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ABSTRACT  

Background 

Radiologic evidence of air trapping (AT) on expiratory computed tomography (CT) scans is 

associated with early pulmonary dysfunction in patients with cystic fibrosis (CF). However, 

standard techniques for quantitative assessment of AT are highly variable, resulting in limited 

efficacy for monitoring disease progression.   

Objective 

To investigate the effectiveness of a convolutional neural network (CNN) model for quantifying 

and monitoring AT, and to compare it with other quantitative AT measures obtained from 

threshold-based techniques. 

Materials and Methods  

Paired volumetric whole lung inspiratory and expiratory CT scans were obtained at four time 

points (0, 3, 12 and 24 months) on 36 subjects with mild CF lung disease. A densely connected 

CNN (DN) was trained using AT segmentation maps generated from a personalized threshold-

based method (PTM). Quantitative AT (QAT) values, presented as the relative volume of AT over 

the lungs, from the DN approach were compared to QAT values from the PTM method. Radiographic 

assessment, spirometric measures, and clinical scores were correlated to the DN QAT values using a 

linear mixed effects model. 

Results 

QAT values from the DN were found to increase from 8.65% ± 1.38% to 21.38% ± 1.82%, 

respectively, over a two-year period. Comparison of CNN model results to intensity-based 

measures demonstrated a systematic drop in the Dice coefficient over time (decreased from 0.86 

± 0.03 to 0.45 ± 0.04). The trends observed in DN QAT values were consistent with clinical scores 
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for AT, bronchiectasis, and mucus plugging. In addition, the DN approach was found to be less 

susceptible to variations in expiratory deflation levels than the threshold-based approach.  

Conclusion  

The CNN model effectively delineated AT on expiratory CT scans, which provides an automated 

and objective approach for assessing and monitoring AT in CF patients. 

 

Keywords: Machine learning, air trapping, cystic fibrosis, computed tomography, convolutional 

neural networks, artificial intelligence. 
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INTRODUCTION 

High resolution CT is an integral tool for the treatment and management of patients with 

diffuse lung disease [1]. High resolution CT lung imaging provides high tissue-air contrast and 

resolution facilitating disease detection and characterization, and assessment of disease 

progression across a variety of obstructive and restrictive lung diseases. Mosaic attenuation on 

CT images is defined as a CT pattern that “appears as patchwork of regions of differing 

attenuation that may represent (i) patchy interstitial disease, (ii) obliterative small airways disease, 

or (iii) occlusive vascular disease” [2]. In the context of small airways disease, mosaic attenuation 

represents air trapping (AT) “secondary to bronchial or bronchiolar obstruction” that produces 

focal zones of decreased attenuation on expiratory CT imaging [2].   

A mosaic attenuation pattern on expiratory CT scans due to AT is a common feature in 

many pulmonary conditions with airway obstruction [3]. Computational techniques that are fully 

automated have been developed to quantify the extent of AT on expiratory CT, which may improve 

the detection of AT across a diverse range of radiologists in practice. The most extensively used 

method is quantification of low attenuation areas using a Hounsfield unit (HU) threshold-based 

approach, which defines areas at or below a static attenuation value as AT. This approach was 

first applied to emphysema, and has been pathologically validated [4-7]. This same strategy has 

been used to quantify AT in small airway disease associated with chronic obstructive pulmonary 

disease (COPD), asthma, and obliterative bronchiolitis [8-13]. In many cases radiographically 

identified AT is not captured by threshold-based techniques. To address this limitation in 

automated AT quantification, adaptive techniques that calculate personalized thresholds [9] have 

been developed. Although simple to use and readily available, these attenuation threshold-based 

methods are known to be sensitive to scanner noise, reconstruction kernel, and the level of 

expiration at which the CT images were obtained [14].  This can create a discordance between 

the algorithm output and visual findings of AT by radiologists on the same chest CT images. 
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Recently, the availability of large amounts of data and significant computational power 

have rapidly increased the popularity of machine learning (esp. deep learning) approaches [15]. 

Convolutional neural networks (CNNs) [16] have been investigated in many image analysis tasks 

[17-19] and radiological applications [20, 21], and have outperformed the state-of-the-art 

methods. In particular, their capability to learn discriminative features when trained in a supervised 

fashion, provides an automated approach for regional assessment of radiographic features. CNN 

models are being explored extensively for their potential to identify features, sometimes 

unrecognizable to the naked eye, that correlate to disease outcome. For instance, Cheplygina et 

al. [22] reported a machine learning model using transfer learning for multicenter classification of 

COPD; Athimopoulos et al. [23] and Shin et al. [24] proposed CNN models to classify lung patterns 

for interstitial lung diseases (ILDs) and emphysema, respectively.  

