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Abstract. The identification of a first case (e.g. by a disease-related death or hospi-
talization event) raises the question of the actual size of a local outbreak. Quick esti-
mates of the outbreak size are required to assess the necessary testing, contact trac-
ing and potential containment effort. Using general branching processes and assum-
ing that epidemic parameters (including the basic reproductive number) are constant
over time, we characterize the distribution of the first hospitalization time and of the
epidemic size at this random time. We find that previous estimates either overestimate
or largely underestimate the actual epidemic size. In addition, we provide upper and
lower bounds for the number of infectious individuals of the local outbreak over time.
The upper bound is the cumulative epidemic size, and the lower bound is a constant
fraction of it. Lastly, we compute the number of detectable cases if one were to test the
whole local outbreak at a single point in time. In a growing epidemic, most individuals
have been infected recently, which can strongly limit the detection of infected individ-
uals when there is a delay between an infection and its potential detection. Overall,
our analysis provides new analytical estimates about the epidemic size at identifica-
tion of a first disease-related case. This piece of information is important to inform
policy makers during the early stages of an epidemic outbreak.

Keywords: epidemic dynamics, first event statistics, emerging infectious diseases, COVID-19, stochas-
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1 Introduction

Newly emerging infectious diseases, like the severe acute respiratory syndrome (SARS) or the 2009
HINI1 flu, have been a major concern in the 215 century, and especially in 2020 with the coronavirus
disease 2019 (COVID-19). In addition, recurrent outbreaks of diseases as Ebola or cholera are respon-
sible for large numbers of fatalities and thus pose a permanent threat. To limit the spread of any of
these diseases, early detection of a new local outbreak is of great importance — especially to estimate
the level of urgency for containment actions —, but is reliant on active surveillance. Exact prevalence
numbers are hard to come by, particularly during the early phase of an outbreak. This is notably
the case when there is asymptomatic transmission, or if suitable rapid tests are not yet available.
Theoretical predictions may overcome this problem by providing estimates of the epidemic sizes and
corresponding confidence intervals. These estimates are important to inform control policies: for
example, to decide on the intensity of contact tracing, or to inform indirectly about the scale of the
testing effort necessary to find infected individuals, from the immediate surroundings of the first case
to much larger scales like neighborhoods or even cities.

The case fatality ratio (CFR) and the probability of hospitalization provide estimates for the size
of an outbreak at the first death or hospitalization event, respectively. The idea is the following: The
epidemic must have reached size 1/CFR on average — the mean of a geometric distribution with
probability CFR — when the first disease-caused fatality can be identified. (We focus here on the first
identified death, but the same reasoning holds for an identification at the first hospitalization and the
use of an hospitalization probability.) We will refer to this estimate as the ‘simple rule of thumb'’. This
method underestimates the actual size of the epidemic at the identification of the first case, because it
corresponds to the size of the epidemic when the individual that eventually died was infected. The
method therefore omits all individuals that were infected between the infection time of the individual
that will eventually die and the death of this individual.

This omission can however be compensated for with a method that we call 'improved rule of thumb'.
Taking into account the average time from infection to death together with the mean generation
time and the mean number of secondary infections, one can derive the expected epidemic size
at the first death event. This was done with a probabilistic framework by Jombart et al. (2020),
who estimated the whole distribution of epidemic sizes over multiple realizations of the stochastic
epidemiological processes. The authors developed a stochastic simulation algorithm with random
secondary infections, random transmission times and random death times to estimate the epidemic
sizes of COVID-19 in France, Italy and Spain at the first death event. This improved rule of thumb
relies on the assumption that the current epidemic size at the infection of the first detected case is
on average 1/CFR. It does not take into account the history of the epidemic. The error would be
substantial when the epidemic grows slowly. Here, we develop a method to address this shortcoming
and estimate the size of an epidemic at the first identification of a case. We will see that ignoring the
epidemic history, as done by the improved rule of thumb, overestimates the actual epidemic size. In
contrast, the simple rule of thumb may largely underestimate the epidemic size, especially when the
epidemic grows fast. In particular, it is the cumulative epidemic size and not the current epidemic size
which on average is of size 1/CFR.

We additionally provide analytical formulas for the distribution of the first identification time and
the distribution of the epidemic size at that random time. The previous analyses that we are aware of
did not allow for an estimation of the identification time, neither did they derive analytical formulas
for the distribution of the epidemic size at the time of identification.

We first introduce the model, a general branching process, to describe the early phase of an epidemic.
We assume a gamma distribution for the infection times and model the number of secondary infections
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by either a Poisson or a negative binomial distribution. Using asymptotic results on general branching
processes, we estimate the cumulative epidemic size and give a lower bound on the number of
infectious individuals over time. The upper bound is the cumulative epidemic size. Additionally, we
study the number of cases detectable by reverse transcriptase polymerase chain reaction (RT-PCR),
if we were to sample the whole population at a single point in time. Lastly, we use our results on
the cumulative epidemic size to derive an approximation of the first identification time and the
epidemic size at this event. For the sake of illustration, we will consider the event ‘first hospitalizatior’,
but keep in mind that our analysis carries over to any type of quantifiable event, including the first
disease-related death.

2 Model

We model the early phase of a newly emerging disease in a fully susceptible population. In the analysis,
we assume that the number of susceptible individuals is not limiting the spread of the disease, that is,
that the fraction of susceptible individuals in the population remains close to one.

The epidemic starts with a single infected individual at time ¢ = 0. Each infected individual i
is assigned an infection age a; measuring the time since the individual was infected. The age of
infection determines the transmission potential of an individual through time. We use a gamma
distribution to model the transmission rate over time, but any distribution would work in principle.
In particular, an exponential distribution for the transmission rate (the memory-less distribution)
would translate our model to the framework of ordinary differential equations (ODEs) and the classical
‘Susceptible-Infected-Recovered’ (SIR) epidemic model.

