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Abstract

The second wave of COVID-19 in Malaysia is largely attributed to a mass gath-
ering held in Sri Petaling between February 27, 2020 and March 1, 2020, which
contributed to an exponential rise of COVID-19 cases in the country. Starting
March 18, 2020, the Malaysian government introduced four consecutive phases of
a Movement Control Order (MCO) to stem the spread of COVID-19. The MCO
was implemented through various non-pharmaceutical interventions (NPIs). The re-
ported number of cases reached its peak by the first week of April and then started
to reduce, hence proving the effectiveness of the MCO. To gain a quantitative un-
derstanding of the effect of MCO on the dynamics of COVID-19, this paper develops
a class of mathematical models to capture the disease spread before and after MCO
implementation in Malaysia. A heterogeneous variant of the Susceptible-Exposed-
Infected-Recovered (SEIR) model is developed with additional compartments for
asymptomatic transmission. Further, a change-point is incorporated to model the
before and after disease dynamics, and is inferred based on data. Related statistical
analyses for inference are developed in a Bayesian framework and are able to provide
quantitative assessments of (1) the impact of the Sri Petaling gathering, and (2) the
extent of decreasing transmission during the MCO period. The analysis here also
quantitatively demonstrates how quickly transmission rates fall under effective NPI

implemention within a short time period.
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1 Introduction

Imported cases from China contributed to the first COVID-19 wave in Malaysia from
January 25, 2020 to February 26, 2020 [1]. This first wave had a total of 22 cases out of
which 20 were directly linked to foreign travel while the remaining two cases were local
transmissions [2, 3]. The second wave of COVID-19 in Malaysia was largely attributed
to a mass gathering held in Sri Petaling between February 27, 2020 and March 1, 2020,
which contributed to an exponential rise of COVID-19 cases in the country. This gathering
involved over 16,000 participants including a large number of foreigners from countries
that later registered COVID-19 cases [4]. On March 18, 2020, the Malaysian government
introduced a nationwide lockdown which was the Phase I Movement Control Order (MCO)
throughout the country to stem the spread of COVID-19. Phase 1 MCO was enforced for a
2-week period starting from March 18, 2020 to March 31, 2020. During this phase, various
non-pharmaceutical interventions (NPIs) were strictly enforced by means of movement
restrictions, wearing of face masks, social distancing and hand hygiene practices to reduce
disease transmission. The Phase I MCO was then evaluated after 2 weeks based on
case trends and model forecasts by the Ministry of Health (MOH) Malaysia. As local
transmission persisted, the MCO was extended a total of four times until May 12, 2020.
Phase 2, 3 and 4 of the MCO covered periods starting from April 1, 2020 until May
12, 2020 (Phase 2 - April 1, 2020 to April 14, 2020, Phase 3 - April 15th to April 30,
2020, and Phase 4 - May 1, 2020 to May 12, 2020). Subsequently, from May 4, 2020, the
MCO was eased into the Conditional MCO (CMCO) until June 9, 2020. However, during
CMCO, there were still several identified hot-spots of COVID-19 which were placed under
Enhanced MCO (EMCO) with the aforementioned strict movement control restrictions.

The implementation of MCO proved to be effective - the reported COVID-19 cases
reached its peak around the first week of April and subsequently started to reduce. How-
ever, concerns remained whether a rebound in transmission would occur when the MCO
was lifted and if compliance to NPIs were not followed strictly at that time. In or-
der to gain a quantitative understanding of the effect of MCO, we developed a class of
mathematical models to capture the dynamics of COVID-19 spread before and after the
MCO implementation. A variant of the Susceptible-Exposed-Infected-Recovered (SEIR)
model is proposed and developed in this paper which incorporates heterogeneity in the
transmission dynamics, additional compartments for asymptomatic transmission and a
change-point, chosen adaptively based on data, to reflect the shift in spread dynamics
after the MCO implementation. The models developed in this paper are able provide a
quantitative assessment of the extent of COVID-19 spread during the pre-MCO (large
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s gathering) and MCO periods by means of a measure of infectivity developed from them.
s This measure is similar to the basic reproduction number, commonly denoted by %, but
;s can be calculated for more complex epidemic models such as the ones proposed here.

39 Deterministic compartmental models, such as the Susceptible-Infected-Recovered (SIR)
w0 or the Susceptible-Exposed-Infectious-Recovered (SEIR) models, provide a good theoreti-
s cal framework to study infectious disease spread, and have been widely used and reported
22 in the literature. However, more complex versions of these models, and their stochas-
i3 tic counterparts require data-rich inputs to model all aspects of the disease dynamics.
s Data-rich inputs, if lacking, can be compensated using reliable and informative prior elic-
s itation. Considering the acute nature and scale of the pandemic as well as the urgent
s need for a multisectorial response, comprehensive data availability of the pandemic was
s7  limited in Malaysia. For example, the open source website outbreak.my initially reported
s a transmission network for all cases; however, it was unable to cope with the scale of the
s pandemic when it intensified. Factoring in this data limitation, we choose to develop
so models that are deterministic, rather than stochastic, while ensuring that they are able
51 to capture salient transmission dynamics satisfactorily. As mentioned earlier, we enhance
52 the deterministic models by incorporating compartments for asymptomatic transmission
53 and a change-point to reflect the shift in disease dynamics. We also take into account
s« heterogeneity in the disease spread such as varying contacts among susceptibles within
ss  the closed population. The starting point of our proposed models are the class of epidemic
ss models with power transmission dynamics which are shown to incorporate heterogeneity
sv (see [, 0]).