To improve the automated detection and quantification of AT that better matches thoracic 

radiologist visual assessment of AT on expiratory CT images, and to reduce the discordance that 

can occur between these methods, we trained a CNN model capable of delineating regional AT 

on expiratory CT images to identify and quantify AT.  We further validated this approach through 

comparison to radiologist CT image assessment and correlation to PFT and clinical scores.  
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MATERIALS AND METHODS 

 

Ethics Statement 

 The prospective multi-center study was carried out in 36 subjects enrolled in the Novartis 

CF Natural History Study [25] from 2007–2011 and was approved by the Institutional Review 

Boards of Site 1 (IRB #6218) and Site 2 (IRB #07-00207). Informed written consent for 

examination and further data processing was obtained from all patients or legal guardians prior 

to inclusion. 

 

Study Participants 

CF subjects were school-age children accrued as part of the Novartis/CF Foundation 

Therapeutics multicenter prospective 2-year natural history study [26]. CT and clinical data were 

acquired from two different sites, referred to as Site 1 (N=24) and Site 2 (N=12) (Table 1), with 

baseline and follow-up examinations at 3, 12, and 24 months.  All chest CT scans were obtained 

with the same CT quality assurance (QA) protocol using spirometer controlled acquisition of spiral 

chest CT scans at both institutions. CF subjects were extensively characterized at baseline based 

on age, gender, height, weight, body mass index, pulmonary function tests (PFT), and radiologic 

scores. All chest CT scans were obtained when patients were clinically stable without oral or 

intravenous antibiotics for a pulmonary exacerbation. All subjects had a confirmed diagnosis of 

CF by pilocarpine iontophoresis sweat chloride testing and CF gene mutation analysis. The CF 

data has been used earlier to demonstrate the effects that CT registration has on quantifying air-

trapping [27], and airway measurements [28] as well as quantifying lobar segmentation [25, 29] 

to show that clinical measures such as mucus plugging and bronchiectasis are important in 

assessing childhood CF. Here, we use this data and propose a CNN model to quantify AT.  
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Pulmonary Function Tests and Clinical Scores 

PFTs were obtained as per clinical care guidelines for each respective institution. Forced 

vital capacity (FVC), forced expiratory volume at one second (FEV1), and forced expiratory flow 

at 25–75% (FEF25-75) were expressed as percent predicted based on Global Lung Initiative 

normal prediction equations (Table 1). 

CT Acquisition Technique 

 Volumetric helical CT scans of the chest were obtained using spirometer controlled 

multidetector CT scanners (Siemens Sensation 64, 32 detectors; Siemens Medical Solutions, 

Malvern, PA) at Site 1 and (GE VCT scanner, 64 detectors; GE Healthcare, Waukesha, WI) at 

Note: Data presented as the mean (standard deviation). BMI is the body mass index. 

FEV1 is the forced expiratory volume at 1 sec. FVC is the forced vital capacity. FEF25-

75 is the forced expiratory flow at midepxiratory phase. 

Table 1: Subject Baseline Characteristics at Each Site 

  Site 1 Site 2 

    Number of Cases (N) 24 12 

    Age (yrs) 12 (2.5) 12 (3.2) 

    Gender (m/f) 11/13 5/7 

    Height (cm) 146 (13.2) 145 (17.3) 

    Weight (kg) 41.2 (10.5) 40.0 (13.3) 

    BMI (kg/m2) 18.9 (2.1) 18.3 (2.5) 

    FEV1 (% predicted) 99 (10.5) 94 (10.1) 

    FVC (% Predicted) 102 (12.3) 101 (7.1) 

    FEF25-75 (% predicted) 94 (19.9) 82 (25.3) 
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Site 2 [30].  Inspiratory volumetric chest CT scans were obtained at  95% vital capacity (VC), 

while expiratory spiral volumetric CT scans were obtained near residual volume [RV] (c. 5% VC) 

using the spirometer-controlled CT acquisition. 

For all subjects, a low dose spiral CT scanning protocol was utilized with 100 kVp and 30 

– 50 mAs at Site 1 and 100 kVp and 20 – 40 mAs at Site 2 with slice thickness of 0.6 – 0.625 mm 

with 50% overlap in lung and soft-tissue kernels (standard). QA protocol was implemented on-

site for adequate inflation and deflation levels, absence of significant motion artifacts, and 

inclusion of all parts of the chest, by a thoracic radiologist. Technical CT QA was done using 

standard CT phantoms for both the Siemens and GE CT scanners prior to chest CT scanning for 

baseline, 3, 12 and 24-month testing.  In addition, differences in mAs between the 2 sites were 

standardized prior to the Novartis/CF Foundation Therapeutics 2-year study utilizing a CT airway 

and parenchymal phantom [31]. The calculated total effective dose for the 4 serial CT scans from 

Site 1 and Site 2 (baseline, 3 months, 1 year, and 2 years) was 5.4 – 5.6 mSv.  This corresponded 

to an estimated risk of developing cancer of approximately 0.056% [32, 33].   

