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Abstract. Emerging epidemics and local infection clusters are initially prone to stochas-
tic effects that can substantially impact the epidemic trajectory. While numerous studies
are devoted to the deterministic regime of an established epidemic, mathematical de-
scriptions of the initial phase of epidemic growth are comparatively rarer. Here, we review
existing mathematical results on the epidemic size over time, and derive new results to
elucidate the early dynamics of an infection cluster started by a single infected individual.
We show that the initial growth of epidemics that eventually take off is accelerated by
stochasticity. These results are critical to improve early cluster detection and control.
As an application, we compute the distribution of the first detection time of an infected
individual in an infection cluster depending on the testing effort, and estimate that the
SARS-CoV-2 variant of concern Alpha detected in September 2020 first appeared in the
United Kingdom early August 2020. We also compute a minimal testing frequency to
detect clusters before they exceed a given threshold size. These results improve our theo-
retical understanding of early epidemics and will be useful for the study and control of
local infectious disease clusters.

Keywords: early epidemic dynamics, establishment probability, renewal equation, mass testing, timing
of detection, testing frequency
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1 Introduction

The emergence and spread of infectious diseases pose an increasing threat in an ever more intercon-
nected world. A quantitative understanding of epidemic dynamics is necessary to improve control
measures. Deterministic models are a suitable tool to describe the epidemiological dynamics once
a large number of individuals has been infected. During the early phase of an epidemic or a local
infection cluster however, stochastic effects cannot be neglected. These stochastic effects are due to
the initially low number of infected individuals, and to the inherent stochasticity of the transmission
process. Understanding and quantifying these stochastic effects will help, for example, assess the risk
of new infection clusters emerging or estimate the size of a cluster associated with a new variant when
such a variant is detected.

The infectiousness of an individual may vary over the course of their infection because of within-host
viral dynamics if the transmission rate is correlated with the viral load. We consider a generic stochastic
model in which infectiousness is an arbitrary function of time since infection. This stochastic model
is called a Crump-Mode-Jagers process [1–3]. When the number of infected individuals gets large,
this stochastic model can be approximated by a deterministic partial differential equation describing
the distribution of the time since infection of the host population. This equation is known as the
McKendrick-von Foerster partial differential equation [4–6].

Transmission timings are particularly influential during the early stages of the growth of an infection
cluster, which is the focus of our work. It is therefore important to use biologically realistic distributions
of transmission times [7], rather than assuming mathematically convenient but biologically unrealistic
exponential distributions. A constant infectiousness over the duration of an individual’s infection
leads to the predominantly used framework of ordinary differential equations, while non-constant
infectiousness can be captured by a partial differential equation. In addition to the added biological
realism, a time-varying infectiousness of infected individuals can also properly capture the dynamical
consequences of abrupt changes in transmission rate [6, 8]. This is not possible with an ordinary
differential equation framework [9].

Here, we provide key results about the epidemic dynamics as described by the McKendrick-von
Foerster equation. Stochasticity in transmission does not merely add noise to the dynamics, but also
causes a systematic deviation from the deterministic description, which underestimates the initial
growth of an establishing epidemic [10, 11]. This is in contradiction to a common misconception
that stochasticity generally slows down the initial epidemic growth rate. We quantify the deviation
between the deterministic and observed stochastic growth rate by conditioning the individual-based
process on survival. After initial stochastic effects, the process converges to exponential growth with
an asymptotic growth rate, denoted r , derived from the reproduction number R and the transmission
rate. The distribution of time since infection in the stationary regime is exponential with parameter r ,
the asymptotic growth rate.

The reviewed and newly derived results can provide answers to public health related questions:
How many importations will eventually result in a local infection cluster? How large is a local cluster
once a first case is detected? When did a new variant – like Alpha, first detected in the United Kingdom
(UK) – arise? How large is the detection rate of infectious individuals by a single mass testing effort?
How many daily tests need to be conducted to detect local clusters before they exceed a certain size?
We show how our theoretical results provide quantitative answers to these questions.

2 Expected epidemic size

We study the epidemic size of a cluster initiated by a single infected individual. We refer to a ’cluster’
as the entire tree of infections that was initiated by a single infected individual. In particular, we do not
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spatially restrict a cluster, nor do we constrain the time period in which transmissions need to occur.
Because some of our developments will also need them, we first recall results on deterministic

epidemiological dynamics, then develop new analytical results on the expected early growth and the
expected number of infected individuals once a stationary regime has been reached. We illustrate
with simulations the variability across stochastic trajectories (Fig. 1). As observed before [10, 11],
the expected growth rate during the early phase of cluster growth is greater than the long-term
deterministic expectation, because clusters that do not die out are typically those that initially grow
faster. We show how to account for this phenomenon in the mathematical description of the early
phase and of the stationary regime.

In our stochastic simulations, we assume that the epidemic starts with a single infected individual
at time t = 0. Each infected individual i is assigned a time since infection ai . The time since infection
determines the infectiousness of an individual through time. The term ‘time since infection’ is also
referred to as ‘age of infection’ in the mathematical literature. We decouple the transmission rate τ(a)
into a mean number of secondary infections R and a transmission probability density over time µ(a).
We then have

τ(a) = R ×µ(a) . (1)

This equation holds because
∫ ∞

0 µ(a)d a = 1, so that indeed the average number of secondary infec-
tions is given by R. This decoupling allows us, in a relatively simple way, to study different offspring
distributions for R, while leaving the transmission density µ(a) unchanged.

For illustration, we assume that the distribution of transmission times follows a gamma distribution,
but any distribution would be possible. In particular, a constant transmission rate (uniform distri-
bution) would result in an exponential distribution of the transmission times (i.e., the memory-less
distribution), which would reduce this general model into an ordinary differential equation (ODE).

2.1 Previous results on deterministic dynamics: renewal equation, growth rate and time-
since-infection distribution

Throughout our analysis, we assume that the fraction of susceptible individuals is sufficiently large
compared to the number of individuals infected in the early epidemic that it remains approximately
constant. The overall rate at which new infections occur at time t , denoted by i (t ), in the deterministic
regime is described by the following renewal equation [12]:

i (t ) = τ(t ) +
∫ t

0
τ(a)i (t −a)d a , (2)

where τ(a) is the transmission rate of an individual with time since infection a. The first term τ(t)
reflects the new infections by the first infected individual at time t . The integral in Eq. (2) is the
continuous version of the sum over the number of new infections caused by individuals with time
since infection a (term i (t −a)d a), which happens at rate τ(a). Intuitively, one can think about i (t )d t
being the incidence at time t , i.e., the number of newly infected individuals in the small time interval
[t , t +d t ].

The cumulative number of infected individuals, i.e., the total epidemic size, which we denote by
I (t ), is then given by

I (t ) = 1+
∫ t

0
i (s)d s = 1+

∫ t

0
I (t −a)τ(a)d a , (3)

with I (0) = 1 (mathematical details are given in the Supplementary Information (SI), Section S4). For
simplicity, we do not consider recovery of infected individuals. However, individuals will of course
stop transmitting when the time since infection is such that the transmission rate τ(a) becomes very
small.
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The epidemic size I (t ) will, for large times t , grow exponentially if R > 1. Formally, the asymptotic
exponential growth rate r is obtained by solving the classical Euler-Lotka equation [12, 13]:

1 =
∫ ∞

0
e−r tτ(t )d t ⇔ 1

R
=

∫ ∞

0
e−r tµ(t )d t , (4)

where r is also called the Malthusian parameter of the supercritical branching process [14]. In the
case where µ(t) is given as the density of a gamma distribution with shape parameter α and scale
parameter β, the exponential growth rate r is

r = R1/α−1

β
. (5)

Convergence speed from the initial condition towards the asymptotic growth rate r is determined by
the average number of secondary infections R and the transmission probability density µ. Intuitively,
the faster a large number of infected individuals is reached (high R and/or small average transmission
time), the faster is convergence towards the stationary growth regime.