Every infectious individual infects Ry other individuals on average, where Ry is the basic reproduc-
tion number (we assume that population immunity is low). The actual number of secondary infections,
which we will also refer to as ‘offspring’, can vary strongly between infected individuals. For example,
recent estimates for COVID-19 indicate that about 20% of infected individuals are responsible for
about 80% of secondary transmissions (Endo et al., 2020). These superspreaders (or superspreading
events) cannot be captured by a Poisson-distributed number of secondary infections (Lloyd-Smith
etal., 2005). A more dispersed distribution, i.e. with a larger variance, is the negative binomial distri-
bution, where most of infected individuals do not transmit the disease at all. Its variance is typically
quantified by the dispersion parameter x > 0. The smaller the value of «x, the more variance has
the negative binomial distribution. In our analysis, we will use both the Poisson and the negative
binomial distribution to model the number of secondary infections, and we will highlight the resulting
differences for the epidemic dynamics, as done e.g. in Althouse et al. (2020).

We are interested in the population composition at a certain event, the first identification of an
infected individual, e.g. the first disease-related death or hospitalization. Here, we parameterize our
model with respect to the first hospitalization event. In our model, each infected individual has a
certain probability pposp to eventually be admitted to a hospital. Hospitalization happens at a random
time after infection of the individual, denoted #,osp. We model the hospitalization time by a gamma
distribution (though again any distribution would be possible).

Fig. 1 illustrates the epidemic dynamics at the individual level.

2.1 Parameterization of the model

We base our simulations on parameters that are, if available, estimated from data of the French
COVID-19 epidemic in early 2020. The number of secondary infections (pre-lockdown) was found to
be Ry = 2.9 with dispersion parameter x = 0.57 (Salje et al., 2020), which is in line with other studies
(e.g. Di Domenico et al., 2020; Foutel-Rodier et al., 2020; Roques et al., 2020; Sofonea et al., 2020). The
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Figure 1: Schematic view of the model describing the early stage of the epidemic. Infectious indi-
viduals (circles) transmit the disease to a random number of individuals (vertical arrows) at
transmission times f;,¢ that are distributed according to a gamma distribution. An infected
individual will eventually be hospitalized (depicted by an ‘H’) with probability ppesp. Hospi-
talization happens at a gamma-distributed random time fy,), after infection. Individuals
that do not transmit the disease anymore are labeled ‘non-infectious’ (dashed lines); ‘infec-
tious’ individuals will transmit the disease at some point in the future (solid lines). Dynamics
that occur at times after the first hospitalization event (left ‘H’) are shaded.

infection times ;¢ are drawn from a gamma distribution with mean 5.5 days and standard deviation
2.14 days (Cheng et al., 2020; Ferretti et al., 2020; He et al., 2020).

Each infected individual has a probability pposp = 0.029 (Salje et al., 2020) to be hospitalized during
the course of their infection. In the case of hospitalization, we draw a hospitalization time fjp
from a gamma distribution with mean 14.4 days and standard deviation 2.58 days estimated from
hospitalization events in France (Foutel-Rodier et al., 2020). Similar estimates have been obtained for
other data sets (e.g. Faes et al. (2020) for Belgium and Linton et al. (2020) for Wuhan in China).

Table 1 summarizes all the random variables together with their probability distributions and
parameter values, as used in the simulations.

3 Results

We use general branching process theory to derive estimates of the mean epidemic size over time
and a lower bound on the number of infectious individuals. Additionally, we estimate the number of
RT-PCR positive individuals who would be detected if one were to test the whole local population at a
single point in time. We then use the analytical result on the epidemic size to estimate the distribution
of the first hospitalization time within an epidemic cluster. Finally, we study the distribution of the
epidemic size at the first hospitalization time and compare it to estimates obtained with the simple or
improved rules of thumb.
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Variable Interpretation Distribution Parameters Reference
number of secondary Poisson mean: Ry =2.9
Y; infections by (negative (dispersion: Salje et al. (2020)
individual i binomial) K =0.57)
Github -
h 1 6.6,
time of secondary Gamma shape: 6.6 OpenABM-
linf . . . scale: 0.833 :
infection (density: u(t)) Covid19

(mean: 5.5 days) (Hinch et al., 2020)

. . . hape: 31, .
; time from infection to Gamma siaif eo 463 Foutel-Rodier et al.
hosp hospitalization (density: fuosp (1) (mean: 1 4 4 - (2020)
success
- hospitalization event Bernoulli probability: Salje et al. (2020)
Phosp = 0.029

Table 1: Definitions of random variables with corresponding probability distributions and param-
eter values.

3.1 Thes ize of the epidemic

Our analysis requires a quantification of the expected size of the epidemic over time. For this, we
use the theory of supercritical branching processes. The population size of a supercritical branching
process, conditioned on survival, grows exponentially with rate a. This parameter « is referred to as
the Malthusian parameter, as described for instance in the books by Athreya and Ney (1972) or Haccou
et al. (2005). With our notation, it is implicitly defined through

1

- ® —at
Ry foe udt, (1)

where p is the density of the transmission distribution (cf. Table 1).