58 Several studies in the literature [7, 8, 9, 10, 11] have analyzed the effects of NPIs in
o reducing the number of COVID-19 cases. In [7], the effects of different types of NPIs
o0 on COVID-19 cases are modeled using a negative-binomial distribution whose underlying
&1 parameters incorporate country information, type of NPI implemented and change-point
2 effects. The associated Bayesian analysis is carried out using Markov Chain Monte Carlo
s3 (MCMC) algorithms to arrive at posterior parameter estimates and credible intervals.
s« No epidemic models are considered in this work. A generalization of the SEIR epidemic
s model is considered in [9] to understand the dynamics of transmission in New York, USA,
s under various NPI settings. However, the model is complex and requires data-rich inputs
o7 for the estimation of all unknown parameters. As a result, the authors derive baseline
s epidemiological parameters from published literature and not from actual observed cases
s in New York, and in the end conduct a simulation study based on the assumed parameter
o values. The study in [%] extends the work of [12] and computes a time-varying basic

n reproduction number as a way of gauging the effect of NPIs over time. Both these works
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assume that serial intervals (i.e., the time between onset of symptoms for the infector and
the infectee) can be computed for each case, which is another situation requiring data-rich
input.

Studies that use compartmental epidemic models as a way of gauging the time-varying
effects of NPIs have emerged over the course of the pandemic [13, 14, 15]. Compartmental
epidemic models naturally model disease spread via contact rates which directly quantify
the extent of NPIs (since, as mentioned earlier, NPIs are designed to reduce person-to-
person transmission). Thus, epidemic models provide a natural approach for considering
time-varying effects of the MCO period. Further, in this paper, the estimation of SEIR
parameters is carried out based on local considerations and local data; they are not
obtained from published literature based on studies conducted elsewhere where their local
dynamics can be vastly different.

We seek to address one important aspect of Malaysia’s multifaceted response to the
COVID-19 pandemic, that is, to inform the health officials at MOH and aid them in their
decision-making. Thus, our model was developed under local considerations using local
data. Our model and related analyses are able to provide a quantitative assessment of (1)
the impact of the Sri Petaling gathering, and (2) the extent of decreasing transmission
during the MCO period by incorporating a time-varying contact rate parameter, which
is estimated using locally available data. In essence, the proposed models here are being
used as a lens to interpret the observed data in terms of when, and to what extent, a
reduction in COVID-19 transmission occurred as result of the implementation of MCO.

The remainder of the paper is organized as follows: Section 2 presents the material and
methods used in this paper: Section 2.1 gives the various data sources used in this study,
Section 2.2 describes the epidemic models that we propose in this paper and Section 2.5
outlines the related Bayesian inference methodology developments. Section 3 gives the
results of our analyses, and Section 4 provides general discussion and insights derived
from these results. Finally, several conclusions and potential future work are outlined in

Section 5.

2 Methods

2.1 Data Collection

Daily situation reports on COVID-19 cases in Malaysia are published by the National
Crisis Preparedness and Response Centre (CPRC) of MOH, as well as other official web-
sites (such as outbreak.my). The data on daily COVID-19 cases have been published
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Reported Daily Cases

Reported Daily Cases

Reported Daily Cases

Figure 1: Reported daily cases for (a) Malaysia, (b) Selangor and (c¢) Sarawak. The time period
considered is from March 1, 2020 to April 28, 2020.

since 21 January 2020 and is publicly available. The reports consist of confirmed daily
and cumulative cases, recovered cases and deaths, as well as cases requiring ICU care
and ventilator support. Cases by states are also available for the 13 states and 3 federal
territories. In this study, we studied characteristics of the second COVID-19 wave in
Malaysia starting from March 1, 2020 (corresponding to the final day of the Sri Petaling
gathering). Data used for the current study are confirmed daily cases for Malaysia, and
for two states: Selangor and Sarawak. These states were chosen to illustrate the aggres-
sive transmission propagated by the Sri Petaling gathering. Selangor is the state where
Sri Petaling is located and from where a majority of the participants originated, whereas
Sarawak represents a state which was essentially not affected by this gathering. The time
period of study is between March 1, 2020 (end of Sri Petaling gathering) and April 28,
2020, covering the period immediately after the Sri Petaling gathering and the first three
phases of the MCO. Our study duration is further divided into two periods. The first
period ranges from March 1, 2020 until March 18, 2020, which covers the subsequent 17
days after the gathering. The second period is taken from March 18, 2020 until April
28, 2020, covering the three successive Phases 1, 2 and 3 of the MCO. Figure 1 gives the
trajectories of reported daily COVID-19 cases between March 1, 2020 and April 28, 2020
for Malaysia, and the states of Selangor and Sarawak.

All COVID-19 cases reported by MOH were confirmed by real-time reverse transcriptase-
polymerase chain reaction (real-time RT-PCR) tests. A positive case was reported when
the person in question was found to be positive for SARS-CoV-2 via a real-time RT-PCR
test. Upon confirmation, the individual was isolated at COVID-19 designated hospitals

and healthcare facilities. Active cases are defined as infected persons who were currently
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undergoing treatment, and hence, isolated and removed; the individual is assumed to be
unable to infect other susceptibles in the population, and hence “removed” from further
modelling steps. This study did not consider transmission from positive isolated COVID-
19 patients to health personnel as there was no evidence of this type of transmission

occurring in the COVID-19 designated hospitals in Malaysia.