Furthermore, it is possible to derive an explicit expression for the number of infected individuals
over time, once asymptotic growth is reached. It follows from results of supercritical general branching
processes and renewal theory [14], that the expected cumulative epidemic size is, for asymptotically
large times t , given by

I (t ) = I (0)
er t

r R
∫ ∞

0 e−r s sµ(s)d s
. (6)

The integral in the denominator is the mean generation time of the Malthusian process [13, 15]. This
is the time between the infection of the infecting individual and the time of infection of a randomly
chosen secondary infection event. If the transmission densityµ(s) were constant, the integral would be
1/(r R) and the epidemic size would be the solution of a constant infection process without depletion
of susceptibles: I (t ) = I (0)er t .

For an uncontrolled COVID-19-epidemic (we set R = 2.9, estimated for the French epidemic in
Spring 2020 [16]), we obtain r ≈ 0.18 per day, which corresponds to a doubling time of about 4 days.
When interventions are in place (e.g., R = 1.3), then the Malthusian parameter is r ≈ 0.048 per day,
which corresponds to a doubling time of 14 days.

Under exponential growth, the distribution of the ages of infection in the population is given by
an exponential distribution with parameter r , the exponential growth rate [14]. Intuitively, in an
exponentially growing population, the number of individuals who were infected a days ago is er times
greater than the number of individuals who were infected a+1 days ago. The exponential distribution
also implies that for a large growth rate r , a large proportion of the cumulative number of infections
will be very recent. For example, with R = 2.9, 30% among the total cumulative number of infections
occurred within the last two days.

We now turn to the stochastic simulations and show how systematic deviations from the determin-
istic regime can be understood and mathematically described. We first give a stochastic correction for
the asymptotic growth rate and then apply a similar idea to the general epidemic size process over
time.

2.2 Asymptotic growth rate and epidemic size in the stochastic epidemic model

For large enough times after the initially infected individual started the local cluster, the epidemic
grows exponentially at the rate predicted by the Euler-Lotka equation (Eq. (4)). However, the expected
cumulative epidemic size derived for the deterministic case (Eq. (6)) includes epidemics that eventually
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die out. Since we are only interested in epidemic clusters that eventually result in a large epidemic
outbreak, we rescale the initial epidemic size by dividing by the survival probability psurv:

Isurv(t ) = I (t )

psurv
= I (0)

psurv

er t

r R
∫ ∞

0 e−r s sµ(s)d s
. (7)

This rescaling reflects conditioning of the epidemic process on survival (Fig. 1). The survival probability
is psurv = 1−pext, where the probability of extinction pext is numerically computed as the fixed point
of the probability generating function of the distribution of secondary infections. In words, the
probability of extinction is equal to the probability that the initial infected individual does not produce
any secondary infection, plus the probability that it produces one secondary infection which goes
extinct (pext), plus the probability that it produces two secondary infections which both go extinct
(p2

ext), and so on; this intuition is outlined in SI, Section S1. Formally, the correction of the asymptotic
limit in Eq. (7) is derived from a convergence result of a general branching process (SI, Section S3).

2.3 Initial stochastic growth of an epidemic

The initial growth rate of an epidemic that does not become extinct is initially steeper than its final
asymptotic growth rate [10, 11] (compare the initial slope of the mean of stochastic simulations with
the asymptotic growth for large times; gray dots vs. blue solid line in Fig. 1). This is due to the inherent
stochasticity of the transmission process, which strongly affects the dynamics when there are only
a small number of infected individuals. Clusters that escape extinctions are typically those that by
chance benefited from a larger initial growth than the long-term expectation. This also means that
deterministic models tend to underestimate epidemic sizes early on, or, if parameters are inferred
from data, overestimate epidemic parameters such as the true basic reproduction number R0, as for
example observed in [17].

To account for this initial stochastic phase, one can alter the individual-based dynamics by condi-
tioning the stochastic process on the survival of the epidemic. A similar procedure has been employed
in [11]. This conditioning results in an adjustment of the transmission rate τ, which we denote by
τ̃. Formally, this adjustment is only justified for the stochastic process by Doob’s h-transform [18]
(details in SI, Section S5). In the large population size limit, we then approximate the adjusted trans-
mission rate by the continuous analog of the adjusted transmission rate of the stochastic process. This
approximation, while mathematically not fully justified, is a natural analogy of the conditioning of the
asymptotic epidemic size in Eq. (7). The mean epidemic size of the adjusted process is then computed
by

Ĩ (t ) = 1+
∫ t

0
ĩ (s)d s , (8)

where ĩ (s)d s is the incidence in the time interval [s, s+d s) under the adjusted process. The rate of new
infections ĩ (t ) in the conditioned process now depends non-linearly on the history of the epidemic
and therefore does not satisfy a renewal equation as in Eq. (2), but a delay differential equation:

ĩ (t ) = F (ĩ (s); s ∈ [0, t ]) . (9)

The function F is explicitly computed in SI, Section S5 (Eq. (S37)). In short, the conditioning on
survival of the epidemic results in an adjustment of the transmission rate τ by a factor that varies over
time. This adjustment factor reflects the survival probability of the epidemic at a certain time and
depends on the size and the age structure of the epidemic over time. The adjustment factor is largest
at time t = 0, where it equals (1+pext). Over time, the adjustment factor decreases and asymptotically
approaches 1 for a large epidemic size, where the probability of extinction becomes negligible, i.e., for
large times τ̃= τ.
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Figure 1: The cumulative number of infected individuals over time. The light and dark shaded re-
gions show the 90% and 50% inter-quantile ranges obtained from 10,000 stochastic simula-
tions that resulted in cluster establishment. Gray dots show the average of these simulations
over time. The theoretical prediction (black solid line) is calculated from Eq. (8) with the
adjusted transmission rate as computed in SI, Section S5. The black dotted line shows the
prediction obtained from Eq. (3) without the conditioning for the epidemic to establish.
The solid blue line is the epidemic size predicted by the asymptotic growth rate as stated in
Eq. (7). The blue dotted line is the corresponding quantity without the stochastic adjustment
(Eq. (6)). The effective reproduction number is set to R = 1.3, the number of secondary
transmission events is Poisson-distributed, and the transmission density µ(t ) is a Gamma
distribution with the parameters given in Table 1.

In Fig. 1, we plot both the adjusted and non-adjusted versions of the mean epidemic size (Eqs. (3)
and (8)). As mentioned above, the non-adjusted formula (black dotted line) underestimates the mean
epidemic sizes as obtained from 10,000 stochastic simulations (gray dots). In contrast, conditioning
the transmission density on survival (black solid line) predicts the mean epidemic size over time
reasonably well, and also equilibrates approximately at the correct level. Overall, there is large
variation in the epidemic sizes between different trajectories, as shown by the broad light shaded
region corresponding to the 90% inter-quantile range of the simulated trajectories. To model the
number of secondary infections, we have used the Poisson distribution in the figure because the
adjustment of the transmission rate does not result in explicit expressions for the negative binomial
case. Cumulative epidemic sizes in case the number of secondary infections is distributed according
to a negative binomial or geometric distribution show more variation due to the larger variance in the
number of secondary infections (Fig. S2 in SI, Section S6).