It follows from results of supercritical general branching processes and renewal theory, e.g. Haccou
et al. (2005, Section 3.3.1), that the expected cumulative epidemic size is, for asymptotically large
times t, given by

at
a [o° Roe~*Ssp(s)ds
The integral in the denominator is the mean generation time of the Malthusian process. If the
transmission distribution p(t) were exponential, the integral would be 1/« and the epidemic would
grow as the solution of an ODE, I (?) = 1(0)e%?,

With the parameter set specific to COVID-19 (Table 1), we obtain a = 0.2, which corresponds to a
doubling time of 5 days. Note that this expected cumulative epidemic size accounts for epidemics
that eventually die out. Since we are only interested in epidemic clusters that eventually result
in an epidemic outbreak, we need to rescale the initial epidemic size by dividing by the survival
probability psyry:

Tior (1) = 1(0) )

I(t)  I(0) et
Psurv  Psurv af(;)o Roe=*Ssu(s)ds ’
This rescaling reflects conditioning the epidemic process on survival. The survival probability psury

can be found by numerically computing the fixed point of the probability generating function of the
offspring distribution (as detailed in Appendix A).

Isurv(t) = 3)
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Figure 2: The total number of infected individuals over time. The shaded region shows the 90% con-
fidence interval obtained from 10,000 stochastic simulations that resulted in an epidemic
outbreak. Dots represent the average of these simulations over time. The theoretical predic-
tion (solid line calculated from Eq. (3)), even though formally only valid for asymptotically
large times, agrees well with the simulated averages, even for relatively small times. With
a negative binomial offspring distribution (b), a lot of infected individuals do not transmit
the disease, which results in lower epidemic sizes than compared to a Poisson offspring
distribution (a). In contrast, few infected individuals with a lot of secondary infections early
in the epidemic can generate much larger epidemic sizes when compared to the Poisson
distribution. These two effects together explain the much larger variance in epidemic sizes
for the negative binomial distribution compared to the Poisson distribution.

With our parameter set, we find that from time ¢ = 10 days on, the deterministic equation in Eq. (3)
provides an accurate prediction of the mean of the individual-based model conditioned on survival
(Fig. 2). Epidemic sizes vary much more with a negative binomial distribution of offspring number
(Fig. 2b) than with a Poisson distribution (Fig. 2a). For example, at day 20, the number of infected
individuals could be between 2 and 404 in the Poisson scenario and between 2 and 1373 with a
negative binomial offspring distribution. This is due to the greater variance in offspring number
under a negative binomial distribution than under a Poisson distribution (of the same mean). First,
super-spreading events are more likely; as a result, epidemic sizes can be much larger. Secondly, and
conversely, a larger number of infected individuals do not transmit the infection at all; as a result, the
total epidemic size can remain smaller.

3.1.1 The number of infectious individuals over time — a lower bound

Instead of considering the cumulative epidemic size, a more relevant measure may be the number
of currently infectious individuals in the population. To estimate this number, we now only count
individuals that will at some point in the future infect a susceptible individual. More specifically,
we consider as infectious at time ¢ individuals that are infecting other individuals at time ¢’ > . We
thereby consider as non-infectious individuals without any secondary transmission, and individuals
after their last transmission event (dashed lines in Fig. 1). Potentially infectious individuals who do
not effectively transmit are not counted by this method. Thus, our estimate is a lower bound: we
compute the minimal number of infectious individuals in the population over time.
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To model the number of infectious individuals as defined above, we need a function defining the
time at which infectious individuals are declared non-infectious. We denote by L(a) the probability of
being infectious at infection age a, i.e. the probability that the individual will infect a susceptible in
the future. It is given by

o = , €)
L(a):{ ZkzlP(Y_k)P(max]:1 ,,,,, ktinfza), fora>0, W

1-P(Y =0), fora=0.

The summands in the first line are composed of the probability of having k offspring and the probabil-
ity that the latest of these k transmission events occurs after infection age a. The second line implies
that an individual who just got infected (a = 0) is considered as infectious in our framework only if it
will ever infect others.

Again using general branching processes theory (Athreya and Ney, 1972; Haccou et al., 2005), we
find that the number of infectious individuals in the population at time ¢ is given by

Iinf(t) = (1_£)Isurv(t)» )

with Iy (2) given in Eq. (3) and where ¢ is defined as
14 :f (1-L@)ae *““da. (6)
0

Eq. (5) is simply Eq. (2) with an additional factor (1 —¢) accounting for the removal of non-infectious in-
dividuals from the currently infected individuals. This factor is obtained from Eq. (6), which computes
the fraction of individuals that are not infectious anymore (term (1—L(a))) over the stationary infection
age distribution (term ae~%“) of the population. Under the assumption that the basic reproduction
number Ry does not change over time, the growth rate a will remain constant as well, cf. Eq. (1).
In this case, the infection age distribution of individuals will converge to a stationary distribution.
The population is growing exponentially with rate «, the Malthusian parameter. The stationary age
distribution reflects this exponential growth. For instance, the larger the population growth rate «, the
faster the population grows, and consequently, the larger the proportion of recent infections. Note that
the stationary infection age distribution, ae™%%, only depends on the Malthusian parameter «, but
not on the actual distribution of offspring number. Formally, the stationary infection age distribution
of the population is derived from the renewal equation corresponding to our model. For more details,
we once again refer to the book by Haccou et al. (2005, Section 3.4).

With our COVID-19-specific parameter set, a Poisson-distributed number of secondary infections
gives (1 -/¢) = 0.71, i.e. 71% of the total epidemic size is infectious at any point in time once the
stationary distribution of infection ages is reached. The negative binomial offspring distribution gives
(1-¢) = 0.48, i.e., just 48% of the total epidemic size is infectious. For smaller values of Ry these
values decrease, e.g. for Ry = 1.3 we have 19% and 15%, respectively. The distribution of secondary
transmission events has a large impact on the fraction of infectious individuals in the population
(given our definition of infectiousness). This is explained by the large number of individuals that
do not transmit the disease under negative binomial transmission sampling. By our definition of
infectiousness, these individuals that do not transmit are ‘removed’ from the infectious population
immediately after their infection. Therefore, the lower bound of infectious individuals in the case of
a negative binomial offspring distribution is much lower than the corresponding lower bound with
Poisson sampling.