2.2 The SEIR model

The typical and well-known SEIR compartmental model consists of four compartments
(Susceptible, Exposed, Infected and Recovered) representing different stages of evolution
of an infectious disease, such as COVID-19, in a population. Susceptible individuals come
in contact with one or more infected individuals in the population, and subsequently,
become exposed to the virus. The virus then incubates within these individuals for some
time. At the end of the incubation period, the exposed person becomes infectious and
transmits the disease to other susceptibles in the population who come in close contact
to him/her. The infected person is assumed to be infectious for a certain period (called
the infectious period) after which the person recovers, dies or becomes immune. The
deterministic SEIR model is given by a set of nonlinear ordinary differential equations
(ODEs):

S(t) = —h(S,I) (1)
E(t) = h(S,I)—0dE(t) (2)
I(t) = 6E(t)—~I(t), and (3)
R(t) = ~v1(1) (4)

where S(t), E(t), I(t) and R(t) represents, respectively, the susceptible, exposed, infected
and recovered compartments representing the total number of individuals in each com-
partment at time t (here, @(¢) denotes the derivative of x(t) with respect to time ¢ for
x € {S,E,I,R}), N is the total population size, and h(S,I) = 6% I(t) is the rate of
new infections (or, the number of new cases in the population). The parameters that
govern the trajectory of the SEIR model are 0 = (3, 0,7, 70, ep) which are, respectively,
the transmission rate (i.e., number of individuals in the population an infected person
comes in contact with and successfully transmits the disease per unit time), the rate of
incubation of the disease, the rate of infectiousness, the initial number of infectives and the
initial number of exposed individuals. Since S(t) + E(t) + I(t) + R(t) = 0, it follows that
S(t)+ E(t)+ I(t)+ R(t) = N for all t. Reparametrizing S(t) = S(t)/N, E(t) = E(t)/N,
I(t) = I(t)/N and R(t) = R(t)/N, the renormalized versions of S, E, I and R represent

6
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the proportion, rather than the total number of individuals, in each compartment. In the
renormalized SEIR model, S(t) + E(t) + I(t) + R(t) = 1 and the rate of new infections

become

h(S,I)=p3S1. (5)
Based on initial values of S(0) =sp=1—% — <2 F(0) =%, I(0) = %, and R(0) =0

at time Ty = 0, the SEIR ODE system can be solved numerically to yield the values
of S(t), E(t),I(t) and R(t) for every t € [Ty, T1] where T} denotes the final time-point.
In (1)-(4), the incubation period, 1/4, is inversely proportional to the incubation rate 9,
and similarly, the infectious period 1/ is inversely proportional to the infectious rate =.
The correspondence between rates and exponential sojourn times is only approximately so
since it is not so straightforward to establish this correspondence with an individual-based
stochastic model given the non-linear nature of the process.

Modifications to typical SEIR formulation (1)-(4) are made to adapt it to the local
Malaysian context. Here, the last compartment of the SEIR model is not “Recovered”
but “Removed”, representing all infectious individuals who are effectively isolated follow-
ing a positive test result. In Malaysia, such patients are isolated in hospital wards to avoid
further contacts with susceptibles. For COVID-19 in particular, the onset of symptoms
does not necessarily indicate the start of infectiousness; in fact, the onset of infectiousness
may be somewhat earlier. Thus, the infectious period 1/v represents the period of effec-
tive infectiousness, that is, the period from the start of infectiousness (asymptomatic or
symptomatic) until the individual is isolated and then can no longer infect others. Based
on this understanding, 1/§ represents the incubation period, which is the period starting
from getting infected until the onset of infectiousness. The connection between the SEIR
modelling formulation and actual evolution stages of COVID-19 in patients is shown in
Figure 2. Recent studies on COVID-19 have clearly reported growing evidence of asymp-
tomatic infections [16, 17, 18] which the current SEIR model does not incorporate. We
address the issue of asymptomatic transmission in our subsequent model development in
Section 2.3.

Observed data in Malaysia consists of the total number of confirmed daily cases as
reported by outbreak.my and CPRC (i.e., the number of cases that were tested positive,
and hence, effectively isolated). Hence, only the R compartment of the SEIR model
can be related to observed data while other compartments of the SEIR model remain
unobserved. In the subsequent model development in Section 2.3, the R compartment is
further split into two: observed and cryptic sub-compartments corresponding to reported
and asymptomatic infections; see Section 2.3 for more details. An additional assumption

made is that individuals from the R compartment do not return to the S compartment -

7


https://doi.org/10.1101/2020.11.20.20233890

177

178

179

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

medRXxiv preprint doi: https://doi.org/10.1101/2020.11.20.20233890; this version posted November 23, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

All rights reserved. No reuse allowed without permission.

| Asymptomatic Period |

I_I_I

| Non-infectious Period | | Infectious Period |
Incubation Period Onset and Symptomatic Period Quarantine Period
| Exposed Period =1/8 | | Effective Infectious Period = 1/y |

Figure 2: Salient periods in the evolution of COVID-19 and their connection to durations in the SEIR
model.

at least on the timescales over which the epidemic is observed; see, for example, [19, 20)]

In order to provide a quantitative assessment of the impact of the MCO, we modify
(1)-(4) to incorporate an instantaneous time-varying transmission rate, 5 = 5(t) (see [21],
for example) which is able to quantify the extent of disease transmission at time t. The
MCO can be deemed effective if the function 3(t) shows a decay reflecting an increasing
effectiveness in reducing transmission among individuals over time due to implementation
of the NPIs.

