificity of 97.4%, PPV of 75.1%, and accuracy of 72.7%. Thus, 24 
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the ensemble model obtained the highest ROC AUC on the training data. 1 

 2 

Prediction of post-procedural ischemic events on the test dataset and comparison with 3 

surgeons 4 

Next, to confirm the post-CEA/CAS outcome prediction performances of the six ML 5 

models including the ensemble model, these models were further evaluated on the 22-patient 6 

test data with the bootstrap method. The results are shown in Table 3. XGBoost achieved the 7 

highest PPV, and accuracy scores, which were 47.2% and 86.2%, respectively. The highest 8 

sensitivity was 34.0%, which was achieved by random forest, SVM, and logistic regression. The 9 

highest specificity was 95.4%, which was achieved by ANN. The ensemble model, which 10 

obtained the highest ROC AUC on the training data, did not perform so well on the test data. 11 

The average of the outcome predictions made by four surgeons had a sensitivity of 41.7%, 12 

specificity of 75.0%, PPV of 20.1%, and accuracy of 70.5%. Therefore, all of the current ML 13 

models trained with 143 cases and 17 factors outperformed the surgeons’ predictions in terms of 14 

specificity and accuracy. However, surgeons showed a higher predictive sensitivity than the 15 

current ML models. A statistical analysis was not performed on these results because of the 16 

small sample size. The optimized hyperparameters of these models are listed in Supplemental 17 

table 2. 18 

 19 

Importance values of the clinical factors 20 

The feature importances were measured using a function of the XGBoost algorithm, which 21 

obtained the best predictive performance on the test data. The results reveal that ICA-PSV, 22 

serum LDL-cholesterol value, and procedure (CEA or CAS) are the most important in this order 23 

(Figure 2). 24 
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 1 

Discussion 2 

In this study, we identified two notable findings. First, using an appropriate model 3 

construction process with effective clinical factors, we were able to develop a post-CEA/CAS 4 

outcome prediction model that is comparable to surgeons in terms of sensitivity, specificity, PPV, 5 

and accuracy, although our models were developed with a relatively small number of patients. 6 

Second, in our validation process, the XGBoost model had the highest predictive performance, 7 

and the factors that contributed most to the accurate model were ICA-PSV, serum 8 

LDL-cholesterol value, and procedure (CEA or CAS). 9 

 10 

ML and ICAS 11 

We were able to develop a post-CEA/CAS outcome prediction model that is comparable to 12 

surgeons, even with a relatively small training sample size. This is the first study to predict the 13 

outcome after treatment of carotid artery stenosis using ML models. Our model makes it 14 

possible to preoperatively calculate the post-CEA/CAS stroke risk as a concrete numeric value; 15 

for example, 10% with CEA and 15% with CAS for postprocedural stroke risk. This function 16 

can help surgeons to determine whether the patient suitable for CEA or CAS. However, a 17 

problem of the current models is that sensitivity is relatively low. To increase the prediction 18 

sensitivity, we tuned the models with sensitivity as the objective function during model 19 

development. However, such sensitivity-oriented models showed a considerable decrease in 20 

accuracy, although sensitivity increased slightly (data not shown). Therefore, these 21 

sensitivity-oriented models were not adopted this time. In this study, we did not perform 22 

statistical analyses on differences of predictive performance between ML models and surgeons 23 

because of the small test sample size. Therefore, we did not determine the statistical significance 24 
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of ML models. However, our prediction models could be a milestone in the development of new 1 

decision support tool for treatment choice in carotid stenosis, because as the training data 2 

continues to grow in size, we can expect the prediction performance of the models to be higher 3 

than the present study. To further improve the predictive performance of ML models, it would 4 

be necessary to use big data and more important contributing factors. 5 

In this study, the incidence rate of postprocedural ischemic events was 27%, which was 6 

similar to the results of previous studies [29]. Most of these postprocedural ischemic events 7 

were asymptomatic DWI small lesions. Although such asymptomatic DWI lesions are 8 

sometimes underestimated in clinical practice, it was reported that the volume of postoperative 9 

DWI lesions could correlate with cognitive deterioration at 6 months after CEA or CAS [36]. 10 

Accordingly, even if the lesion is small, we should try to avoid the postoperative DWI lesions. 11 