Attenuation Threshold-Based Quantitation of Air Trapping 

Quantitative air trapping (QAT) was determined on expiratory CT data using a slight 

variation of the previously reported algorithm developed by Goris et al. [9], referred to here as the 

Personalized Threshold Method (PTM). This approach generates subject-specific thresholds for 

detecting regions of lung parenchyma with mild-to-severe AT (originally defined QATA1 in [9]).  A 

3 ✕ 3 ✕ 3 median filter was applied to inspiratory and expiratory CT scans immediately prior to 

AT classification. The lungs were then automatically segmented using an in-house software 

developed using MATLAB (MathWorks, Natick, MA), and voxels with HU values > 0 were 

excluded. The lungs segmentations were visually inspected to make sure there are no errors. The 

50th and 90th percentile for the inspiratory CT scan (Y and X, respectively) and difference in the 

90th percentile values in the inspiratory and expiratory CT scans (D) were determined. These HU 
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values were used to calculate a subject-specific threshold (T) for AT using the following 

expression: T = X − (1 − 𝐷 343⁄ ) ∗ (X − Y) 3⁄  [9]. An AT map was generated by classifying all 

expiratory CT voxels with HU values < T as 1, and the remaining voxels as 0. QATPTM was 

calculated from the AT map by summing the binary value of all voxels and normalized to the total 

number of voxels within the segmentation map (i.e. whole-lung). For completeness, the accepted 

static threshold (T) of -856 HU was applied to all expiratory CT scans to also quantify AT (QAT-

856) [13]. For reference, standard air and water attenuation values are -1000 and 0 HU, 

respectively. 

 

CNN Algorithm Development 

We developed a feature-based method using a densely connected CNN (DN) for detection 

and quantification of AT. We adopted the CNN model proposed by Huang et al. [34] as a basis to 

construct our DN architecture. The motivation behind this architecture is that the contraction and 

expansion paths of the architecture captures the context around the objects to provide a better 

representation of areas of AT on CT images. In our implementation each dense block layer is 

composed of batch normalization (BN), followed by a rectified linear unit (ReLU) activation, and 

a 3 × 3 convolution. Each downsampling path consists of BN, followed by ReLU activation, a 1 ×

1 convolution, and a non-overlapping 2 × 2 max pooling. Also, each upsampling path is composed 

of a 3 × 3 transposed convolution with a stride of 2 to compensate for the pooling operation. 

Our deep learning architecture consists of two downsampling and two upsampling paths, 

with four dense block layers between each downsampling and upsampling path. After the last 

upsampling path we perform an 1 × 1 convolution, followed by a softmax operation in order to 

obtain the final output label for each pixel within the image. A schematic representation of our 

proposed DN is shown in Fig. 1.  
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Figure 1: Schematic overview of the proposed dense convolutional network (DN) architecture. 

 

Training 

The DN was trained on a desktop workstation running a 64-bit Windows operating system 

(Windows 10) with an Intel Xeon W-2123 CPU at 3.6GHz with 64GB DDR4 RAM and an NVIDIA 

GeForce RTX 2080 graphic card with 2944 CUDA cores (Nvidia driver 411.63) and 12GB GDDR6 

RAM. Our proposed DN architecture was trained to minimize the Dice loss [35, 36]. The x, y, and 

z-dimensions of each image in our dataset was x = 512, y = 512, and z ~ 850. We used a randomly 

selected subset of 22,784 2D slices from 32 3D images (N = 8; with four different time points) 

from the Site 1 cohort consisting of a total of 69,137 2D slices from 96 3D images (N = 24; with 

four different time points) for training the DN model. A separate set of 19,592 2D slices from 

another 32 3D images (N = 8; with four different time points) from the Site 1 cohort were held out 

for validation and parameter tuning. AT segmentation maps generated using the PTM was used 

for training the DN. We used a nested 2-fold cross-validation strategy for training the DN 

architecture, where the outer loop was run eight times and the data was split into two equal 

random pools internally. The network was trained on one pool and tested on the other.  

The proposed DN architecture was implemented in PyTorch [37] and run under the Python 

environment (version 3.7; Python Software Foundation, Wilmington, Del; 
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https://www.python.org/). We used the stochastic gradient descent algorithm, called Momentum 

[38], to efficiently optimize the weights of the DN. The weights were normalized using a normal 

random initialization and updated in a mini-batch scheme of 16 candidates, with a growth rate of 

8 per iteration. The biases were initialized to zero, the momentum term was set to 𝛾 = 0.9, and 

the learning rate was set to 𝛼 = 0.001. 

 

Radiographic Assessment of Air Trapping on CT 

 Four subjects from Site 1 and two from Site 2 were randomly selected for the visual 

assessment of AT from expiratory CT images. Including all CT examinations, there were a total 

of 24 expiratory CT examinations, which were examined by three trained thoracic radiologists. 