2.3 The modified SEIR model

The aforementioned SEIR model does not account for heterogeneity, asymptomatic trans-
mission and change points. To this end, we propose models with power transmission dy-
namics that incorporate heterogeneity in the disease parameters; see, for example, [, 0].
Further, the infectious compartment in (3) of the SEIR model is now split into two, I,
and .., for symptomatic (or, observed) and asymptomatic (or, cryptic) individuals, who,
respectively, exhibit and do not (or, mildly) exhibit symptoms but are nevertheless infec-
tious. Correspondingly, the R compartment is also split into two, as mentioned earlier, to
accomodate quarantined and un-quarantined cases. It is assumed that the proportion of
individuals transiting from E to I, is p. The remaining exposed individuals (a proportion
of 1 — p) transition into the I. compartment and remain undetected throughout their
disease experience.

From now on, we consider only renormalized state values which represent proportions,

and not actual numbers, of the population. The modified SEIR model with cryptic and
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observed infectiousness is given by the following system of ODEs:

S(t) = —h(S L, L) (6)
E(t) = h(S,1,1,) - E(t) (7)
L(t) = pdE(t) = L) (8)
Ro(t) = 70 Lo(t) (9)
L(t) = (1—-p)dE(t) — 7. L) (10)
Re(t) = 7el(t) (11)

where the rate of new infections is now given by
S 1) = (4 5,0 L] + 5.0 L0 ) - [S(0)" (12)

as opposed to SS(t)I(t) in (5) for the SEIR model. A key difference of the model
formulation in (6) - (12) is the power transmission dynamics used to model heterogeneity
in the population; see [5, 6]. In [0], a gamma distribution is elicited on the varying
disease transmission parameters within the population which gives rise to the powers ws,
w;, and w; . on S(t), I,(t) and I.(t), respectively, with ws, > 1, w;, > 1 and w;. > 1.
The lower bounds on wg, w;, and w; . recover the original SEIR model dynamics with
no heterogeneity. The remaining parameters have the following interpretation: (1) «
represents a small yet significant force of infection that starts the local infection process
but is eventually overwhelmed by it. In our context, « represents the initial force of
infection arising from, say, foreign infectious individuals attending the large gathering
at Sri Petaling starting February 27th. (2) The parameters 7, and 7. have the same
interpretation as « in (3), that is, they are rates of infectiousness but for the observed and
cryptic compartments, respectively. (3) The parameter § is the same as before, namely, it
is the rate of incubation associated with the exposed compartment. (4) The parameters
B, and . are transmission rates for the observed and cryptic compartments, respectively,
in the modified SEIR model with . = p 3y and p € [0, 1]. In other words, we assume that
the transmission rate for asymptomatic individuals is smaller than that of symptomatic
individuals; this is a plausible assumption to make as asymptomatic individuals generally
possess a lower viral load which leads to lower chances of a successful transmission. On
the other hand, a longer asymptomatic infectious period may compensate for the lower
transmission rates for an asymptomatic individual, and this possibility is captured by the
model via the parameter ~,.

A change-point is incorporated into the modified SEIR model to capture the shift in
disease dynamics before and after the start of the MCO. For this, an unknown threshold,
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T, is chosen so that observed daily cases fall either to the left or right of 7. We denote
the observation window to the left of 7 by W, which consists of dates from March 1st up
to and including 7*. The window to the right of T™ is denoted by Wpx which consists of
dates after T up to and including April 28th, 2020. The change-point date T™ is inferred
from data; it is not taken as March 18th, 2020, the date of the start of MCO. Choosing
T* in this data-driven way is justified as the impact of MCO on observed cases may not
be realized immediately. The modified SEIR model with change-point 7% is governed by
the ODE system (6)-(12) for all time points ¢t € Wy. For t € Wg, the same ODE system
(6)-(12) is considered but now with a different set of parameter values in WWg compared

to Wy, and with a new [, expressed as a function of ¢,
Bu(E) = 70 | €1 4T 4 ¢ [1 — =] | (13)

to model possible changes in disease transmission over time. The functional form of 5,(t)
in (13) has an initial value of v, e at t = T™* after which it decreases (provided a; < 0)
to the asymptotic value of ¢y, as t — oo. Thus, ¢y, represents the residual disease
transmission that may be present even during the MCO period, for example, due to close
contact between family members in the same household. The general functional form of
B,(t) subsumes the constant disease transmission rate model as a special case by taking
a; = ¢ = 0 in (13). The constant rate submodel has the advantage of not explicitly
assuming any functional form for the change in disease transmission over time. On the
other hand, it can only ascertain if there is an overall change (increase or decrease) in
transmission after the change point 7. Similar to the relationship 5. = uf, in Wy, we
assume [.(t) = p B,(t) for the window Wg based on a different p value. In Section 3, the
submodel is used first followed by the full model to fit to observed data.

In the model formulation of (6)-(11), only the R, compartment is modelled directly
using a likelihood function based on daily observed cases. The other compartments of the
modified SEIR model remain latent and do not have any direct observation processes for

modelling based on likelihoods; see Section 2.5 for further details.