In general, MRI DWI can detect ischemic changes for at least 2 weeks after a stroke onset, and 12 

the postoperative DWI lesions have been considered to be derived from cerebral microembolism 13 

during CAS or CEA [25]. Thus, the difference in the timing of postoperative MRI between the 14 

CEA and CAS groups should not have a significant impact on our results. 15 

The number of studies using ML to explore stroke and neurosurgical diseases has increased 16 

rapidly over the past decade. The most frequently applied algorithms are ANN, logistic 17 

regression, random forest, and SVM [2,12,32], which suggests that our model selection is 18 

appropriate. In our study, the predictive performance of the XGBoost was better than those of 19 

the ANN, logistic regression, SVM, and random forest. Although the superior performance of 20 

the GBDT model has been shown in many data-science contests in recent years [33], there is 21 

still very little research on neurosurgery or stroke using the GBDT model [22,33]. The ensemble 22 

model, which had the highest ROC AUC on our training data, did not perform so well on the 23 

test data, probably because of overfitting to the training data. 24 
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 1 

Feature Importance 2 

XGBoost, which showed the best predictive performance, identified ICA-PSV, serum 3 

LDL-cholesterol value, and procedure (CEA or CAS), as the most effective factors. The 4 

procedure type, CEA or CAS, has previously been reported as a potential predictor of 5 

periprocedural stroke [4,18,20,21]. Thus, it seems reasonable that the procedure type is the third 6 

most important factor in this study. However, no studies have suggested that ICA-PSV or serum 7 

LDL-cholesterol value are associated to postprocedural outcome. Although ICA-PSV should 8 

reflect the degree of stenosis, many studies reported that the degree of stenosis is not associated 9 

with postprocedural outcome [24,28]. ICA-PSV might be used in our model as a valid predictor 10 

in combination with other clinical factors. In a study investigating the components of emboli 11 

captured by the filter-protection device during CAS, more postoperative DWI high intensity 12 

lesions were observed in patients whose main component of the emboli was cholesterol [17]. It 13 

may be inferred from such results that serum LDL-cholesterol might be related to 14 

post-procedural outcome because it should be possible for a higher serum LDL-cholesterol 15 

value to leads to a higher cholesterol content of the plaque, which produces emboli. In this study, 16 

the presence and intensity of lipid-lowering therapies, such as statins, were not evaluated. How 17 

LDL-cholesterol levels and lipid-lowering therapies are associated with clinical outcome need 18 

to be further investigated in future studies. 19 

 20 

Comparison of clinician and AI performance 21 

Many studies have compared clinicians and AI with image interpretation or diagnostic 22 

performance and have shown that ML models are equivalent to or superior to specialists [16,34]. 23 

However, there were very few studies that compared the predictive performance of clinicians 24 
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and AI as in this study [15]. The sensitivity of the surgeons’ prediction was higher than our ML 1 

models, presumably because the surgeons have experience of more than 143 patients, which 2 

comprise the dataset that our ML models learned. Therefore, instead of a difference in predictive 3 

ability, the number of experienced and learned cases might have influenced the results. The 4 

advantage of an ML model is that if only the question and answer are provided correctly, it can 5 

learn an enormous number of cases that one surgeon would not be able to experience. Therefore, 6 

in future, as the number of training cases increases, the predictive performance of the ML model 7 

would further improve. 8 

 9 

Limitations 10 

One of the main limitations of our study is the small sample size. Although a larger sample 11 

size would be needed for more accurate ML models, a previous report suggested that 80–560 12 

samples are required for ML algorithms excluding deep neural networks, and the required 13 

sample size depends on the dataset and sampling method [19]. Furthermore, a systematic review 14 

of AI in neurosurgery has shown that the median number of patients in each study was 120 [2]. 15 

Thus, the sample size might not be insufficient for our ML models (excepting the ANN model). 16 

Second, several potentially important clinical parameters, such as tandem stenotic lesions or 17 

other inappropriate anatomical features for the procedure, were not considered in this study. 18 

Third, optimizing hyperparameters for neural network models is generally difficult because they 19 

have many hyperparameters that need to be adjusted. In addition to hyperparameters, the neural 20 

network architecture should be optimized for better performance [35]. In this study, because the 21 

ANN was hand-tuned by multiple trial-and-error sessions, a more effective hyperparameter set 22 

might be found by other, more sophisticated optimization methods. Finally, because the dataset 23 

was collected retrospectively from a single institution, it is prone to selection bias, and our ML 24 
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models may not be applicable to other institutions where different treatment strategies or patient 1 

demographics might exist. Although internal validation was applied with repeated 2 

cross-validation and bootstrap methods, further external validation is necessary in another 3 

setting that differs in time or place to validate the performance of our prognostic models. 4 