Expiratory CT examinations were loaded onto a laptop with an in-house image viewer developed 

using MATLAB (MathWorks, Natick, MA) capable of manually applying a threshold to the CT data 

that generates an overlay indicating regions of lung parenchyma less than the threshold on the 

CT scan. The threshold was adjusted manually by the radiologist. Once the radiologist deemed 

the threshold sufficient to highlight AT on a specific expiratory CT scan, the threshold was 

recorded and used to calculate the QAT for the CT examination. A single preset threshold was 

not used for all of the four subjects. The radiologists were allowed to vary the window level 

combination when reviewing the images as each of them had their comfort window level for each 

image. No additional instructions were given to complete this task. This process was performed 

separately by all three radiologists and repeated for all 24 expiratory CT scans. QAT values were 

then averaged over all radiologists for a given expiratory CT scan. Individual averaged results for 

each of the six subjects are presented in Table 2. 
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Table 2: Computed QAT Values from Multiple Radiologist Verified Thresholds and the PTM 

Case ID 
Number 

Time Point 

% Quantitative Air Trapping (QAT) Values  
QATPTM 

Radiologist 1 Radiologist 2 Radiologist 3 

1 

Baseline 7.4 6.8 5.9 4.1 

3 months 9.9 8.7 9.1 8.1 

1 year 12.9 11.7 11.7 8.2 

2 year 15.9 14.9 10.2 9.3 

2 

Baseline 12.8 12.1 9.3 6.5 

3 months 11.2 9.9 12.3 9.3 

1 year 14.9 14.6 8.2 12.4 

2 year 17.1 18.7 11.2 9.6 

3 

Baseline 6.9 8.0 5.1 4.8 

3 months 9.5 8.8 5.9 10.4 

1 year 12.8 12.1 7.6 10.2 

2 year 13.4 12.3 10.2 9.8 

4 

Baseline 8.2 7.1 9.5 7.4 

3 months 11.7 12.2 9.9 11.2 

1 year 13.1 12.7 9.4 12.8 

2 year 14.1 14.1 14.1 10.2 

5 

Baseline 7.5 6.6 4.5 6.1 

3 months 10.1 11.4 6.3 9.6 

1 year 12.4 12.4 8.1 7.2 

2 year 14.9 15.6 9.7 8.4 

6 

Baseline 8.4 7.3 6.8 9.4 

3 months 11.5 12.6 8.5 11.4 

1 year 14.7 13.9 18.9 10.1 

2 year 15.6 16.7 12.1 9.8 
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Simulation of Deflation-Levels on Expiration CT Scan 

Adequate respiratory maneuvers are of importance in CT imaging of patients when 

assessing air trapping over time [39]. Also, there is no consensus on how the expiratory CT data 

is acquired for measurement of AT [14]. To address these concerns on AT quantification using 

expiratory CT scans, we studied the effects of lung deflation on the quantification of AT 

determined using our CNN and PTM. Inadequate lung deflation on the expiratory CT acquisition 

was simulated using paired CT data from 4 subjects, two with AT < 10% total lung volume and 

two with AT > 25% total lung volume, as defined by QATPTM. The inspiratory CT acquisition data 

was registered to the expiratory CT data for each subject at a single time point (1 registration per 

case). All registrations were performed using Elastix (version 4.8), an open-source deformable 

image registration library [40, 41]. We used the B-spline non-rigid transformation to register the 

inspiratory CT acquisition data to the expiratory CT data. This algorithm iteratively optimizes the 

solution using mutual information with a bending energy penalty as the objective function. Mass 

was preserved by adjusting the HU values for volume changes by multiplying each voxel by the 

local determinant of the Jacobian matrix of the warping transform. Simulated expiratory CT 

acquisitions were generated assuming a linear trajectory between the expiration and inspiration 

lungs. The determinant of the Jacobian matrix was linearly altered to reflect different deflation 

levels using the following expressions: 

Exp∗ =  𝐽∗ ∙ Exp ; 

𝐽∗ = 1 +  𝛽(𝐽 − 1) ; 

where 𝐽 and 𝐽∗ are the original and simulated determinant of the Jacobian matrix, Exp and Exp∗ 

are the original and simulated expiratory CT scan, and 𝛽 is the fraction deflated, such that 𝐽∗ =  1 

at no deflation (𝛽 = 0) and 𝐽∗ =  𝐽 at full deflation (𝛽 = 1). QAT measurements using PTM and DN 

were determined on the original (𝛽 = 1) and simulated expiration CT data (𝛽 = 0.9, 0.8, 0.7, 0.6, 

and 0.5). 
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Statistical Analysis 

All data values are presented as the mean ± standard deviation. Site comparisons were 

determined for patient characteristics, and PFT measure using an unpaired Wilcoxon test. 