2.4 Quantitative assessment of disease spread

The basic reproduction number, %, is defined as the number of secondary infections
caused by one primary individual during his/her infectious period. It is the most impor-
tant quantitative indicator reported to assess whether the disease is in control or not. It

is well-known that the threshold value of 1 for %, distinguishes between the situations

10
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where a major epidemic occurs versus the disease dying out eventually in the population.
In fact, several studies in the literature report a gradual decrease in %, after lockdown
(22, 23, 24]. For the SEIR model in (1) - (4), %, is given by the well-known formula
Hoy = /7. Time-varying measures of secondary infections per primary infected, %;, are
also available in the literature. However, for the modified SEIR model presented in Section
2.3, %y and #; cannot be computed. Therefore, we resort to an alternative quantitative
assessement of disease spread - the total number of infections (i.e., generational) caused
by the introduction of one additional infectious individual into the infection process at
time point ¢. This procedure is illustrated using the I, compartment. Based on (6)-(12),
new values for the ODE system are calculated from time point ¢ onwards with current
state values serving as initializations of the ODE system for all except one compartment:
For the I,-compartment, the current value I,(t) is replaced by I,(t) + 1/N as the initial
value. The new rate of incidence is given by h(S*, I, I*) over the infectious period of the
individual when the ODE system is propagated using (6)-(12) in [¢t,t+1/7,]. The increase
in the rate of incidence by the introduction of this individual in the I, compartment is

given by

AALJ=14;+1][h(swuxLxuxLﬂuD-—h(suo,aoo,a@o)]dw (14)

Similarly, the increase in the rate of incidence by the introduction of one infectious in-
dividual into the I, compartment at time point ¢ can be calculated. This is denoted by

Ay(1.). The final increase in the incidence is the mixture
Ay = pAt(L)) + (1 - p)At(Ic> (15>

where p is the proportion of exposed individuals who enter the I, compartment in (8).

2.5 Bayesian Inference

Model fitting and inference is carried out in a Bayesian framework.

2.5.1 The Likelihood

The likelihood relating components of the R,-compartment to the total number of daily
cases, Dy, t € Wi, U Wk, is taken to be the negative binomial probability function, that
is,

D NB(-; 4, L(1), 7) (16)
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where
C(x+71)

L(r) «!
has mean v = ¢r/(1 — ¢q) and variance qr/(1 — q)? = v + 7v% in (17), T'(u) is the

NB(z;v, 1) = q (1-1¢q)%, r=0,1,2,--- (17)

Gamma function [~ s*~'e~*ds evaluated for v > 0. Thus,  need not be integer-valued
in (17). The parameter 7 measures overdispersion with respect to the Poisson likelihood
recovered when 7 = 1; see, for example, [25, 26]. The observed data on daily cases in
Malaysia exhibited significant overdispersion in the order of the mean. As a result, the
Poisson likelihood did not fit well and we resorted to the negative binomial likelihood

instead. More discussion on this aspect is presented later.

2.5.2 Assignment of Priors

Let 69 = (5,gj),u(j),7((,j),7£j),5(j),p(j),w§i)),w§i),ng),a(j)) for j = {L, R} be the param-
eters of the ODE system (6)-(12) for t € W, and t € Wk, respectively. The collection
of all parameters is denoted by © = ) U ) U (1,T*) where 7 is the overdispersion
parameter of the negative binomial likelihood and T™ is the change-point. The uncer-
tainty in @ is elicited via prior distributions in the Bayesian inferential framework. In
what follows, we describe the priors used on the generic parameter 6 after which the
discussion on prior elicitation can be extended to %) and 8 in a straightforward man-
ner. It is important to note that the priors on 6 depend on hyperparameters. Here,
we only elicit the forms of the priors; the discussion on the exact choice of the corre-
sponding hyperparameters is relegated to the next few paragraphs. Independent uniform

priors U(ag,,be,) are chosen for each & € {u,p,w,,,w, ., w,,a} with corresponding hy-

perparameters ag, and be,. The prior on (v,,9) is c’hose7n independently in the following
way: For & € {,,0}, 1/& ~ Ul(ag,, be,). The reciprocal transformation is used for prior
elicitation since these parameters have a rate interpretation, and hence, their reciprocals
represent the corresponding duration (either incubation or infectious periods) with bench-
mark values reported in the literature [16, 17, 18, 27]. The cryptic infectious period 1/,
is generally longer than the observed infectious period 1/7, (since the former remains
undetected). Hence, it follows that 1/, < 1/v.. This restriction can be incorporated into
the prior elicitation for 1/7, and 1/, by first generating 1/v, ~ U(a,,,b,,) as above and
then setting 1/7. = 1/, + & where & ~ U(ag, = 0,be, > 0). The prior on the change
point T is taken to be uniform on dates from March 18th 2020 to March 31st 2020 both
inclusive. Since we define 7 as the number of days after March 1st 2020, 7" ~ U (17, 30).
The prior on 7 is taken to be U(a,, b;) for the entire observation window Wy U Wk.

The prior on (3, is elicited indirectly via a reparametrization: For Wy, we take [, =

12
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M/\

(a) (b) (c)

Figure 3: Reported daily cases (red line), and overlay plots of AR,(t) (blue line) and ~, I,(t) (green

. ;’:\@/Al. /\[v ;

line) based on ©y;4p for the constant rate submodel for (a) Malaysia, (b) Selangor and (c) Sarawak.

(a) (b) (c)

Figure 4: Plots of A; versus t for the constant rate submodel for (a) Malaysia, (b) Selangor and (c)

Sarawak.