 5 

Conclusion 6 

We developed a post-CEA/CAS outcome prediction model with a performance comparable 7 

to that of surgeons. The XGBoost model showed the best predictive performance which 8 

achieved more than 85% accuracy, and the most contributing factors were ICA-PSV, serum 9 

LDL-cholesterol value, and procedure (CEA or CAS). Our model can help surgeons to 10 

determine whether the patient suitable for CEA or CAS based on the calculated probability 11 

estimates for postprocedural ischemic event. Larger datasets and analysis of potential prognostic 12 

factors would be necessary to further improve the predictive performance of the ML models. 13 
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 13 

Figure Captions 14 

Fig. 1 Flow diagram describing the general framework of the study. Models were built using the 15 

training dataset. The test dataset was used for measuring the predictive performance and 16 

comparison with the surgeons. CAS, carotid artery stenting; CEA, carotid endarterectomy; 17 

ICA-PSV, internal carotid artery peak systolic velocity; kNN, k-nearest-neighbours; LDL, low 18 

density lipoprotein; PPV, positive predictive value 19 

 20 

Fig. 2 Importance values of the clinical factors measured using the total gain of the XGBoost 21 

algorithm. CAS, carotid artery stenting; CEA carotid endarterectomy; DM, diabetes mellitus; 22 

ICA-PSV, internal carotid artery peak systolic velocity; LDL, low density lipoprotein; mRS, 23 

modified Rankin scale 24 
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Table 1. Patient characteristics 1 

Variable 

Before 
imputation 

After imputation 

Total 
(n=165) 

Training 
data 

(n=143) 

Test data 
(n=22) 

p value 

Age, year, mean (SD) 74.2 (7.61) 73.8 (7.82) 76.7 (5.62) 0.04 

Male sex, n (%) 141 (85) 122 (85) 19 (86) 1 

pre-treatment mRS, median [IQR] 
0 [0-1] 0 [0-1] 

0.5 

[0-1.75] 
0.55 

LDL-cholesterol, mg/dL, mean (SD) 90.0 (29.5) 90.4 (30.1) 87.1 (23.3) 0.56 

Prior medical histories, n (%) 

Hypertension 136 (82) 118 (83) 18 (82) 1 

Diabetes mellitus 58 (35) 50 (35) 8 (36) 1 

Acute coronary syndrome 53 (32) 42 (29) 11 (50) 0.08 

Peripheral artery disease 28 (17) 24 (17) 4 (18) 0.77 

Anatomical and pathophysiological features 

Contralateral occlusion, n (%) 14 (8.5) 11 (7.7) 3 (14) 0.40 

Stenosis at a high position, n (%) 13 (7.9) 12 (8.4) 1 (4.5) 1 

Type III Aorta, n (%) 64 (39) 56 (39) 8 (36) 1 

ICA-PSV, cm/sec, mean (SD) 276 (130) 272 (126) 291 (147) 0.56 

Mobile plaque, n (%) 19 (12) 15 (10) 4 (18) 0.29 

Plaque ulceration, n (%) 39 (24) 36 (25) 3 (14) 0.29 

plaque with hyperintense signal on TOF, n (%) 61 (37) 54 (38) 7 (32) 0.64 

Previous neck irradiation, n (%) 15 (9.1) 13 (9.1) 2 (9.1) 1 

Symptomatic, n (%) 64 (39) 56 (39) 8 (36) 1 

Crescendo TIA or stroke in evolution, n (%) 10 (6.1) 8 (5.6) 2 (9.1) 0.62 

Treatment, CEA, n (%) 95 (58) 85 (59) 10 (45) 0.25 

Outcome, n (%) 

Ischemic stroke within 30 days 45 (27) 42 (29) 3 (14) 0.13 

Major ischemic stroke 3 (1.8) 2 (1.4) 1 (4.5) 0.36 

Minor ischemic stroke 3 (1.8) 3 (2.1) 0 (0) 1 

Asymptomatic DWI hyperintense lesions 39 (24) 37 (26) 2 (9.1) 0.11 
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Follow-up duration, days, mean (SD) 833 (565) 921 (555) 259 (259) <.0001 