3.1.2 The number of RT-PCR-detectable cases

Another measure to evaluate the prevalence of the disease in the population is the number of detected
cases, which depends on the testing effort. In the context of COVID-19, the average detection rate
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on the 8" of May across a large number of countries was around 30% (Belloir and Blanquart, 2020;

Russell et al., 2020). However, test capacity is not the only limiting factor to detect infected individuals.
The probability to test positive, e.g. with a reverse transcriptase polymerase chain reaction (RT-PCR)
test, given that the tested person is infected with the virus causing COVID-19 (SARS-CoV-2), also
depends on the infection age of an individual (Borremans et al., 2020; Kucirka et al., 2020). Using
these probabilities for testing positive by RT-PCR, we derive an upper bound for the number of RT-
PCR-detectable cases within a local outbreak. That is, if we were to test all infected individuals in the
epidemic cluster at the same point in time, e.g. on day 20 after the first infection in the local outbreak,
how many people would we expect to test positive by RT-PCR?

To answer this question, we repeat the steps outlined in the analysis of the number of currently
infectious individuals, i.e., we first need to define the age-dependent probabilities to test positive,
denoted Q(a). We use the estimates obtained in a meta-analysis for RT-PCR tests, which we re-plot in
Fig. 3a (upper panel in Fig. 2 in Kucirka et al. (2020)). Then, similar to Eq. (5), we find

Tgetect (1) = (1 — @) Isurv (1) (7

with o
4= fo (1- Q(a)ae*da ®)

With our parameter set, g = 0.7 (evaluating a discretized version of the integral), so that we would
expect that only about 30% of the infected individuals would test positive at each point in time (Fig. 3b;
here this proportion is independent of the distribution of secondary infections). Again, this estimate
strongly depends on the stationary infection age distribution. With Ry = 1.3, we find that about 65% of
the epidemic cluster would test positive by RT-PCR.

3.2 Time distribution of the first hospitalization event

We now study the timing of the first hospitalized case within the epidemic cluster. The estimate of the
mean epidemic size over time (Eq. (3)) provides the deterministic time at which a certain infected pop-
ulation size is reached, and is therefore essential in deriving the first hospitalization time distribution.
More specifically, the number of infection events till the infection of the first individual to be hospi-
talized happens, is a geometrically distributed number with probability pysp. That is, counting the
infections until hospitalization resembles a discrete waiting process with ‘success’ probability pposp.
We denote the number of infections prior to the infection of the eventually hospitalized individual by
Ninf (Nipf includes the eventually hospitalized individual). Note that if we were interested in the j th
hospitalization event, the number of infected individuals until the j™ hospitalization event would be
distributed according to a negative binomial distribution.

We now combine the distribution of Nj,s with the deterministic time needed for the infected
population to reach Nj,s individuals (conditioned on non-extinction of this epidemic cluster as
computed in Eq. (3)). We denote this time by tl‘i,ientf. Lastly, we add the probability density of the time
from infection to hospitalization, fjsp, to this deterministically computed time. Denoting by Thosp
the time of first hospitalization, its density is given by:

thSP(t) = ;imOP(Thosp e(t—dtt+ dt))
t—
y 3 - 9)
~ Z P (Ninf = ) fhosp (t_ tldet) - Z Phosp (1 - phosp)l 1fhosp (t— l‘?Et) )
i=1 i=1

where fisp(£) denotes the probability density of the time from infection to hospitalization #,osp evalu-
ated at time ¢ (see Table 1). It is important to keep in mind that the density of the first hospitalization


https://doi.org/10.1101/2020.11.17.20233403
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.11.17.20233403; this version posted November 18, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY 4.0 International license .

S 10
< 4
O g 2 T - - Lun(d) (Bq. 3) P
E | "g 3 — Tgetect (1) (Eq. (7))
2 = .
S 0.6 2
<% S E
2 <03
0.4 3

g 5 o0 ]
3 53
= 027 Q1014 ¢
IS g 1 .

; =102
Q 0.0 o 3
o I .
a T T T T T T 1 T T

0 5 10 15 20 25 0 10 20 30 40
days after infection a time ¢ [days]

(a) Probability of testing positive (b) Number of detectable cases

Figure 3: The number of RT-PCR-detectable cases. (a) The probability for an infected individual
to test positive by an RT-PCR test is zero during the first two days after infection. It then
increases up to approximately 0.8 on day 8 after infection before decreasing until three weeks
after infection. The plot is based on data from Fig. 2, upper panel in Kucirka et al. (2020)
(data points for days 22 to 24 are arbitrarily set to 0). (b) The expected number of detectable
cases when testing the whole epidemic cluster on day ¢ (solid line, Eq. (7)) is about 30% of
the total size of the epidemic cluster (dashed line, Eq. (3)). The shaded region represents the
90% confidence interval of 10,000 individual-based simulations with a Poisson-distributed
number of secondary infections, with averages depicted as dots.

time hposp () is an approximation, because it is based on the mean epidemic size and not the whole
distribution of epidemic sizes. The mean epidemic size directly provides the deterministic hitting
time t?et, neglecting the whole distribution of the epidemic size.