3 Applications

We now apply the theoretical results obtained above. First, we use the approximation of the epidemic
size (Eq. (8)) to estimate the probability distribution of the emergence time of the Alpha variant, first
detected in the UK in September 2020. The distribution of the emergence time also provides insight
into the probability distribution of the size of the cluster when the variant was first sampled. As a
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Interpretation Distribution Parameters Reference

mean number of
secondary infections

Poisson R = 1.5 [20]

time of secondary
infection

Gamma
(density: µ(t ))

shape: 6.6,
scale: 0.833

(mean: 5.5 days)
[24]

time from infection to
sampling

Gamma
(density:

fsampling(t ))

shape: 12,
scale: 7/12

(mean: 7 days)
–

sequencing
probability

Bernoulli psequencing = 0.042 [22]

sampling probability Bernoulli
psampling =

0.25×psequencing
[23]

Table 1: Probability distributions and parameter values used in the case study of the Alpha variant.

second application, we estimate the minimal testing frequency necessary to detect new emerging
clusters before they exceed a certain size (on average). This prediction is especially relevant when the
number of infected individuals is rare.

3.1 Distribution of the first detection time and cluster size at detection, and application
to the origin of the Alpha variant

The Alpha variant initially consisted only of the B.1.1.7 lineage. This lineage was first detected in the
UK from a sample that was collected on September 20th 2020 [19] and has rapidly become a major
variant of concern due to its increased transmissibility [20] and pathogenicity [21]. Here, we develop
a method to estimate the first infection of an individual with the Alpha variant and the distribution
of the size of the Alpha-cluster on the day when the sample was taken in September, based on the
dynamics of the epidemic size of a local cluster.

Our analysis requires the effective reproduction number, estimated to be R = 1.5 for the Alpha
variant in November 2020 in the UK [20], and the probability for a sample taken in the UK to be
sequenced, which was around 4.2% in October 2020 [22]. We will use this value in our analysis,
keeping in mind that this might be an underestimate because the number of cases has been lower in
September so the percentage of samples that could have been sequenced is potentially higher. Since
only reported cases can be sampled, we additionally account for underreporting of cases. We assume
that around 25% of all infections are detected [23]. Lastly, we need to define a distribution for the
time that passes between infection and sampling of an infectious individual. We assume that the time
from infection to sampling is a gamma distributed random variable (but any distribution would work)
with a mean of seven days and a standard deviation of two days. The parameter values (Table 1) are
chosen such that they give a probability of sampling an infected individual up until 3 days of their
infection that is less than 1%, and a probability of sampling an infected individual after ten days of
their infection that is less than 10%. All parameters are summarised in Table 1.

Distribution of the first detection time

To estimate the time of the first detection of an individual infected by the Alpha variant, we combine
the sampling probability distribution fsampling with the expected epidemic size at time t , given by the
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adjusted version of the epidemic size in Eq. (8), and the number of infections until the first infected
in the cluster is sampled and sequenced, which happens with probability psampling per infected
individual. For readability, we refer to this first infected individual that is sampled and sequenced
by case X and only write sampling when in fact we mean sampling and sequencing. The number of
infection events till case X is infected, including case X, is denoted Ninf. It is a geometrically distributed
number with probability psampling. Note that if we were interested in the j th sampling event, the
number of infected individuals until the j th sampling event would be distributed according to a
negative binomial distribution with ‘success’ probability psampling and dispersion κ= j .

We combine the distribution of Ninf with the deterministic time needed for the infected population
to reach Ninf individuals (conditioned on non-extinction of this epidemic cluster as computed in
Eq. (8)). We also refer to this time as hitting time and denote it by t det

Ninf
. To this, we add the time from

infection of case X to their sampling. Denoting by Tsampling the random variable corresponding to the
time of first detection and sampling, its probability density is given by:

hsampling(t ) := lim
dt→0

P
(
Tsampling ∈ (t −dt, t +dt)

)
≈

∞∑
i=1

P (Ninf = i ) fsampling

(
t − t det

i

)
=

∞∑
i=1

psampling
(
1−psampling

)i−1 fsampling

(
t − t det

i

)
,

(10)

where fsampling(s) denotes the probability density of the time from infection to sampling evaluated at
time s (Table 1). We emphasize that the density of the first sampling time hsampling(t ) is an approxima-
tion, because it is based on the mean epidemic size and not the whole distribution of the epidemic
size. The mean epidemic size directly provides the deterministic hitting time t det

i , neglecting the whole
distribution of the epidemic size.

With our COVID-19-specific parameter set given in Table 1, we find that the mean time between
the first infection of an individual with the Alpha variant and sampling of case X is around 46 days,
indicating that the strain was present in the UK the 4th of August 2020 – yet, the variance is quite large
for this distribution: the standard deviation is 19.5 days. The emergence date of the Alpha variant
strongly depends on the sampling probability: smaller sampling probabilities result in earlier possible
emergence dates than larger probabilities (Fig. 2). The distribution of secondary cases also impacts
the timing: if the number of secondary infections is distributed as a negative binomial distribution,
the date of emergence shifts closer to the date of sampling of case X. This effect is secondary though,
compared to the impact of the sampling probability (Fig. 2).

In general, we find that the theoretical prediction of the probability distribution of the first sampling
time captures the shape of the empirical distribution from the stochastic simulation results (Fig. 3a).
Note that this implies that most of the variability in time does not come from stochasticity in epidemic
size, but from the variability emerging from the random sampling of infected individuals (psampling)
and the variability in the time from infection to sampling of infected individuals ( fsampling). Biologically,
the variability in the time from infection to sampling arises from inter-individual variability in viral
dynamics, symptom development, test seeking behaviour, etc. We find the largest discrepancy
between theory and simulations at large first sampling times, i.e., we underestimate the right tail of
the first sampling time distribution. This difference arises because our theoretical approximation
does not take into account variability in the epidemic size process. Fig. 1 shows a large variation in the
number of infected individuals over time between different stochastic trajectories. Most notably, there
are several trajectories that remain at low cumulative epidemic sizes for a relatively long time. These
trajectories are responsible for the long right tail of the sampling time distribution in Fig. 3a.
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Figure 2: The date of emergence of the first infected with the Alpha variant in the UK when varying
the sampling probability. The shaded regions and dashed lines show the 50% and 90%
inter-quantile ranges obtained from 10,000 stochastic simulations that resulted in cluster
establishment; blue for the secondary infections being Poisson distributed, orange for a
negative binomial distribution. Dots represent the means of these simulations when varying
the sampling probability. The effective reproduction number is set to R = 1.5, the dispersion
parameter is κ= 0.57 [16], and the transmission density µ(t ) and the waiting time between
infection and sampling ( fsampling) are Gamma distributions with parameters as stated in
Table 1. The theoretical mean (black solid line) of the first sampling time is calculated from
Eq. (10), which only applies to the Poisson case.

Cluster size at the first detection time

Next, we use this distribution of the first sampling time to infer the size of the epidemic cluster at
that time. Therefore, we combine the adjusted epidemic size in Eq. (8) with Eq. (10) and obtain the
following probability mass function for the size of the cluster at the sampling time of case X:

P
(
I (Tsampling) = k

)= ∫ ∞

0
hsampling(t )1{Ĩ (t )∈[k−1/2,k+1/2)}d t , (11)

where hsampling is the probability that the first sampling time lies in the interval [t , t +d t), given in
Eq. (10).