CEA = carotid endarterectomy; DWI = diffusion weighted imaging; IQR = interquartile range; 1 

LDL = low density lipoprotein; mRS = modified Rankin scale; ICA-PSV = internal carotid 2 

artery-peak systolic velocity; TIA = transient ischemic attack; TOF = time-of-flight. 3 

  4 
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Table 2. Prediction results on the training dataset evaluated by repeated 5-fold cross validation 1 

and sorted by ROC AUC 2 

Model 
ROC AUC 

mean (95%CI) 

Sensitivity (%) 

mean (95%CI) 

Specificity (%) 

mean (95%CI) 

PPV (%) 

mean (95%CI) 

Accuracy (%) 

mean (95%CI) 

Ensemble model * 
0.739 

(0.714 - 0.764) 

15.1 

(11.3 – 18.8) 

97.4 

(96.2 – 98.6) 

75.1 

(65.6 – 84.7) 

72.7 

(71.3 – 74.0) 

XGBoost 
0.719 

(0.692 - 0.746) 

14.6 

(10.3 – 19.0) 

94.9 

(93.1 – 96.7) 

54.5 

(44.6 – 64.3) 

70.8 

(69.1 – 72.4) 

Logistic regression 
0.702 

(0.671 - 0.732) 

26.5 

(22.4 – 30.5) 

95.5 

(94.2 – 96.8) 

71.2 

(62.7 – 79.7) 

74.8 

(73.1 – 76.4) 

Neural network 
0.692 

(0.659 - 0.726) 

29.0 

(23.8 – 34.1) 

91.2 

(89.1 – 93.3) 

61.3 

(54.3 – 68.3) 

72.5 

(70.8 – 74.3) 

Random forest 
0.683 

(0.653 - 0.712) 

22.0 

(18.0 – 26.0) 

98.3 

(97.4 – 99.2) 

78.9 

(69.2 – 88.7) 

75.4 

(74.0 – 76.8) 

SVM 
0.680 

(0.650 - 0.711) 

36.2 

(32.2 – 40.3) 

85.3 

(83.5 – 87.1) 

51.7 

(46.6 – 56.8) 

70.6 

(68.8 – 72.4) 

 3 

* Ensemble model is created by using XGBoost, neural network, and logistic regression, which 4 

are the three most highest ROC AUC models. 5 

ROC AUC = area under the receiver operating characteristic curve; PPV = positive predictive 6 

value; SVM = support vector machine. 7 
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Table 3. Prediction results on the test dataset evaluated using the bootstrap technique and sorted 1 

by accuracy. 2 

Model Sensitivity (%) 

mean (95%CI) 

Specificity (%) 

mean (95%CI) 

PPV (%) 

mean (95%CI) 

Accuracy (%) 

mean (95%CI) 

XGBoost 31.9 

(30.0 – 33.8) 

94.6 

(94.2 – 94.9) 

47.2 

(44.9 – 49.6) 

86.2 

(85.7 – 86.6) 

Neural network 4.1 

(3.3 – 4.8) 

95.4 

(95.3 – 95.5) 

12.4 

(10.4 – 14.4) 

83.3 

(82.9 – 83.8) 

Ensemble model * 31.8 

(29.9 – 33.7) 

89.6 

(89.2 – 90.0) 

32.0 

(30.0 – 33.9) 

82.0 

(81.5 – 82.5) 

Random forest 34.0 

(32.1 – 35.9) 

84.3 

(83.8 – 84.8) 

25.1 

(23.6 – 26.6) 

77.7 

(77.1 – 78.2) 

SVM 34.0 

(32.1 – 35.9) 

79.1 

(78.6 – 79.7) 

19.9 

(18.7 – 21.1) 

73.2 

(72.6 – 73.7) 

Logistic regression 34.0 

(32.1 –35.9] 

79.0 

(78.4 – 79.6) 

20.2 

(18.9 – 21.5) 

73.0 

(72.4 – 73.6) 

Surgeons ** 
41.7 

(0 – 92.4) 

75.0 

(60.7 – 89.3) 

20.1 

(0 – 42.8) 

70.5 

(57.9 – 83.0) 

 3 

* Ensemble model is created by using XGBoost, neural network, and logistic regression, which 4 

are the three most highest ROC AUC models on the training dataset. 5 

** The average of 4 surgeon’s prediction results with 95% confidence interval. 6 

PPV = positive predictive value; SVM = support vector machine. 7 
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