With a Poisson distributed number of offspring, our analytical approximation is accurate for low
hospitalization times. However the analysis underestimates the probability of large times to first
hospitalization (those larger than ~ 28 days (Fig. 4a)). For negative binomial offspring numbers, our
approximation underestimates the right tail of the hospitalization time distribution even more. This
discrepancy can be explained as follows: Our approximation in Eq. (9) puts too much probability
mass on hospitalization times close to the average hospitalization time, because we approximate the
epidemic size using the deterministic hitting time. Our fit is poorer for negative binomially distributed
offspring sizes (Fig. 4b), because the variance in epidemic sizes is larger than with Poisson-distributed
offspring numbers. In particular, trajectories that remain at low prevalence for long times (inset in
Fig. 4b) are responsible for the more pronounced tail when compared to the Poisson scenario in this
parameter set. For lower values of Ry, our estimate is less good because of the slower convergence of
the theoretical prediction of the average epidemic size, as shown in Section S2 in the Supplementary
Information (SI).

While the simulated distributions of first hospitalization time differ with the two distributions, their
means and standard deviations are similar. The mean (standard deviation) of the time of the first
hospitalization, as obtained from 10,000 individual-based simulations, are ~ 29 days (~ 7 days) in the
case of Poisson-distributed offspring numbers and ~ 28 days (~ 8 days) for negative binomial offspring
numbers, respectively. The similarity of these values indicates that the distribution of offspring does
not play a substantial role in the timing of the first hospitalized patient within an epidemic cluster. For
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Figure 4: Distribution of the first hospitalization time. The histograms are obtained from 10,000
stochastic simulations, and the solid lines are computed using Eq. (9). The insets are scatter-
plots where each point depicts a simulation which finished at a certain hospitalization time
(x-axis) with a certain epidemic size (y-axis). The Poisson distributed offspring numbers in
subfigure (a) result in less dispersed hospitalization times and are thus better approximated
by our mean field type approach (compare dashed and dotted lines). Negative binomially
distributed offspring numbers, subfigure (b), show a more pronounced distribution tail
resulting from epidemics that remain relatively small for a long time (compare also the
scatterplots in the insets of the panels).

the parameter set studied here, our analytical estimate captures the mean of the first hospitalization
time reasonably well (dashed and dotted vertical lines in Fig. 4). Only for the negative binomial
distribution does our analytical solution slightly underestimate the simulated average. The reason, as
before, is the excess of trajectories that remain at low prevalence for long times, which are not well
captured by our approximation.

For lower values of Ry, we find that negative binomially distributed offspring sizes result in much
lower average hospitalization times than Poisson distributed offspring numbers (Section S2, SI).
The reason is that extinction is much more likely in the negative binomial offspring scenario (58%
in the Poisson case, 83% in the negative binomial case). Therefore, trajectories that result in a
hospitalization have grown faster to escape extinction than in the Poisson case and consequently, the
first hospitalization will occur earlier (Fig. S2 in the SI).

3.3 Epidemic size at the first hospitalization event

In a next step, we use the distribution of the first hospitalization time to infer the size of the epidemic
at that random time. Therefore, we combine Eqgs. (3) and (9) and obtain the following probability mass
function:

o0
P (Isurv(Thosp) = k) =f0 Phosp (D11, (Delk—1/2,k+1/2) A T - (10)

This estimate of the epidemic size distribution accurately describes the simulated data (Fig. 5). The
only difference occurs for low epidemic sizes in the case of a negative binomial offspring distribution.
This excess in the simulated data is likely due to trajectories that remain at low prevalence for long
times, which are due to the large number of non-transmitting infected individuals.

10


https://doi.org/10.1101/2020.11.17.20233403
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.11.17.20233403; this version posted November 18, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY 4.0 International license .

0.0025 I 0.0025
I
| — Eq. (10)
g 0.0020 : ) analytical g 0.0020
g : : mean g
0.0015 — : ... simulation 0.0015
2 Co mean 2
= l =
‘B 0.0010 I '8 0.0010—
< I <
S . S
= 0.0005 | S 0.0005
o o
0.0000 : : : 0.0000 , , ,
0 500 1000 1500 2000 0 500 1000 1500 2000
epidemic size at Thosp epidemic size at Thosp
(a) Y; ~ Poisson (b) Y; ~ negative binomial

Figure 5: Epidemic size at the first hospitalization event. The histograms are obtained from 10,000
stochastic simulations and represent the epidemic size at the first hospitalization event at
time Thesp. For the negative binomial offspring distribution, we observe an excess of low
epidemic sizes compared to the theoretical prediction (solid lines, Eq. (10)). Otherwise, the
two offspring distributions result in very similar shapes, which is also reflected by similar
distribution statistics, e.g. for the 5- and 95-percentile (Table 2).

Similarly to our observations in the case of the first hospitalization time, there are no large differences
between the empirical epidemic size distributions of the two offspring distributions. The mean
epidemic sizes are ~ 610 for Poisson and ~ 625 for negative binomially distributed secondary infections.
Even when comparing the 5 and 95 percentiles, the difference remains small, with the negative
binomial distribution showing a bit more variance in the data (Table 2). In general, our analytical
estimate overestimates the mean, which is most likely explained by the long tail of the theoretical
distributions. For lower values of Ry, the tail of the theoretical distribution is much shorter and the
empirical and theoretical mean of the epidemic size at hospitalization agree (Section S3, SI).

3.4 Comparison to the improved rule of thumb

Lastly, we compare our results to the improved rule of thumb, which goes as follows: at the first
hospitalization event, go back a random number of days it takes from infection to hospitalization
(drawn from the hospitalization time distribution f;sp) and start the epidemic with a geometrically
distributed number of infected individuals (on average 1/ Phosp) at that time. Then the epidemic
gets propagated by drawing a random number of secondary infections for each of these infected
individuals and corresponding transmission times. This step is repeated for all infections before the
first hospitalization event.