This estimate of the epidemic size distribution approximates the simulated data reasonably well
(Fig. 3b). The only notable difference occurs for very low epidemic sizes, where the epidemic size
at the first sampling time ranges from 0-8 (bin size is set to 8 – the smallest bin size that produces
a continuous theoretical prediction), as can be seen in the histogram in Fig. 3b. The mean size of
the cluster with the Alpha variant at the first sampling time (obtained from stochastic simulations)
consists of 159 individuals, yet again with a large standard deviation of 158 individuals. For example,
the 95-percentile of the simulations predicts a cluster size of 476 infected individuals with the Alpha
variant by the time of the first sampling of the variant.
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Figure 3: Distribution of the first sampling time and the cluster size at that time, parameterized to
the case of the Alpha variant. The histograms are obtained from 10,000 stochastic simu-
lations and represent (a) the first sampling time of an infected individual with the Alpha
variant, measured since the first infection of an individual with the Alpha variant (in days),
and (b) the cluster size at this first sampling time. The theoretical predictions (black solid
lines) are computed by Eqs. (10) and (11). The parameters and distributions used in the
stochastic simulations are given in Table 1.

3.2 Minimal testing frequency to detect clusters of a given size

A single mass testing effort only results in a detection rate of between 25-48% of potentially infec-
tious individuals, depending on the utilized test (rapid test or polymerase chain reaction) and the
exponential growth rate r corresponding to reproduction numbers R between 1.3 and 3 (details in
SI, Section S7). Therefore, we now ask whether repeated random testing in the population is a more
feasible strategy to contain an infection cluster. Specifically, how often should we randomly test the
population to detect a cluster before it exceeds a certain size? As a numerical example we will use a
threshold cluster size of 30 infected individuals. We assume that testing is applied population-wide at
random, independently of the infection state of an individual. The probability to test positive depends
on the time since infection of an individual [25–27]. We denote the probability to test positive by a
rapid test if the infected individual has been infected a days ago by Q(a) (Fig. S3 in SI, Section S7).

If a fraction f of the population is tested every day, the detection probability of an infected individual
is approximately given by

pdetect = 1−
∞∏

a=1
(1− f Q(a)) ≈ f

∞∑
a=1

Q(a) . (12)

The term (1− f Q(a)) is the probability that an infected individual is not detected at their time since
infection a. Hence, the product is the probability that an individual is never detected over the course of
the individual’s infection. The probability of detection is one minus this product. The approximation
is valid when it is very unlikely that the same individual is tested more than once during the period
when there is a high chance to detect their infection.

To determine the testing frequency above which the expected cluster size is smaller than 30 infected
individuals, we repeat the steps from the previous sections: first, we determine the first detection time
and then translate this result to the average cluster size at detection. Since our analytical result tends
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to overestimate the cluster size at detection (Fig. S4 in SI, Section S8), this analytical procedure will
provide an upper bound for the true testing frequency required to detect clusters of a certain size.
In our numerical example with R = 1.1, this procedure results in a testing frequency of 0.013 for a
threshold cluster size of 30 infected individuals.

Importantly, increasing the testing frequency when it is still low offers large benefits in terms of
cluster size at detection because the epidemic size at detection reflects the exponential growth of the
epidemic: it decreases exponentially with increasing testing frequency (Fig. S4 in SI, Section S8).

4 Discussion

We have collected key equations and derived novel results to account for stochasticity during the early
phase of epidemic trajectories. Explicitly taking into account stochastic effects during the early phase
of an epidemic allowed us to compute a good description of the mean epidemic size for all times
(Eq. (8)). Importantly, our result captures the increased initial growth rate of surviving epidemics
when compared to the asymptotic growth rate (Fig. 1). This is a known effect [10, 11], yet cannot be
captured by deterministic epidemiological models. One important consequence of this theoretical
underestimation of classically used models is that parameter inference during the early phase of an
epidemic of, for example, the basic reproduction number, will result in an overestimation of the true
value [17]. We provide a new mathematical description of the expected epidemic size over time that
could be used in statistical inference during the early phase of emerging epidemics.

As a first application, we analytically derived the probability distribution of the first detection time
of an epidemic cluster. While in principle applicable to any type of detection event, as for instance the
first death or the first hospitalization event, we have focused on dating the emergence of the Alpha
variant that was first sampled in the UK the 20th of September 2020. Our analysis is appropriate for
clusters that descend from a single infected individual, and as long as population immunity is low
enough for the supply of susceptible individuals to be unlimited. The Alpha variant was first detected
in England in September 2020 and likely emerged there once, so our analysis can be applied to it.
It would not apply, for example, to the Delta variant in the UK, unless the cluster linked to the first
importation of the variant could be identified – and so the date of importation could be estimated. On
average, we find that the Alpha cluster was started 46 days before its detection, which means that the
variant was likely present in the UK on the 4th of August 2020. Usually, phylogenetic methods are used
to date the evolutionary history of mutations [28]. In this particular case, a phylogenetic approach is
difficult because of the large divergence between Alpha and non-Alpha variants sampled at a similar
time [19]. Indeed, we did not find a published estimate of the date of emergence of the Alpha variant
based on a phylogenetic analysis. In an attempt to date the origin of SARS-CoV-2, a combination of
phylogenetic and epidemiological methods has been used to obtain a more complete picture of the
very early dynamics of the COVID-19 epidemic [29]. Our new description for early epidemic growth
provides a formal non-spatial description of the individual-based simulations that were used in [29]
to date the very first COVID-19 case.

We additionally derived an analytical approximation for the probability distribution of the epidemic
size at the first detection event. In contrast to a previous numerical estimate of the cluster size at the
first disease-caused death that relies solely on the waiting time distribution until detection, e.g. the
distribution from infection to death [30], we consider the whole epidemic trajectory of the cluster, i.e.,
from the first infected individual to the day of detection. The previously proposed method inevitably
results in an overestimate of the actual epidemic size. Previous research has also shown that if the
probability of detection since infection were constant over time, which is not the case in our setting,
the cluster size at detection would be geometrically distributed [31, 32]. Whether the distribution of
cluster sizes at detection is a geometric distribution if the detection process is not constant in time, is
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an open question. In our specific data set, this seems to be the case (Fig. 3b).
We also applied our results to the evaluation of testing strategies. Currently (May 2021), aside from

vaccination campaigns, frequent testing is seen as a possible solution to relax COVID-19-related
restrictions in the short term. Our modelling approach gives an estimation of the minimal testing
frequency per day to detect epidemic clusters of a certain size, for example small enough for manual
contact tracing to be feasible. The minimal testing frequency depends on the test that is employed.
In our numerical example, we have used the detection probability estimated for rapid tests, which
were collected during the early phase of the epidemic in the UK in 2020 [27]. Since then, tests have
improved so that our estimation of the minimal testing frequency is very likely an overestimate. We
find that for a cluster size to be below 30 infected individuals (on average), each day around 0.13% of a
total population would need to be randomly selected for testing, i.e., independently of the individual’s
infection status. Pooled sample testing strategies could be a solution to reduce the number of testing
kits needed, and is a particularly reasonable option when the prevalence of infected individuals in a
community is close to zero [33].