13


https://doi.org/10.1101/2020.11.20.20233890

274

275

276

277

278

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

medRXxiv preprint doi: https://doi.org/10.1101/2020.11.20.20233890; this version posted November 23, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

All rights reserved. No reuse allowed without permission.

v AP A
k ik, e
Laduiied o o VARATY /2 V.V S N

Figure 5: Reported daily cases (red line), and overlay plots of AR,(t) (blue line) and v, I,(t) (green
line) based on © ), 4p for (a) Malaysia, (b) Selangor and (c) Sarawak.

e ~, and consider a uniform prior on ag, independent of ~,. Our prior elicitation adopts
this reparametrization for the following reason: For 8, = e ~,, the basic reproduction
number %y = e is the more fundamental quantity for simpler models, such as the SIR
and SEIR models, compared to §,. Thus, %, for these models can be benchmarked based
on similar flu-like epidemics in the past which, in turn, provide a suggested range of
values for the prior elicitation of ay in Wp; see [28]. Note that §, which represents the
contact rate of the target population cannot be determined by direct observation. Hence,
putting a prior directly on £, is difficult. Similarly, since 1/7, is the observed infectious
period, benchmark values can be obtained from the literature for its prior elicitation. To
summarize, we put direct priors on parameters that have an epidemiological interpretation
and which can be benchmarked from reported literature for eliciting the appropriate prior.

For Wk, f,(t) has the form in (13) for coefficients ag, a; and c. For ag, we consider two
cases: When using the submodel to determine whether an overall reduction in transmission
occurs or not, we take ag ~ U(Lg,, Uy, ) with Ly, < 0 and U,, > 0. If the full model of (13)
is considered, ag is chosen deterministically to ensure continuity of the infection process
before and after the change-point. More specifically, ag in Wk is chosen so that the rate
of incidence h(S(t), I,(t), I.(t)) in Wy, and Wk coincide at ¢t = T*. For the full model, a,
is given a uniform prior with support on [L,,, U,,]. We take L,, < 0 and U,, = 0 if such
a reduction in disease transmission is established by the submodel.

Prior elicitation on parameters in Wpg is based on convenience and ease of interpreta-
tion. It is easier to elicit priors on the components of ,(t) in (13) compared to the entire
function itself. Further, the component parameters of [3,(t) satisfy restrictions that are

easy to understand; for example, ¢ < e since ¢ and e are the lower and upper bounds of
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(a) (b) (c)

Figure 6: Reported cumulative cases (red line), and overlay plots of R,(t) (green line) based on the MAP
estimate for (a) Malaysia, (b) Selangor and (c) Sarawak.

afint] I/I’IM o

(a) (b) ()

Figure 7: Tllustration of the variability of 7, I,(t) from the posterior: Reported cumulative cases (red

line), and overlay plots of v, I,(t) for (a) Malaysia, (b) Selangor and (c) Sarawak.

the decay curve, respectively. Hence, a reasonable prior to put on ¢ is U(0,e%). The prior

elicitation on remaining unknown parameters are explained in detail in the Appendix.

2.5.3 Computational algorithm

Based on the negative binomial likelihood and prior elicitation in Sections 2.5.1 and 2.5.2
respectively, the posterior of © can be derived using Bayes theorem as

7(©[D) o [ NBDi; AP IP @), m)- [T NB(Dy; AP1P (1), 7) - 7(0) (18)

o o
tewr, teEWgR

— L(O)-(0) (19)
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(a) (b) (c)

Figure 8: Plots of A; versus ¢: Malaysia (a), Selangor (b) and Sarawak (c).

where D = {D, : t € W, UWRg} is the collection of observed daily cases from March 1st
until April 28, 2020, L(O) is the entire likelihood for D and 7(©) is the prior on O as
described in Section 2.5.2. Bayesian inference is carried out using Monte Carlo importance
sampling. A total of M samples, ©; for i = 1,2,--- | M, are generated from the prior
specification 7(©). The likelihood, L(©;), is computed for each ©; and normalized to

obtain weights

L(©;
> i1 L(6:)
for i = 1,2,---, M. To compute L(0©;), one requires to numerically evaluate the so-

lution of the ODE system (6)- (12). This is achieved using the deSolve package in
R. The Bayesian computational algorithm described here is developed using R and the
RStudio®) user interface. Through this importance sampling step, an approximation to
the Maximum-a-Posteriori (MAP) estimator of © is given by

Onap = arg maxg 7(0 | D) ~ arg max, ;< , w; 7(0;) (21)

with the approximation becoming more accurate as M — oo. Resampling ©;s with
weights w; in (20) gives a ensemble of size M, {©;}M,, from the target posterior (0 | D)

which can be used to provide a quantification of uncertainty around 6 MAP-

3 Results

The study period is from March 1, 2020 until April 28, 2020 with 7y = 0 and 77 = 59. The
impacts of the Sri Petaling gathering and MCO implementation are analyzed here using

the proposed model described in Section 2.3. Reported daily cases at the national level

16
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Country/State | Window | Parameter | MAP | 95% Credible Interval
1/ 7.562 (6.629, 8.203)
1/ 8.153 (6.961, 8.992)
. 1/6 7.594 (6.357, 7.935)
a 2.861 (1.713, 3.395)
" 0.640 (0.250, 0.760)
P 0.690 (0.538, 0.897)
_ 1% 7.289 (6.094, 7.430)
Malaysia
1/7% 7.676 (6.766, 9.230)
1/6 8.011 (6.280, 8.224)
Wr ay -1.180 (-2.414, -0.373)
c 6.522 (1.309, 27.797)
M 0.686 (0.067, 0.882)
D 0.605 (0.479, 0.982)
- T 18 (17, 22)

Table 1: MAP estimates and associated credible intervals for Malaysia.