Our approach differs from this procedure by taking into account the entire epidemic history. Instead
of initializing the dynamics with on average 1/ pysp infectious individuals at a single time point, we
accumulate the infectious population over time. This implementation results in smaller epidemic
sizes at the first hospitalization event compared to the improved rule of thumb, as visualized in Fig. 6
and quantified in Table 2. The difference between the improved rule of thumb and the actual epidemic
size becomes larger the longer one has to wait for the first hospitalization to occur. For example, if we
compare the 5-percentiles of the epidemic size distributions with each other, i.e., hospitalizations that
occurred early, there is essentially no difference between the two methods (35 infected individuals
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Figure 6: Comparison of the epidemic size with the improved rule of thumb. The simulation aver-
ages (dots) are obtained from 10,000 individual-based simulations, the shaded region is the
90% confidence interval of the simulated data and solid lines are the averages of the theo-
retical predictions of the respective models. The average of the improved rule of thumb is
computed by initializing the epidemic with 1/ pnosp infected individuals at time Thosp - ?hosp»
where Tsp is the average time of the first hospitalization event (dashed line) and fhosp the
average of the time from infection to hospitalization. The epidemic is then propagated by
Eq. (3) with the adjusted survival probability of the epidemic, psurv = 1 — (Pext) ! Pro, where
Pext is the probability for an epidemic to die out if started with a single individual. The
improved rule of thumb overestimates the actual epidemic size, the simple rule of thumb
(dotted line) underestimates it.

in our model, 34 in the improved rule of thumb scenario; Table 2). However, comparing the mean
and the 95-percentile between the two models, there are substantial differences. While the mean is
overestimated by approximately 200 cases, the 95-percentile estimate differs by ~900 individuals. This
inflation of difference is not surprising in view of the exponential growth of the number of cases; a
small difference in the initial condition will result in large disagreement of the predictions two weeks
after, corresponding to the average time of hospitalization.

For lower values of Ry, this overestimate is worse in relative terms, i.e., for Ry = 1.3 the average value
of the improved rule of thumb even exceeds the 95-percentile of the stochastic simulations (Section
S4, SI). Yet, in absolute numbers, the improved rule of thumb still overstimates the epidemic size by
around 200 infected individuals, thus not substantially changing the order of magnitude.

4 Discussion

We have developed analytical approximations to study the early dynamics of a local outbreak that is
initiated by a single infected individual. Importantly, we derived the theoretical distribution of the first
identification time, in our case the first hospitalization of an infected individual, and the distribution
of the epidemic size at this time. We find that with our COVID-19-specific pre-lockdown parameter
set, the choice of distribution of secondary transmission events, typically either Poisson or negative
binomial, does not substantially affect these distributions — neither the analytical approximation nor
the distribution derived from stochastic simulations. This is somewhat surprising in the case of the
stochastic simulations, since the variance of the cumulative epidemic sizes, as shown in Fig. 2, varies
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Epidemic size (cumulative) Number of infectious ind. —
Model P lower bound
Mean 5% ' 95%. Mean 5% ' 95%.
quantile quantile quantile quantile
Poisson 613 35 1844 290 16 878
Negative binomial 626 10 1974 164 1 516
Improved rule of thumb |} 5, 34 2774 | 460* 19 1581
(Poisson)
I d rule of th
mproved rule of thumb || g, 19 2784 || 290* 5 1022
(negative binomial)

Table 2: Statistics of the epidemic at the first hospitalization event. The values are based on 10,000
individual-based simulations either with a Poisson or with a negative binomial offspring
distribution. In the last two rows, we re-implemented the procedure described in Jombart
et al. (2020) with a Poisson and a negative binomial offspring distribution. The epidemic size
derived from the simple rule of thumb is 34 and thus largely underestimates the real epidemic
size. *We have added the lower bounds of infectious individuals even though these numbers
were not computed in Jombart et al. (2020).

considerably between these two offspring distributions. For smaller values of the basic reproduction
number Ry, the estimates of the first hospitalization time differ between the two offspring distributions,
the negative binomial distribution resulting in lower average hospitalization times than the Poisson
distribution, as shown for Ry = 1.3 in Section S2 in the SI. The reason is the much smaller establishment
probability in case of a negative binomial offspring distribution, so that trajectories that result in a
hospitalization grow faster early on to escape extinction. However the distribution of epidemic size is
still the same for the two offspring distributions (Section S3, SI).

Previous estimates of the epidemic size at the first disease-caused death (Jombart et al., 2020)
assume that all infections, from which one individual eventually dies, occur at the same time. This
accumulation of infectious individuals at a single time point does not account for the epidemic history
of the cluster and overestimates the actual epidemic sizes (Fig. 6 and Fig. S4 in the SI). While this effect
is small if the identification time is small, it becomes considerable for late detection times. The later the
identification of the first case, measured in the age of the epidemic cluster, the more does the improved
rule of thumb overestimate the actual epidemic size. Additionally, with the previous methods, it is not
possible to derive a distribution of the first event time, e.g. the first death or hospitalization event. In
contrast, our analysis provides such an estimate.

The distribution of first event times can also be used to infer the time of the first infection within the
cluster. However, this is only true in situations where the immigration of new cases is negligible so
that the epidemic dynamics are indeed local and explained by a single cluster. Therefore, our analysis
is also only valid during the early phase of an epidemic outbreak or if multiple introductions within a
local community are unlikely. This seems to be in contrast to our theoretical results being derived for
asymptotically large times. In the application though, our estimates converge very quickly towards the
simulated average values for a large number of secondary transmissions, e.g. for Ry = 2.9 as estimated
during the early phase of the COVID-19 epidemic in France. For lower values of Ry, e.g. Ry = 1.3
as studied in the SI, convergence of the theoretical epidemic size average (Eq. (3)) to the simulated
average takes much longer and care should be taken when interpreting the theoretical results. We
recommend to run stochastic simulations of epidemic sizes to verify the speed of convergence of the
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average epidemic size as stated in Eq. (3).