Additionally, we estimated the fraction of cases that can be detected during a single mass testing
effort, as has been for example conducted in Slovakia in fall 2020 [34]. We find that with either a rapid
test or a polymerase chain reaction test and with a reproduction number between R = 1.3 and R = 2.9,
the detection rate of infectious individuals is between 26-48% (SI, Section S7). During the mass testing
effort, a certain fraction of undetected individuals is still in the latent phase (0-3 days post-infection)
and will become infectious after the mass testing event. Similar observations have also been made
by employing a deterministic SEIR-model [35]. This indicates that only isolating positively detected
individuals would be insufficient to contain the epidemic and that mass testing would need to be
repeated to efficiently control the epidemic.

In conclusion, we have summarised existing theoretical results describing the early, stochastic
dynamics of an epidemic, and developed new results on the mean epidemic size trajectory. We
combined the establishment probability with the deterministic McKendrick-von Foerster equation to
obtain a precise description of the expected epidemic size of an establishing epidemic over time. As an
application, we approximated the probability distribution for the timing of a first infected individual
in an epidemic cluster. This distribution can be used to estimate, for example, the emergence of new
variants of a pathogen, like the Alpha variant. In addition, we derived the minimal testing frequency to
detect clusters below a certain size. These applications are relevant from a public health perspective
and could be used to guide the policy to contain and fight any infectious disease.

Data availability

The C++ codes, data files and Python scripts used to generate the figures are available at https:
//gitlab.com/pczuppon/early-epidemic-dynamics.
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S1 Probability of establishment

Introductions of infected individuals into a susceptible population do not always result in a local
infection cluster because of random extinction events. Here, we quantify the probability that the
introduction of a single infected individual results in the establishment of a local cluster. The
establishment probability of a local cluster depends on the probability distribution of the number
of secondary infections, which also determines the chance of superspreading events. Similarly,
the initial spread of new variants can be modeled just as emerging clusters. In the following, we
briefly outline how to compute the probability of establishment and study how it is affected by
different types of transmission distributions.

In our epidemiological model, we assume that the number of susceptible individuals is not
limiting the spread of the disease, i.e., that the fraction of susceptible individuals in the population
remains close to one. Every infected individual transmits the disease to R other individuals
on average, where R is the effective reproduction number. The actual number of secondary
infections can vary strongly between infected individuals. For example, estimates for COVID-
19 indicate that about 20% of infected individuals are responsible for about 80% of secondary
infections (Endo et al., 2020). These superspreaders (or superspreading events) cannot be captured
by a Poisson-distributed number of secondary infections (Lloyd-Smith et al., 2005). A more
dispersed distribution, i.e. with a larger variance, is the negative binomial distribution, where
most of infected individuals do not transmit the disease at all. Its variance is typically quantified
by the dispersion parameter κ > 0. The smaller the value of κ, the more variance has the negative
binomial distribution.

The establishment probability of a local cluster can be computed by following the transmission
chain from one generation of infected individuals to the next. Specifically, if Y is the random
number of secondary infections due to one infected individual, the probability of extinction,
i.e., 1 minus the probability of survival, is computed by summing over the possible numbers of
secondary infections times the probability that all corresponding chains of transmission do not
survive:

pext = P(Y = 0)︸ ︷︷ ︸
no secondary

infection

+ pextP(Y = 1)︸ ︷︷ ︸
one secondary

infection

+ p2
extP(Y = 2)︸ ︷︷ ︸
two secondary

infections

+p3
extP(Y = 3) + · · · = E[pY

ext] . (S1)

The expectation on the right, E[zY], is called the probability generating function and can be
computed for several distributions explicitly. Eq. (S1) then shows that the probability of extinction
pext of a cluster started with a single infected individual, is given by the smallest positive fixed
point of the probability generating function, i.e., E[zY] = z (Haccou et al., 2005). If the epidemic
is started with k infected individuals, the extinction probability is simply given by pk

ext, which
yields a survival probability of psurv = 1− pk

ext. Here, and also in the first equality of Eq. (S1), we
have used the assumption that the transmission chains of the k initially infected individuals are
independent of each other.

Plugging in different distributions for the number of secondary infections, we can numerically
compute the probability of extinction. In the particular case of a geometric distribution, which is a
negative binomial distribution with dispersion parameter κ = 1 (compare to Eq. (S3) below), the
fixed point equation can be solved analytically by

E[zY] =
p

1− (1− p)z
⇒ pext =

p
1− p

=
1
R

, (S2)
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Figure S1: Probability distribution and establishment probability of an epidemic for different
distributions of the number of secondary infections. (a) The probability for an infected indi-
vidual to transmit the disease to Y susceptible individuals depends on the distribution of the
number of secondary infections. The probability to not transmit the disease (Y = 0) is highest
for the negative binomial distribution with κ = 0.57 (orange bars; value estimated for the French
COVID-19 data pre-lockdown 2020; Salje et al. (2020)), i.e., the distribution with the highest
variance. The probability of establishment is smallest for the offspring distribution with the largest
variance, as shown in (b). For κ = 1, the geometric distribution (green curve), the establishment
probability is explicit: psurv = 1− 1/R. The largest establishment probability is found for a
Poisson-distributed number of secondary transmission events (blue curve).

where p is the success probability of the geometric distribution and R is the average number of
secondary infections (or effective reproduction number). The last equality in Eq. (S2) is obtained
by noting that R is equal to the mean of the distribution, and that the mean of a geometric
distribution is (1− p)/p.

The probability generating functions for the negative binomial and the Poisson distributions
are given by

E[zY] =


(

p
1−(1−p)z

)κ
,

neg. binomial dist. with mean R and dispersion parameter κ
(success probability p = κ

κ+R ) ,
eR(z−1), Poisson distribution with mean R .

(S3)

Note that the Poisson distribution is obtained from the negative binomial distribution in the limit
κ → ∞. The fixed point of the probability generating functions of a negative binomial or a Poisson
distribution cannot be computed analytically.

In Fig. S1, we plot the distributions and establishment probabilities as a function of R for the
three different distributions of number of secondary infections. For R smaller than 1, the epidemic
will not establish, so that the establishment probability is 0. For values of the effective reproduction
number R greater than 1, the establishment probability becomes positive and the epidemic has a
chance to establish. In general, the smaller the offspring variance, i.e., the larger the dispersion
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parameter κ of the negative binomial distribution, the larger the probability of establishment. In
applications, the analytically exact result 1/R (Eq.(S2)) is often used to approximate the extinction
probability of an epidemic. Fig. S1 shows that this is indeed a reasonably good approximation for
overdispersed offspring distributions such as the negative binomial distribution with a parameter
κ < 1, at least as long as R does not become too large.
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S2 Time-since-infection dependent probability of extinction

In this section, we compute the extinction probability of the epidemic when started with a single
infected individual with time since infection a (also called ’age of infection’). In the previous
section, we have only considered the special case a = 0.