Wilcoxon signed rank test was used to assess differences in the quantitative AT measurements, 

PFT, and clinical scores between interval examinations. QAT measures using DN were correlated 

to PFT and clinical scores using linear mixed effects modeling. We used a fixed effect term at the 

population level (i.e., the entire cohort) and a correlated random effect grouped by each subject 

within the cohort for the 4 times each subject was measured. Results were considered statistically 

significant at the 2-sided 5% comparison-wise significance level (p < .05). All statistical 

computations were performed with a statistical software package (IBM SPSS Statistics, v. 21, 

Armonk, NY).   
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RESULTS 

Study Patient Demographics 

 Negligible differences in patient characteristics and pulmonary function were observed 

from the clinically confirmed mild CF patients accrued at the two sites (Table 1). Baseline QAT 

measurement using a hard threshold of -856 HU (QAT-856) was 3.53% ± 1.29%. When applying 

the PTM approach to quantify AT, QAT values were nearly double when compared to using the 

static threshold to quantify AT (QATPTM; 6.79% ± 1.83%). 

Comparison of QAT Measurements 

 Illustrated in Fig. 2, is a representative axial 2D slice from a female in her 20’s diagnosed 

with mild CF (FEV1% predicted value of 96%) at the 12-month examination from the Site 1 cohort. 

No clear mosaic patterns were identified radiographically on the inspiratory CT images (Fig. 2 A). 

In contrast, a mosaic attenuation pattern is present on the expiratory CT images indicating AT 

(Fig. 2 B-D). Applying a hard threshold of -856HU captured 3.8% of the total lung volume as AT, 

which increased to 7.8% using the PTM approach (threshold adjusted to -787 HU). QAT values 

determined using the DN model were in agreement with the radiologist visual assessment, with 

QAT values around 10% (Fig. 2 D-E). The mean radiologist threshold determined by visual review 

to be sufficient to identify most of the AT for this specific CT scan was -726 HU. 
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Figure 2: Presented from a single case from the Site 1 examined at 12 months are representative images 
from A) the inspiratory CT scan and AT maps from B) a static threshold of -856HU, C) the personalized 
threshold method (PTM), D) the DN method (presented as probability map), and E) radiographic 
assessment by a trained radiologist. The QAT for the whole 3D dataset is provided on the top right corner 
of each 2D image. The images are windowed between [-950, 150] for display purposes so that regions of 
AT are visible. 

 

 

 The DN model was found to detect AT that increased in a time dependent manner. At 

baseline, good agreement was observed for the QATDN to QATPTM with a difference in QAT value 

of about only 1.2% (Fig. 3). Evaluating the QAT values over time, the poor agreement between 

QATDN values to QATPTM was attributed to the ability of the DN model to detect increasing amounts 

of AT over the two-year period (Fig. 3). Follow-up QATPTM were found to be significantly higher at 

about 1.5 times the baseline values. Nevertheless, these values plateaued with no significant 

difference between interval QATPTM measurements post-baseline examination with a p-value of 

0.25 and 0.73 between the intervals of 3 to 12 months and 12 to 24 months, respectively. The 

QATDN significantly increased from baseline to year two by up to 12.7% ± 1.1%. The QATDN 

measurements post-baseline examination were also significantly different with a p-value of 0.004 

and 0.003 between the intervals of 3 to 12 months and 12 to 24 months, respectively. Radiologist 
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visual assessment and threshold setting showed similar trends in QAT to values obtained using 

the DN model, although not with the same rate of incline (Fig. 3).  Mean QAT-856 values at 

baseline, 3months, 1 year, and 2-year were found to be 4.3% ± 2.6%, 4.9% ± 3.8%, 5.3% ± 2.9%, 

and 4.6% ± 1.9%, respectively. None of the follow up QAT-856 values were found to be significant 

to the baseline value. 

 

 

Figure 3: Presented are Quantitative air trapping (QAT) results of the various methods from Site 1 cohort 
at the different examination times.   
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Multi-Site Comparison 

To validate the robustness and generalizability of the CNN approach, QAT values 

generated from the fully-trained DN model at the Site 1 cohort were evaluated using CT 

examinations from the Site 2 cohort. A representative axial CT slice from a young boy in the age 

group 10-20 with CF (FEV1% predicted value of 92%) at the 3-month examination showed similar 

QAT values for PTM, DN, and visual threshold assessment (Fig. 4A). Peripheral AT on the 

dependent posterior regions of the lungs was undetected by PTM (threshold value of -802 HU), 

and was detected by the DN model and also confirmed by radiographic assessment (RA) 

(threshold value of -743 HU). As observed from the Site 1 cohort, QATPTM values plateaued after 

the 3-month examination, with both QATDN and QATRA significantly increasing up to 6.8% ± 0.2% 

and 4.9% ± 0.58%, respectively, by year two (Fig. 4B). The interval QATDN measurements post-

baseline were significantly different with p-values of 0.03 and 0.04 between 3 to 12 months and 

12 to 24 months, respectively. Mean QAT-856 values at baseline, 3 months, 1 year, and 2-year 

were found to be 4.8% ± 1.9%, 5.8% ± 2.5%, 6.1% ± 3.7%, and 5.7% ± 2.8%, respectively. None 

of the follow up QAT-856 values were found to be significant to the baseline value. 
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Figure 4: A) Presented from a single case from the Site 2 cohort examined at 3 months are representative 
images from A) the inspiratory CT scan and the AT maps from the personalized threshold method (PTM), 
the DN method, and radiographic assessment by a trained radiologist. The QAT for the whole 3D dataset 
is provided on the top right corner of each 2D image. The images are windowed between [-950, 150] for 
display purposes so that regions of AT are visible. B) Quantitative air trapping (QAT) at different times by 
the various methods on the Site 2 cohort. 