In addition, we approximated the number of RT-PCR-detectable cases if one were to test the whole
population on a single day. Even in this ideal scenario, because most people have been infected
recently, only 30% of the cumulative number of cases will test positive. This is due to very recent
infections not being detectable (Kucirka et al., 2020); a few days later, a stunning 97% of the cases that
tested negative would now be RT-PCR-positive. Conversely, only a fraction of 3% of the negatively
tested cases corresponds to old infections that are no longer detectable. It is thus important to test
about a week after risk contact to identify most positive cases.

For lower values of Ry, the proportion of RT-PCR-positive cases is much more encouraging. For
example, we would expect that with Ry = 1.3, approximately 65% of the cumulative epidemic size
would test positive because there will be comparatively fewer very recent undetectable infections. It is
therefore advantageous, not only for the overall epidemic situation, but also for an efficient testing
effort, to maintain a low number of secondary transmission events. Similar proportions of detectable
cases are expected when testing for antibody markers, because the detection probability over time for
these markers is comparable to that of RT-PCR-based tests (Borremans et al., 2020, Fig. 2).

It is important to keep in mind that our estimate is based not only on the probability to test positive
for RT-PCR tests (Kucirka et al., 2020), but also on a constant basic reproduction number Ry. As we just
mentioned, Ry has a large effect on the detection rate because it affects the growth rate of the epidemic
size, i.e. the Malthusian growth rate a (Eq. 1). This holds because the growth rate itself is linked
to the stationary infection age distribution of the population, which is an exponential distribution
with parameter a. If Ry varies too fast, this impedes convergence of the infection age distribution
towards the stationary infection age distribution and our analysis cannot be carried out anymore. The
infection age distribution is therefore not stationary in reality, yet during the pre-lockdown phase of
the epidemic in France the epidemic dynamics were well described by the theoretically computed
stationary age distribution (Foutel-Rodier et al., 2020). The higher the reproduction number Ry is,
the faster is the convergence to the stationary age distribution and the better is this approximation
justified.

A further restriction is that during the early phase of a newly emerging epidemic, estimates for
hospitalization rates, transmission or hospitalization time distributions may not be available yet.
Since evaluation by analytical formulas, or even running the stochastic simulations a large number
of times, is very fast, it is possible and therefore recommended to evaluate a number of different
scenarios. Moreover, we assume that the population-wide hospitalization probability is about the
same in our setting of interest as where it was estimated. This assumption can break, for example, if
the hospitalization probability varies across age classes and the age structure of infected individuals is
different in our setting.

Apart from these limitations, our derived equations are valid for any emerging disease that is
described by an exponential growth curve. This is mostly the case for airborne diseases like SARS
or COVID-19. For infectious diseases like Ebola or HIV, the initial growth can be described as sub-
exponential (Chowell et al., 2016; Viboud et al., 2016). While there is not yet a mechanistic description
of this growth behavior, except for a connection to renewal equations pointed out in House (2016), a
phenomenological description (Chowell et al., 2016; Viboud et al., 2016) should be sufficient to trans-
late our analytical results into this context, at least if a stationary infection age distribution is accessible.

In conclusion, our analytical distributions for the first hospitalization time and the epidemic size
distribution at that time can be useful to adapt the intensity and scale of interventions to contain a local
outbreak. Additionally, the detection of the first case contains information about the introduction time
of the disease into the local community, at least under the assumption that multiple introductions are
unlikely. These results improve previous estimates on the epidemic size at the first detection. Previous
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methods neglect the epidemic history of the epidemic cluster, which results in an overestimation of the
actual number of infected individuals in the case of the improved rule of thumb, or an underestimation
in the case of the simple rule of thumb. Our analysis shows that accounting for the whole epidemic
history is important and necessary to well describe the entire distribution of the epidemic size.

Data availability

The C++ codes, data files and Python scripts used to generate the figures are available at https:
//github.com/pczuppon/early_epidemic_inference.
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A Computing the survival probability

We briefly outline how to compute the survival probability of a branching process. In general, for
a branching process, the extinction probability is given by the smallest positive fixed point of the
probability generating function of the offspring distribution; for more details we refer to the book by
Haccou et al. (2005). The survival probability is simply the complement of the extinction probability,
i.e., one minus the value of the root.

The probability generating function for the Poisson distribution with rate A reads

Gp(z) =E[z%] = 7D, (11)

where X is a Poisson distributed random variable. The probability generating function of a negative
binomial distribution with success probability p and number of successes « is given by

p K
Gyp(@)=|——| . 12
~NB(2) (1—(1—p)z) (12)

The number of successes « is also known as the dispersion parameter (and can formally be any
real positive number) and the success probability p is given by p = x/(x + Ry), where Ry is the basic
reproduction number.

Unfortunately, analytical solutions for the smallest positive fixed point of these two generating
functions are not accessible. For the computation of the theoretical predictions in the figures, we
determined the fixed points numerically.
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A Epidemic size with Ry = 1.3

We conduct the same analysis as in the main text, just with a reduced value of the basic reproduction
number Ry. In the main text, we have analyzed the situation Ry = 2.9 which corresponds to the pre-
lockdown epidemic behavior in France (e.g. Salje et al., 2020). We now assume Ry = 1.3, a value that is
sligthly above the critical value Ry = 1, to evaluate how well our proposed methodology compares to
simulations for slower growing epidemics.