We consider a branching process approximation of the epidemic. We assume that each
individual is characterized by its time since infection and we set τ(a) as the mean infectiousness
at age a, i.e.,

τ(a)da = P(individual with time since infection in [a, a + da] infects a new individual). (S4)

For a > 0, let pext(a) be the probability that the epidemic starting with a single individual with
time since infection a does not establish (in the previous section we have computed pext(0)). More
formally, if Zt denotes the number of individuals infected at time t, then

pext(a) = Pa

(
lim sup Zt < ∞

)
=

∞

∑
k=0

pext(0)kP(Ya = k), (S5)

where Pa is the probability distribution of the branching process starting from a single individual
with age a and Ya denotes the number of future secondary infections of an individual with age a.
From this, in the case of a Poisson-distributed number of secondary infections, we find

d
da

pext(a) = τ(a) (1− pext(0)) pext(a). (S6)

As a consequence

pext(a) = pext(0) exp
(
(1− pext(0))

∫ a

0
τ(s)ds

)
, (S7)

where pext(0) can be determined by the boundary condition

lim
a→∞

pext(a) = 1 , (S8)

which is ensured by the fact that R < ∞. (Intuitively, an individual infected a long time ago is not
infectious anymore.) We then find pext(0) as the unique solution of

pext(0) exp
(
(1− pext(0))R

)
= 1, where pext(0) < 1. (S9)

Note that the expression of pext(0) is the same as the one stated the previous section in the case of
a Poisson-distributed number of secondary infections.
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S3 Derivation of the asymptotic limit

We consider a Crump-Mode-Jagers process, also referred to as a general branching process, with
an unspecified distribution of secondary infections to model the number of infected individuals
over time. The random variable for the number of secondary infections is denoted by Y. We
define τ as the intensity measure of the process, i.e., such that for every test function f

E

[
Y

∑
i=1

f (ti)

]
=
∫ ∞

0
f (u)τ(u)du (S10)

and the correlation intensity measure c such that

E

[
1Y≥2 ∑

i 6=j
f (ti, tj)

]
=
∫ ∞

0
f (u, v)c(u, v)dudv . (S11)

We assume the Kesten-Stigum condition∫ ∞

0
u ln(u)τ(u)du < ∞ . (S12)

Under this assumption, there exists a random variably W∞ such that

exp(−rt)Zt → W∞ almost surely, (S13)

where r is the Malthusian parameter as defined in Eq. (4) in the main text, and Zt is the number
of infected individuals at time t.

Let A be the non-extinction event. We know that E[W∞] = 1 and that almost surely A =
{W∞ > 0}. It follows that

E[W∞|A] =
1

1− pext
, (S14)

where pext is the extinction probability, which is the smallest root of the probability generating
function as defined in Eq. (S1) in the main text:

pext = E[pY
ext]. (S15)

Combining Eqs. (S13) and (S14) gives the formal justification for the correction of the initial
epidemic size by 1/(1− pext) in Eq. (7) in the main text.

Further, if ψ(t) = E[etY] is the Laplace transform (or moment-generating function) of W∞, then
ψ satisfies the fixed point problem (Cohn, 1985, Theorem 4.1)

for all u ≥ 0, ψ(u) = E
[ Y

∏
i=1

ψ(ue−rti)

]
. (S16)

Let us now evaluate the variance of W∞ conditional on non-extinction. Differentiating the
Laplace transform ψ twice with respect to u, we get

ψ′′(u) = E
[
1Y≥1 ∑

i
e−2rti ψ′′(ue−rti)∏

j 6=i
ψ(ue−rtj)

]
+

E
[
1Y≥2 ∑

i 6=j
e−rti e−rtj ψ′(ue−rti)ψ′(ue−rtj) ∏

k 6=i,j
ψ(ue−rtk)

]
.

6

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 17, 2021. ; https://doi.org/10.1101/2020.11.17.20233403doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.17.20233403
http://creativecommons.org/licenses/by/4.0/


ESM to “Stochastic dynamics of early epidemics”

Evaluating at u = 0, we find

E[W2
∞] = E[W2

∞]E
[
1Y≥1 ∑

i
e−2rti

]
+ ψ′(0)2E

[
1Y≥2 ∑

i 6=j
e−rti e−rtj

]
.

Since ψ′(0) = 1/(1− pext), this yields

E[W2
∞] =

1
(1− pext)2

E
[
1Y≥2 ∑i 6=j e−rti e−rtj

]
1− E

[
1Y≥1 ∑i e−2rti

] .

With A = {W∞ > 0} as above, which coincides with the event of non-extinction, we find

E[W2
∞|A] =

(
1

1− pext

) E
[
1Y≥2 ∑i 6=j e−rti e−rtj

]
1− E

[
1Y≥1 ∑i e−2rti

]
=

(
1

1− pext

) ∫ ∞
0 exp(−r(t + u))c(t, u)dtdu

1−
∫ ∞

0 exp(−2rt)τ(t)dt
.

Then

Var[W2
∞|A] =

1
1− pext

(∫ ∞
0 exp(−r(t + u))c(t, u)dtdu

1−
∫ ∞

0 exp(−2rt)τ(t)dt
− 1

1− pext

)
.
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S4 Renewal equation in the absence of conditioning

We informally derive the renewal equation of the incidence and the epidemic size as given in
Eqs. (2) and (3) in the main text.

In the following, σx denotes the time of infection of individual x and Ft denotes the history
of the infection process up to time t. (In the probabilistic jargon, (Ft)t≥0 is the natural filtration
associated with the infection process). Let us define the random empirical measure, which counts
the number of infections in a small time interval [t, t + dt]

db(t) = ∑
x:σx<∞

δσx(dt), (S17)

where δσx is the Dirac measure. The random empirical measure db records the infection times
along the course of the epidemic. Each atom of the random measure db corresponds to a time of
infection. Note that since the epidemic is triggered by a single individual with time since infection
(or ’age’) 0 at time 0, db has a Dirac mass at 0. For t > 0, we can assume without loss of generality
that E[db] has no atom and we write

for all t > 0, i(t) :=
E[db(t)]

dt
, (S18)

where i(t) is the overall rate at which new individuals are infected in a small time interval
[t, t + dt]. In other words, i(t)dt models the incidence in the time interval [t, t + dt].

Our goal is to show that i satisfies the renewal equation

i(t) = τ(t) +
∫ t

0
τ(t− u)i(u)du . (S19)

Informally, we have

E
[

db(t) | Ft

]
= ∑

σx<t
dt× τ(t− σx) . (S20)

In words, if we condition on the history of the process up to time t, the expected number of new
infections in the time interval [t, t+ dt] can be computed by adding up the expected contribution of
every infected individual before time t. For individual x, this expected contribution is dt× τ(t− σx)
and the previous equation follows by adding up the contribution of every previously infected
individual.

Next, the sum on the right hand side of the latter equation can be rewritten in terms of an
integral with respect to the infection measure db in the following way

∑
σx<t

dt× τ(t− σx) = dt
∫
[0,t)

τ(t− u)db(u) , (S21)

so that

E
[

db(t) | Ft

]
= dt

∫
[0,t)

τ(t− u)db(u) . (S22)

Averaging over every realization of the process up to time t, we obtain

E
[

db(t)
]
= dt E

[ ∫
[0,t)

τ(t− u)db(u)
]

= dt
∫
[0,t)

τ(t− u)E[db(u)] .
(S23)
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Recalling our definition of i(t) in Eq. (S18), this yields

i(t) = τ(t) +
∫ t

0
τ(t− u)i(u)du , (S24)

where the term τ(t) on the right hand side follows from the fact that db has a Dirac mass at 0.
This is Eq. (2) in the main text.

The cumulative epidemic size I(t) := 1 +
∫ t

0 i(s)ds then satisfies the renewal equation

I(t) = 1 +
∫ t

0
i(s)ds

= 1 +
∫ t

0

(
τ(s) +

∫ s

0
i(s− u)τ(u)du

)
ds

= 1 +
∫ t

0
τ(s)ds +

∫ t

0
τ(u)

∫ t

u
i(s− u)ds du

= 1 +
∫ t

0
τ(s)ds +

∫ t

0
τ(u)

∫ t−u

0
i(s)ds︸ ︷︷ ︸

=I(t−u)−1

du

= 1 +
∫ t

0
τ(a)I(t− u)du ,

(S25)

where we have used Fubini’s theorem to change the order of integration. This explains Eq. (3) in
the main text.
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S5 Delay differential equation for the process conditioned on
explosion

In this section, we derive a delay differential equation for the rate of new infections over time
when the process is conditioned on non-extinction. This delay differential equation explains Eq. (9)
in the main text.