Country/State | Window | Parameter | MAP | 95% Credible Interval
1/ 7.952 (6.434, 8.320)
1/ 8.611 (6.826, 9.120)
W 1/6 6.747 (5.615, 7.905)
a 2.041 (1.296, 2.956)
u 0.468 (0.211, 0.774)
p 0.785 (0.519, 0.885)
1/ 7.342 (6.100, 7.482)
Selangor

1/7% 9.066 (6.839, 9.099)
1/6 7.099 (5.518, 8.033)
W a 12,384 (-2.953, -0.303)
c 4.037 (0.144, 13.069)
" 0.374 (0.177, 0.881)
p 0.708 (0.486, 0.948)

— T 22 (17.5, 25)

Table 2: MAP estimates and associated credible intervals for Selangor.
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Country/State | Window | Parameter | MAP | 95% Credible Interval
1/7 8.047 (6.647, 9.567)
1/7e 11.399 (8.936, 14.138)
1/6 7.251 (7.056, 7.972)
We ao 1.627 (1.139, 2.618)
" 0.250 (0.027, 0.879)
D 0.735 (0.502, 0.979)
1/9% 7.158 (6.195, 7.954)
Sarawak

1/7% 11.364 (8.993, 14.278)
1/6 7.648 (6.910, 8.287)
Wh a 10.354 (-1.896, -0.099)
c 0.540 (0.168, 2.705)
" 0.433 (0.013, 0.988)
p 0.880 (0.521, 0.987)

- T* 25 (18, 32.5)

Table 3: MAP estimates and associated credible intervals for Sarawak.

as well as for Selangor and Sarawak are used for model fitting and parameter estimation.
Note that all states in Malaysia implemented MCO Phases 1-3 using the same guidelines
and protocols. Thus, one can gauge the impact of the Sri Petaling gathering on COVID-
19 spread in Malaysia based on a comparison between states and the national experience.
Here, Selangor and Sarawak are chosen as two such representative states with high and
low population densities, respectively.

First, we investigate if the MCO implementation had an overall effect of reducing
COVID-19 transmission rates. For this purpose, the constant rate submodel of (13) is
used and the prior on ay in Wk is chosen to be uniform with support on both positive
and negative values. The Bayesian inference methodology of Section 2.5 is carried out
with M* = 50,000 to obtain @MAP and samples OF from the posterior of © in (19). The
curves of 7, I,(t) and AR,(t) = R,(t) — R,(t — 1) for each day ¢ are obtained based on
0 map and are displayed in Figure 3. This submodel captures broad features (increasing
and decreasing trends) of the reported cases trajectories in all three panels for Malaysia,
Selangor and Sarawak. To quantify the overall change in transmission before and after
MCO implmentation, A; (see (15)) is obtained for ¢ in Wy and Wg. The plots of A,

versus t are shown in Figure 4. A consistent feature of the plots in all three panels is
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that they first increase for time points ¢t < T™ followed by a significant drop for ¢ > T™.
Hence, we conclude that an exponential rise in cases occurred right after the completion
of the Sri Petaling gathering on March 1st 2020, and the implementation of the MCO
successfully stemmed the exponential rise at the national level, Selangor and Sarawak.

With reduced disease transmission established in Wg, we next proceed to utilize the
functional form (13) of f§,(t) as a quantitative model for transmission decay in Wk.
The Bayesian inference methodology of Section 2.5 is applied to the full model with
M* = 50,000 to obtain Oaap and samples ©F from the posterior of © in (19). The
curves of 7, I,(t) and AR,(t) = R,(t) — Ro(t — 1) for each day ¢ are obtained based
on Oy4p and are displayed in Figure 5. Daily cumulative cases and the curve of R,(t)
are displayed in Figure 6. We note from these figures that the proposed model captures
broad features of the observed data and is an improvement over the constant rate sub-
model. Uncertainty estimates are obtained for all unknown parameters in © based on the
ensemble {©;}M]. Variabilility estimates can be obtained for all parameters and their
functions. As an illustration, we demonstrate the extent of variability inherent in the
posterior visually for the expected R,(t) curve given by 7, I,(t) (see (16)) for t € [Ty, T1].
This is displayed in Figure 7 which shows that most of the reported case numbers are
well within the limits of variability of the posterior. Hence, the proposed model together
with the negative binomial likelihood are able to explain the variability in the reported
case numbers. However, there are a few exceptions, the most notable being the reported
case number on Day 14 for Malaysia in Figure 7(a). We present an explanation for this
outlying case later in the Discussion section.