 

 

Radiologist Visual Assessment 

Radiologist visual assessment and threshold setting showed similar trends in QAT values 

to that observed by our DN model, although not with the same rate of incline. In general, AT by 

radiographic assessment was less than as quantified by our CNN models. We did observe lower 

AT values from Radiologist 3 from what was reported from Radiologists 1 and 2 (Table 2).  
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PFT and Clinical Scoring   

 Pulmonary function measurements and clinical scores were assessed over the entire 

study population (N=36), to determine if trends in these clinically relevant outcomes were similar 

to those observed in the QAT values measured by the DN model. Although all mean PFT 

measures steadily decreased, follow-up values were not significantly decreased from baseline. 

Nevertheless, these trends suggest pulmonary dysfunction, although variable from case-to-case, 

throughout the duration of the study (Table 3). In contrast, radiologic scores for AT, 

bronchiectasis, and mucus plugging, all demonstrated a significant increase at year two. The most 

pronounced increase was observed for the mucus plugging score, which increased by nearly 

140% and was found to significantly increase at all follow-up examination time points (Table 3). 

 

 

 

Note: Pairwise differences in the follow-up PFT measurements and clinical scores from the baseline were tested 

using the non-parametric Wilcoxon rank rum test. Significance at the 0.05 p-value are indicated as *. P-values 

are stated for p<0.1 in the table. Brody ATS = Brody air trapping score, Brody BS = Brody bronchiectasis score, 

and Brody MPS = Brody mucus plugging score. We used all subjects (N = 36) from both Site 1 and Site 2 in 

this study. 

Table 3: Mean and (Standard Deviation) of Pulmonary Function Test and Clinical CT Scores 
 

Ventilation Parameter Baseline 3 Months 1 Year 2 Year 

P
F

T
 

FEV1 % Predicted 93.54 (7.42) 93.01 (9.01) 91.69 (9.95) 87.85 (10.03) p = 0.06 

FVC % Predicted 101.44 (10.56) 99.89 (11.70) 99.67 (11.12) 95.39 (14.69) p = 0.09 

FEF25-75 % predicted 90.30 (21.93) 87.83 (26.71) 85.47 (22.67) 83.61 (20.80) 

C
li

n
ic

a
l 

S
c

o
re

s
 Brody ATS 26.19 (13.52) 29.81 (16.10) 30.58 (14.66) 33.10 (14.36) * 

Brody BS 5.84 (8.21) 5.46 (7.37) 5.93 (6.67) 7.29 (7.20)* 

Brody MPS 2.90 (5.04) 3.63 (5.36)* 5.87 (7.28)* 7.03 (8.06)* 
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The PFT and clinical scores were correlated with the QAT values of the DN model using 

linear mixed effects modeling (Table 4). We observed a good correlation between the FVC % 

predicted and the percentage of AT computed using our DN model. We also observed that the 

Brody BS and Brody MPS clinical scores very strongly correlated with the QATDN values. In 

contrast, the QATPTM and the QAT-856 values did not correlate well with the PFT and clinical scores 

(Table 4). 

 

 

 

Effect of Deflation-Level 

Quantitative AT techniques are highly susceptible to the deflation-level executed during 

the expiratory CT scan. To test this effect on the ability of the DN model to detect AT, HU values 

from four randomly selected expiratory CT acquisitions from the 144 scans (36 cases * 4 time 

Note: LAA-856 = low attenuation area threshold of -856HU, FEV1 = forced expiratory volume 

at one second, FVC = forced vital capacity, FEF25-75 = forced expiratory flow at 25–75%, 

Brody ATS = Brody air trapping score, Brody BS = Brody bronchiectasis score, and Brody 

MPS = Brody mucus plugging score. We used all subjects (N = 36) from both the Site 1 and 

Site 2 data in this study.  

Table 4: Regression Coefficient and (p-values) of Pulmonary Function Tests and Clinical CT 
Scores using Linear Mixed-Effects Model 

 

Ventilation Parameter DenseNet PTM LAA-856 

P
F

T
 

FEV1 % Predicted -0.020 (0.078) -0.027 (0.114) -0.011 (0.193) 

FVC % Predicted -0.060 (0.003) -0.029 (0.061) -0.020 (0.082) 

FEF25-75 % predicted -0.015 (0.118) -0.010 (0.202) -0.009 (0.286) 

C
li

n
ic

a
l 

S
c

o
re

s
 Brody ATS 0.027 (0.066) 0.017 (0.091) 0.010 (0.102) 

Brody BS 0.091 (0.003) 0.031 (0.110) 0.019 (0.142) 