Markov model. For simplicity, we assume that the infection process is Markovian in its age
structure, where by age structure we refer to the time since infection composition in the infected
population. More precisely, this means that the times since infection for a given individual are
given by a Poisson point process with intensity τ. At time t > 0, we encode the population by
a random vector a = (a1, a2, · · · , an) where a1 > · · · > an are the times since infection listed in
decreasing order (individual 1 is the first infected individual etc.), and n is the number of infected
individuals at time t. We denote by |a| the number of elements in a. The infinitesimal generator
of the infection process is then given by

L f (a) =
|a|

∑
i=1

[
τ(ai)

(
f ((a, 0))− f (a)

)
+ ∂i f (a)

]
, (S26)

where (a, 0) := (a1, · · · , a|a|, 0) and f is a continuous and bounded test function (e.g Ethier and
Kurtz, 1986). Intuitively, one can think of the infinitesimal generator to be the expected rate of
change of a Markov process, which generalizes the concept of the transition rate matrix in the
case of a discrete state continuous time Markov chain. It encodes the infinitesimal dynamics of
the branching process in the following way: on a time interval dt,

• an individual with time since infection ai produces a new infection with a probability τ(ai)dt.
Conditional on this event, the infection age (time since infection) structure of the population
makes a transition from a to (a, 0), i.e., an individual with time since infection 0 is added to
the population.

• the time since infection of every individual increases by dt (this corresponds the partial
derivative of f in the generator).

The Doob h-transform. Let us now consider the probability of survival, which is equivalent to
explosion (Zt → ∞ for t→ ∞),

h(a) := 1−
|a|

∏
i=1

pext(ai). (S27)

for a population with initial time-since-infection structure a. Applying Eq. (S6), we note that h is
a harmonic function for the generator L, i.e., Lh = 0. Let us consider the Markov process with
infinitesimal generator

L̃ f =
1
h

L( f h) . (S28)

This is the Doob h-transform of the original process.
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Branching process conditioned on explosion. The Markov process with generator L̃ is known to
be identical in law with the original process conditioned on explosion (Chetrite and Touchette,
2015; Doob, 1957). Using Lh = 0, the transformed infinitesimal generator computes to

L̃ f (a) =
|a|

∑
i=1

[
τ(ai)

h((a, 0))
h(a)

(
f ((a, 0))− f (a)

)
+ ∂i f (a)

]

=
|a|

∑
i=1

[
τ(ai)

1− pext(0)∏|a|i=1 pext(ai)

1−∏|a|i=1 pext(ai)

(
f ((a, 0))− f (a)

)
+ ∂i f (a)

]
.

(S29)

The formula can now be interpreted as follows. For a given time-since-infection structure a,
conditioning on explosion induces an adjustment of the time since infection of the ith individual
as follows

τ̃a(ai) = τ(ai) ·
1− pext(0)∏|a|j=1 pext(aj)

1−∏|a|j=1 pext(aj)︸ ︷︷ ︸
adjustment

. (S30)

We note that the infection rate is increased for every individual, independent of their time since
infection, by the same amount. The increase, however, depends on the time-since-infection
structure of the entire infected population.

The delay equation. We keep the same notation as in Section S4. By the same reasoning as in
Section S4, we have

E[db(t)|Ft] = ∑
σx<t

(1− pext(0)∏y:σy<t pext(t− σy)

1−∏y:σy<t pext(t− σy)

)
dt× τ(t− σx) . (S31)

In words, Eq. (S31) means that if we condition on the history of the process up to time t, the
expected number of new infections in the time interval [t, t + dt] can be computed by adding
up the expected contribution of every infected individual before time t. According to Doob’s
h-transform formula, for an individual infected at time σx, the expected contribution of this
individual is given by dt× τ(t− σx) multiplied by the Doob’s term(1− pext(0)∏y:σy<t pext(t− σy)

1−∏y:σy<t pext(t− σy)

)
, (S32)

which depends on the whole time-since-infection structure of the population up to time t.
We now rewrite the adjustment factor in the following way

1− pext(0)∏y:σy<t pext(t− σy)

1−∏y:σy<t pext(t− σy)
=

1− pext(0) exp
(

∑y:σy<t ln(pext(t− σy))

)
exp

(
∑y:σy<t ln(pext(t− σy))

)

=

1− pext(0) exp
( ∫

[0,t) ln(pext(t− u))db(u)
)

1− exp
( ∫

[0,t) ln(pext(t− u))db(u)
) .

(S33)
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As a consequence, Eq. (S31) can be rewritten as

E[db(t)|Ft] = dt
(

∑
x:σx<t

τ(t− σx)

)
×

1− pext(0) exp
( ∫

[0,t) ln(pext(t− u))db(u)
)

1− exp
( ∫

[0,t) ln(pext(t− u))db(u)
)

= dt
∫
[0,t)

τ(t− u)db(u) ×
1− pext(0) exp

( ∫
[0,t) ln(pext(t− u))db(u)

)
1− exp

( ∫
[0,t) ln(pext(t− u))db(u)

) .

(S34)

Averaging over the past of the infection process Ft, we find that

E[db(t)] = dt E
[ ∫

[0,t)
τ(t− a)db(a) ×

1− pext(0) exp
( ∫

[0,t) ln(pext(t− a))db(a)
)

1− exp
( ∫

[0,t) ln(pext(t− a))db(a)
) ]

. (S35)

Since db has a Dirac at 0 we have

E[db(t)] = dtE
[ (

τ(t) +
∫ t

0
τ(t− u)db(u)

)
×

1− pext(0)pext(t) exp
( ∫ t

0 ln(pext(t− u))db(u)
)

1− pext(t) exp
( ∫ t

0 ln(pext(t− u))db(u)
) ]

.

(S36)
Let us now compare this formula with its analog in Eq. (S23) in the absence of conditioning

the process on survival. In Eq. (S23), we can use Fubini’s theorem to interchange the integral
and the expected value. This provides the renewal equation for the average infection measure
i(t) – see Eq. (S19). In the presence of conditioning in Eq. (S36), the right hand side is not linear
in db anymore and we cannot derive an autonomous equation for the density i(t) as in the
unconditioned case. Our approximation now consists in ignoring the non-linearities on the right
hand side of Eq. (S36) and replacing db(t) by its expected value. This gives

ĩ(t) =

(
τ(t) +

∫ t

0
τ(t− u)ĩ(u)du

)
×

1− pext(0)pext(t) exp
( ∫ t

0 ln(pext(t− u))ĩ(u)du
)

1− pext(t) exp
( ∫ t

0 ln(pext(t− u))ĩ(u)du
)

= F(ĩ(s); s ∈ [0, t]) ,
(S37)

which explains Eq. (9) in the main text. The overall epidemic size of the conditioned process is
then given by Ĩ(t) = 1 +

∫ t
0 ĩ(s)ds.
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S6 Cumulative epidemic size over time