First, we plot the cumulative epidemic sizes over time (Fig. S1). In comparison to the main text
(Fig. 2), the epidemic grows slower for the reduced value of Ry. The agreement between simulations
and theory (Eq.(3)) starts later with Ry = 1.3 than it does with Ry = 2.9 (where Eq. (3) matched the
simulations from around day 10 on). In general, the larger the reproductive number, Ry, the faster
is the convergence of the simulations to the theoretical prediction. This follows from the general
convergence theorem about the asymptotic growth of a supercritical branching process (Haccou et al.,
2005, Section 3.3).
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Figure S1: The total number of infected individuals over time with Ry = 1.3. The shaded region
shows the 90% confidence interval obtained from 10,000 stochastic simulations that resulted
in an epidemic outbreak. Dots represent the average of these simulations over time. The
theoretical prediction (solid line calculated from Eqg. (3) in the main text), even though
formally only valid for asymptotically large times, agrees well with the simulated averages
from around day 50 on.
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B Hospitalization time in the case Ry = 1.3

For Ry = 1.3, the first hospitalization time has a broader distribution (Fig. S2) than with the larger
value Ry = 2.9 in the main text (Fig. 4). The simulated average values are larger for smaller values of
Ry: for Ry = 1.3 we have 44 days in the Poisson case and 33 days in the negative binomial offspring
scenario. The corresponding values for Ry = 2.9 are 29 and 28 days, respectively.

For Ry = 1.3 and with both offspring distributions, our theoretical prediction (Eq. (9) in the main text)
strongly overestimates early hospitalization times and underestimates larger hospitalization times.
This is most likely explained by the relatively bad approximation of the epidemic size for very small
times since the first infection of the epidemic cluster. As our theoretical approximation over-estimates
epidemic size at early times (Fig. S1), it also over-estimates the probability of an hospitalization at an
early time since the beginning of the local epidemic. As a result, our theoretical approximation puts
too much weight on early hospitalization times and therefore under-estimates the hospitalization
times obtained in simulations. For future research, it would be interesting to find more accurate
approximations of the epidemic size for small times ¢ in the context of general branching process.
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Figure S2: Distribution of the first hospitalization time with Ry = 1.3. The histograms are obtained
from 10,000 stochastic simulations and the solid lines are computed by Eq. (9) in the main
text. Here, both the Poisson (subfigure (a)) and negative binomial (subfigure (b)) distributed
offspring numbers show a dispersed hospitalization time distribution, i.e., both have a heavy
tail. In contrast to the main text, negative binomial distributed offspring sizes, subfigure
(b), show a less pronounced distribution tail compared to the Poisson distribution. The
theoretical predictions overestimate the early hospitalization times because of the bad
approximation of epidemic sizes during the very early phase of the epidemic, cf. Fig. S1.
Note the differing scalings of the axes between the two subfigures.
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C Epidemic size at the first hospitalization for R, = 1.3

The epidemic size at the first hospitalization event is much smaller for Ry = 1.3 than for the scenario
considered in the main text (Ry = 2.9). The average epidemic size at the first hospitalization as obtained
from the simulations is 72 infected individuals in the Poisson case and 73 in the case of the negative
binomial distribution for Ry = 1.3. For Ry = 2.9 the corresponding values are 610 and 625, respectively.
The smaller sizes with a smaller Ry are because the epidemic size grows much more slowly.

With the slower growing epidemic, the theoretical estimates agree reasonably well with the simulated
distribution of epidemic sizes (Fig. S3). The only exception are very small values in case of the negative
binomial distribution. The good estimation is also reflected by the overlap of theoretical and simulated
average values (dashed and dotted vertical lines in Fig. S3).
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Figure S3: Epidemic size at the first hospitalization event for Ry = 1.3. The histograms are obtained
from 10,000 stochastic simulations and represent the epidemic size at the first hospitaliza-
tion event at time Ty,qsp. For the negative binomial offspring distribution, the theoretical
prediction (solid lines, Eq. (10) in the main text) overestimates the simulated data for low
epidemic sizes. Otherwise, the two offspring distributions result in very similar shapes and
are well approximated. This is also reflected by the close agreement of the analytical and
simulated mean of the epidemic size at the first hospitalization event.
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D Comparison to the improved rule of thumb in the case of Ry = 1.3

In the main text, the improved rule of thumb (Jombart et al., 2020) overestimated the actual epidemic
size, but was still within the 90%-confidence interval of the simulations. Here, with Ry = 1.3, the
improved rule of thumb exceeds even the 95-percentile of the simulation results. In absolute numbers,
the improved rule of thumb exceeds the true epidemic size by approximately 200 infected individuals
at the average time of hospitalization (¢ = 44): 267 infections on average with the improved rule of
thumb vs. 65 infections in the simulations.
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Figure S4: Comparison of the epidemic size with the improved rule of thumb. The simulation av-
erages (dots) are obtained from 10,000 individual-based simulations, the shaded region
is the 90% confidence interval of the simulated data and solid lines are the averages of
the theoretical predictions of the respective models. The average of the improved rule of
thumb is computed by initializing the epidemic with 1/ pnesp infected individuals at time
Thosp — fhosp, where Thosp is the simulated average time of the first hospitalization event
(dashed line) and 7,sp the average of the time from infection to hospitalization. The epi-
demic is then propagated by Eq. (3) with the adjusted survival probability of the epidemic,
Psurv = 1 — (Pext) Upnosp | where Pext is the probability for an epidemic to die out if started with
a single individual. The improved rule of thumb overestimates the actual epidemic size, the
simple rule of thumb (dotted line) underestimates it.
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