Brody MPS 0.116 (0.001) 0.040 (0.097) 0.032 (0.159) 
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points) were adjusted to simulate inadequate deflation-levels. Illustrated in Fig. 5A is a 

representative axial CT slice acquired at residual volume (RV) and their corresponding simulated 

CT image at deflation-levels between 90% to 50% of RV. For demonstration, the CT scan was 

from a young girl in the age group 5-10 with CF (FEV1% predicted value of 103%) at 3-month 

time period. As expected, mean HU values dropped from -288HU at RV to -331HU at 50% of RV 

(Fig. 5A). The QATPTM and QATDN values from the three month expiratory CT acquisition were 

6.3% and 12.1%, respectively. QAT values from QATPTM and QATDN methods increased to 63.2% 

and 44.9% at a deflation-level of 50% of RV, respectively. From the four selected cases, the 

differences in lung volume from TLC to RV on average were 1.95L ± 0.48L (Fig. 5B). As expected, 

QATPTM values, the intensity-based technique, were highly sensitive to slight deviation from RV. 

At a simulated deflation-level of 80% of RV, changes in lung parenchymal density resulted in 15% 

more AT as measured by PTM, increasing linearly with deflation-level (Fig. 5C). Although the DN 

model, a feature-based technique, measured increasing levels of AT with decreasing deflation-

level, the deviation rate was slower than what was observed for the PTM method. At 80% RV, 

QATDN measured only 5% ± 2.3% more AT (Fig. 5C). For completeness we computed the 

increase in the QAT-856 values from the expiratory CT acquisition. The increase in the QAT values 

were 7.1% ± 1.9%, 21.4% ± 6.7%, 43.7% ± 5.6%, 60.8% ± 5.1%, 74.5% ± 4.8% at deflation levels 

between 90% and 50% of RV. The QAT-856 values showed the highest sensitivity with respect to 

increasing levels of AT with decreasing deflation-levels.  
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Figure 5: Presented are the results of the effect of deflation level on the expiratory CT scans in quantifying 
AT. A) A representative image of the expiratory CT scan from a single case (from Patient 2*) from the Site 
1 cohort examined at baseline and its corresponding simulated % of residual volume (RV) 2D images. The 
images are windowed between [-1000, -50] for display purposes so that regions of AT are visible. [·] 
represents the mean intensity within the whole lung region in HU. B) Patient characteristics table for the 
four cases considered in this study. C) Plot of average quantitative air trapping (QAT) difference VS the 
simulated % of RV for the PTM, and DN method. 
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DISCUSSION 

We set out to demonstrate the utility of our DN model to more accurately quantify the 

extent of AT on chest CT image acquisitions in a cohort of pediatric CF patients. These cases 

were accrued as part of a prospective natural history study from two CF centers and comprised 

of four chest CT examinations over a two-year period. Cystic Fibrosis is AT specific and has 

unique features that relate well to modeling a CNN. The personalized threshold method (PTM), 

that we used for training our CNN model was built on the CF patient data. We wanted to focus on 

an airway dominant disease and thus chose to evaluate patients with CF. Unlike attenuation 

threshold-based techniques, we observed a significant increase in quantitative AT over the 

duration of the trial with the DN model. These findings were in concordance with radiologist visual 

assessment and with mucus plugging scores. With the ability of our DN model to detect unique 

features, our model was less prone to errors associated with insufficient exhalation during 

expiratory CT acquisitions than a threshold-based technique, and therefore may not require a 

correction factor for differing deflation maneuvers over the course of four different testing periods 

as was needed by Robinson and colleagues [26].  

To fully appreciate the ability of our DN model to quantify AT on expiratory CT acquisitions, 

we elected to use a cohort of pediatric patients. Although observational trials, such as COPDGene 

[13] and SPIROMICS [42] are at the forefront of advancing quantitative CT algorithms, techniques 

developed from these older populations fall short when applied to pediatric patients due to the 

physiological differences in the lungs of these age groups. In general, younger patient lungs tend 

to have higher attenuation values than older patient lungs, as the residual volume of lungs 

increases with age [43, 44]. Also, techniques such as classifying lung parenchymal regions based 

on a static threshold, such as -856 HU, do not always capture the extent of AT that is visible on 

CT images as demonstrated in Fig. 1 B. In addition, we observed interobserver variability in the 

radiographic assessment of AT between the three Radiologists of this study (Table 2). With the 
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ability to identify higher order features, our DN model provides a unique opportunity to overcome 

these deficiencies to accurately and objectively quantify AT.  