In the main text, we have seen that the cumulative epidemic size over time varies a lot between
different stochastic simulations (Fig. 1 in the main text). The number of secondary infections was
Poisson-distributed in the main text. The negative binomial and geometric distribution exhibit
more variance than a Poisson distribution. Therefore, the variance of the cumulative epidemic size
obtained from 10,000 stochastic simulations is even larger in these cases (compare the subfigures
in Fig. S2). This can be explained as follows: First, super-spreading events are more likely and as
a result, epidemic sizes can be much larger. Secondly, and conversely, a larger number of infected
individuals do not transmit the infection at all; as a result, the total epidemic size can remain
smaller.
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Figure S2: The cumulative number of infected individuals over time. The light and dark shaded
regions show the 90% and 50% inter-quantile ranges obtained from 10,000 stochastic simulations
that resulted in establishment of an epidemic cluster. Dots show the average of these simulations
over time. With a negative binomial offspring distribution (b), a lot of infected individuals do not
transmit the disease, which results in lower epidemic sizes than compared to a Poisson offspring
distribution (a). In contrast, few infected individuals with a lot of secondary infections early in
the epidemic can generate much larger epidemic sizes when compared to the Poisson distribution.
These two effects together explain the much larger variance in epidemic sizes for the negative
binomial distribution compared to the Poisson distribution. For a geometric offspring distribution
(c), the mean epidemic size and amount of variation are between the numbers found by the
negative binomial and Poisson cases. This is explained by the dispersal parameter of the geometric
distribution being κ = 1, which is between the respective values for our choice of the negative
binomial offspring distribution (κ = 0.57) and the limit κ → ∞ corresponding to the Poisson case.
The effective reproduction number is set to R = 1.3 and the transmission density µ(t) is a Gamma
distribution with the parameters as stated in Table 1 in the main text.
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S7 Detection rate of a single mass testing effort

A good measure to evaluate the prevalence of the disease in a population is the number of detected
cases, which depends on the testing effort. In the context of COVID-19, the average detection rate
on the 8th of May 2020 across a large number of countries, mainly in Europe and North America,
was inferred to be around 30% at best (Belloir and Blanquart, 2021; Russell et al., 2020). However,
test capacity is not the only limiting factor to detect infected individuals. The probability for an
infected individual to test positive by a reverse polymerase chain reaction or a lateral flow test
(LFT), which we will more loosely refer to as rapid tests, varies over the course of the individual’s
infection (Borremans et al., 2020; Hellewell et al., 2021; Kucirka et al., 2020). Here, we will use
the data obtained for rapid tests in Hellewell et al. (2021, Fig. 4B) and for reverse transcriptase
polymerase chain reaction (RT-PCR) tests in Kucirka et al. (2020, Fig. 2), as plotted in Fig. S3.
During the first three days of an infection, the viral load within the infected individual is too low
to reliably detect the virus with both testing procedures. The probability of detection then reaches
a maximum around day four post-infection and then gradually declines. The decline is much
faster for rapid tests than for RT-PCR tests. In the following, we denote the probability to test
positive on day a after infection by Q(a).

Using the probabilities for testing positive by a rapid test and an RT-PCR test (Fig. S3), we
compute an upper bound for the fraction of detectable infectious individuals within the epidemic
outbreak. Note that this result does not rely on our stochastic correction of the deterministic
dynamics, nor does it depend on the epidemic size over time. Instead, the result only depends on
the stationary time-since-infection distribution (also called infection age distribution), which is
determined by the Malthusian growth rate r. Therefore, this result is true for any exponentially
growing epidemic.

Again using general branching process theory (Haccou et al., 2005; Jagers, 1969), we find that
the number of detectable individuals in the population at time t is given as a fraction q of the
overall epidemic size as given in Eq. (8) in the main text. The fraction q is defined as

q =
1
C

∫ T

0
Q(a)re−rada , (S38)

where C =
∫ T

0 re−rada = 1− e−Tr is the proportion of individuals that have been infected less
than T days ago. The integral in Eq. (S38) computes the fraction of individuals that are detectable
(term Q(a)) integrated over the stationary time-since-infection distribution (term re−ra) of the
population, restricted to the time since infection being less than T days (constant C). For the
numerical example, we assume that after T = 14 days infected individuals are not infectious
anymore. The resulting truncated distributions for R = 2.9 and R = 1.3 are plotted in Fig. S3
(dashed and dotted line).

With a high reproduction number R = 2.9, we find q ≈ 0.255 (evaluating a discretized version
of the integral) when testing is done by rapid tests, so that we would expect that only about 25.5%
of the infected individuals would test positive with a rapid test at each point in time. Using the
RT-PCR data instead, we find q = 0.29. These estimates strongly depend on the combination
of the probability to test positive Q(a) and the stationary time-since-infection distribution. The
stationary time-since-infection distribution itself depends on the Malthusian growth rate r (Eq. (4)
in the main text). If we reduce the reproduction number to R = 1.3, the detection rates become
q = 0.265 and q = 0.48 for rapid tests and RT-PCR tests, respectively. Interestingly, the fraction of
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detectable cases does not change in the rapid test scenario substantially, which is a robust result
for all possible reproduction numbers between 1.1 and 3. This seems to be due to our choice
to only consider individuals with a time since infection less than 14 days. For other choices of
this infectiousness threshold, the difference between the detection rates for the two reproduction
numbers is more notable. In case of the RT-PCR test, the detection rate increased a lot with a
lower reproduction number, from 29% for R = 2.9 to 48% for R = 1.3. The explanation for this
increase in detection rate is that in slowly growing epidemics, more individuals are infected a
long time ago and remain detectable with RT-PCR, whereas in faster growing epidemics many
individuals are not yet detectable because they were infected within the last two days.
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Figure S3: Probability of testing positive. The probability for an infected individual to test
positive by a rapid test (bullet points) and a RT-PCR test (crosses) is close to zero during the first
two days after infection. It then increases up to approximately 0.6 on day 4 after infection for rapid
tests and up to 0.8 on day 8 for RT-PCR tests. The probability of testing positive then decreases.
For rapid tests, the probability of testing positive approaches zero by day 21 after infection. For
the RT-PCR test, the probability of testing positive remains relatively high at least until day 20,
which corresponds to the last estimated time point in Fig. 2 (upper panel) from Kucirka et al.
(2020). The probabilities for rapid tests are based on data from Fig. 4B in Hellewell et al. (2021).
The dashed and dotted lines show the re-normalized stationary time-since-infection distributions
for R = 2.9 and R = 1.3 (Eq. (S38)).
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S8 Testing frequency and cluster size at detection

We study the average epidemic cluster size at detection when varying the daily testing frequency
f in a population. Fig. S4 shows that our analytical prediction based on Eqs. (11) and (12)
from the main text slightly overestimates the averages as obtained from stochastic simulations.
Importantly, the epidemic size at detection reflects the exponential growth of the epidemic and
declines exponentially with an increasing daily testing frequency. This indicates that there might
be a clear optimal testing frequency that ensures clusters are relatively small when detected while
not overwhelming test systems.
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Figure S4: Average epidemic cluster size at detection depending on the daily testing frequency.
The shaded region shows the 90% confidence interval of the cluster size obtained from 10,000
stochastic simulations that resulted in cluster establishment. Dots represent the average cluster
sizes of these simulations at the first detection time. The theoretical prediction (black solid line)
is obtained from Eq. (11) in the main text, adapted to the setting of testing. In particular, the
distribution until detection is motivated by the probability to test positive in Fig. S3 in SI, Section S7,
and translated to a detection probability by Eq. (12) in the main text. The effective reproduction
number is set to R = 1.1 and the number of secondary infections is Poisson-distributed. The
transmission density µ(t) is as stated in Table 1 in the main text.
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