It is important to note the limitations of this study. First, our DN model was trained using a 

patient specific quantitative algorithm (PTM) for segmenting AT on the expiration CT acquisition, 

rather than the conventional approach that requires a trained radiologist to contour the air trapped 

regions, a time consuming and arduous process. In an effort to accelerate this process, AT 

segmentation maps from the PTM were explored as an alternative. This proved advantageous, 

as we were able to fully automate the training set and using sub-optimal segmentation maps (i.e., 

segmentation maps with noisy labels) proved to possess sufficient information to train the DN 

model. A second limitation was the small number of cases in the cohorts, which may have 

introduced bias in the DN model. To address this concern, we trained and tested a separate CNN 

model called the scattering convolutional network (SN) that is based on a scattering transform 

defined by Bruna and Mallet [45], using the same method (see S1 Appendix). Individual cases 

from the Site 1 cohort were randomly selected such that the training and testing sets varied for 

the two architectures (i.e. DN and SN). To avoid a bias in the time of examination, all four time 

points of the CT data were included for each case in the training and testing sets. We found that 

the QAT values from the SN model were similar to those of the DN model (S2 Fig.). This strategy 

provides some degree of reassurance that the observed time dependent increase in the QAT 

measurements from our DN model is accurate.  

In conclusion, we developed a deep learning algorithm that can accurately quantify the 

extent of AT on chest CT images. We tested our proposed CNN model on a cohort of pediatric 

CF patients that underwent CT examination four times over a two-year period. Our study found a 

significant increase in the QAT in these patients over the duration of the trial. To the best of our 

knowledge, this study is the first to propose a deep learning algorithm to quantify AT in chest CT 

images. Quantitative AT measured using this method can be used as an imaging biomarker for 

assessment of disease severity and can aid in the clinical management of patients with diseases 
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such as CF, Asthma, and COPD. Future work will further evaluate the generalizability of this 

model to additional data sets such as COPDGene and SPIROMICS.  
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Supplementary Material 
 

SUPPLEMENTARY METHOD 1 

 

Scattering Convolutional Network (SN) 

 
To confirm that the results observed using our proposed DN method did not introduce any 

bias, we trained and tested a separate CNN model referred to as the scattering convolutional 

network (SN). The SN model was based on a scattering transform defined by Bruna and Mallet 

in [1]. The proposed SN consists of a total of four scales ( 𝑱 =  4) where at each scale we employ 

a Gabor wavelet (𝑾) with five different orientation filters (𝐾 =  5) separated by 𝜋𝑘/𝐾 angles, 

where 𝑘 =  {1, ⋯ , 𝐾}. The scattering coefficients at each scale were obtained by a wavelet 

transformation, followed by a non-linear pointwise complex modulus applied to the wavelet 

coefficients, a local averaging operator 𝑨𝐽, and downsampling of scale 2𝐽. Once all scattering 

coefficients were obtained, they were concatenated together and used as features for 

classification. We trained the model using a generative principal component analysis (PCA) 

classifier using the features from SN to identify the areas of AT on the CT images. A schematic 

representation of the proposed SN is shown in S1 Figure. 

 

 

S1 Figure: Schematic Overview of SN. Schematic overview of the scattering convolutional network (SN) 
architecture, where the |WJ|’s represent the modulus wavelet transform at each scale J, and AJ 
concatenates the averaged signals (the detailed coefficients) of the wavelet transform at all scales. We 
used a total of J = 4 scales in our implementation. 
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Training 

 The SN was trained to minimize the Dice loss, similar to that of DN. Similar to the DN 

model a nested 2-fold cross-validation strategy was employed for training the SN model. 

Although, we used the same strategy for training both the SN and the DN model using the data 

from the Site 1 of 96 images (N = 24; with four different time points), the training and test data 

were randomly selected for each model separately. The SN architecture was implemented in 

MATLAB (version 2019a, MathWorks, Natick, Mass). The filters in the SN architecture are fixed 

Gabor wavelet filters at different orientations. The final layer in the SN architecture was trained 

using a PCA classifier as described in [1]. The SN was trained on a workstation different from that 

of the DN method running a 64-bit Windows operating system (Windows 10) with an Intel Xeon 

W-2123 CPU at 3.6GHz with 64GB DDR4 RAM and an NVIDIA GeForce RTX 2080 graphic card 

with 2944 CUDA cores (Nvidia driver 411.63) and 12GB GDDR6 RAM. 
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SUPPLEMENTARY RESULT 1 

 

 Comparison of QAT Measurements 

The SN model was found to detect air trapping that increased in a time dependent manner 

similar to the DN model. At baseline, good agreement was observed for the QATSN to QATPTM with 

a difference in QAT values of about only 1% (S2 Fig.). Evaluating the QAT values over time, we 

saw a poor agreement between the SN QAT values to the QATPTM as the SN model detected 

increasing amounts of AT over the two-year period (S2 Fig.) like that of the DN model in Fig. 3). 

The QATSN significantly increased from baseline to year two of the trial by up to 11.6% ± 1.7%. 

The QATSN measurements post-baseline examination were also significantly different with a p-

value of 0.03 between the intervals of 3 to 12 months and a p-value of 0.002 between the intervals 

of 12 to 24 months, respectively.  
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S2 Figure: QAT Results for the SN Method. Presented are Quantitative air trapping (QAT) results of the 
various methods from Site 1 cohort at the different examination times. 
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