Further results from the Bayesian analyses are summarized in Tables 1, 2 and 3. These
tables give the MAP estimates of parameters and their corresponding 95% credible in-
tervals for Malaysia, Selangor and Sarawak, respectively. We provide a summary of the
salient findings here. The symptomatic and asymptomatic infectious periods as well as the
incubation periods are found to be around 6-8 days for Malaysia, Selangor and Sarawak.
These findings are similar to values reported in the literature for other countries; see,
for example, [16, 17, 18, 27]. Change-points 7™ are estimated not too far away from the
date of MCO implementation, March 18th 2020. For Malaysia, T* = 18 is the MAP es-
timate which corresponds to March 19th, 2020, and the associated 95% credible interval
is (17,21). For Selangor, the MAP estimate of 7™ is T* = 22 with (17.5,25) being the
95% credible interval. For Sarawak, the transition date is less precise. The MAP estimate
is T* = 25 (March 26th 2020) but the 95% credible interval (18,32.5) is much larger
indicating higher uncertainty in 7. This can be attributed to the fact that the trajectory

of reported case numbers for Sarawak shows a slower and more gradual increase, then
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decrease, compared to Malaysia and Selangor (see Figure 5).

The plots of A; versus ¢ for Malaysia, Selangor and Sarawak are provided in Figure
8. We note that all three panels in Figure 8 indicate a decay in the transmission rates
after T*. The measure A, is calculated to be approximately 3.55 , 2.79 and 2.65 for
Malaysia, Selangor and Sarawak, respectively, at the start of W, , that is, when t = Tj.
Hence, Selangor achieved a rate of increase that is closer to the national level compared
to Sarawak. Sarawak’s cases increased but at a much slower rate compared to Selangor
and Malaysia. Starting from t = T, A; showed an increase in Wy, reaching values of
5.58, 3.35 and 2.96 at t = T™, respectively, for Malaysia, Selangor and Sarawak. After 7™,
A, for Malaysia, Selangor and Sarawak registered a decay demonstrating the effectiveness
of the MCO. A, declined sharply to a value around 0.55, 0.01 and 0.37, respectively, for
Malaysia, Selangor and Sarawak at t = T+ 10, and after that, it declined more gradually
to its corresponding asymptote. Based on Ay, it is seen that the initial transmission rates
tend to be higher for areas with a higher population density (comparing Selangor and
Sarawak). On the other hand, based on the MAP estimates of a; in Wx of —2.38 and
—0.35 for Selangor and Sarawak, respectively (see Tables 2 and 3), higher population
density areas also experience a faster decline in the transmission rates under an effective
implementation of the MCO. Although the MAP estimate of a; for Malaysia (a; = —1.18
from Table 1) is not as negative as it should be, we will show in the next section that a
redistribution of cases further improves this estimate of a; and brings it closer to that of

Selangor (see Section 4 for the details).

4 Discussion on Reporting Delays, Case Redistribu-

tion and Overdispersed Likelihoods

Figure 7 indicates the presence of outliers that fall outside the limits of variability of the
posterior. The most notable outlier is the total number of new cases reported on Day 14 for
Malaysia. Generally speaking, such outliers highlight a mismatch between the proposed
model and the observed data, and point towards model inadequacy. However, we wish
to emphasize that this is not the case here. One key consideration is the effect of delay,
that is, whether or not the reported case numbers coincide with the day of testing. It is
highly likely that a lag occurred in the reporting of cases since the COVID-19 experience
was new to Malaysia. Based on the report [29], it is reasonable to assume that delays in
testing and reporting were expected during the initial days of the COVID-19 outbreak in

Malaysia. The peak on Day 14 seem to suggest a significant backlog of reporting of cases.
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305 The effects of reporting delays on observed case trajectories and parameter inference
s are illustrated here based on a simulation study. A delay-in-reporting model based
37 on the multinomial distribution is assumed: Let X ~ Mult(Dy;p1,po,- - ,pK), where
s X = (Xy,Xo, -+, Xk) with K =5 and X}, is the number of cases (out of the total re-
10 ported cases on day t, D;) that is to be redistributed to day t —k+1 for k=1,2,--- | K.
wo  The probabilities py, K = 1,2,--- , K are chosen according to a truncated geometric dis-
w1 tribution taking values in kK — 1 for £ = 1,2,--- , K with success probability 0.4. The
w2 cases redistribution model is applied to new cases reported from Day 10 until Day 15.
w3 The redistributed reported case trajectory, the best fit curves and associated variabilities
s are shown in Figure 9. Comparing Figures 7(a) and 9(b), one can immediately notice that
ws the reported case numbers in Figure 9(b) are better explained by the variabilities of the
w06 underlying model and the negative binomial likelihood. Parameter estimates and credible
w7 intervals for the redistributed case numbers are given in Table 4. We present the salient
ws findings here. Comparing Tables 1 and 4, we find that estimates of the infectious (both
w0 symptomatic and asymptomatic) periods have now become shorter. This is expected and
a0 reasonable since the model and likelihood do not have to account for the sudden steep
an rise in cases on Day 14 by preferring a larger infectious period. Nevertheless, the new
a2 infectious periods are still within the 6-8 day range and are consistent with previously
sz reported literature. The redistribution of case numbers have also reduced the uncertainty
aa around the MAP value of T* = 18: The credible interval for T* in Table 4 is narrower
a5 compared to that in Table 1. The MAP estimate of a; is now —2.075, which is closer to
a6 that of Selangor compared to Sarawak.

a17 A final point to be discussed is our preference for the negative binomial likelihood
ais compared to the more traditional Poisson likelihood for modelling COVID-19 case num-
a0 bers. Our initial investigation used the Poisson likelihood for reported case numbers but
20 we found that the underlying model together with the Poisson likelihood was not able to
a1 capture inherent variabilities in the observed data. Hence, we opted for the overdispersed
a2 mnegative binomial likelihood which was able to satisfactorily represent the observed data
»3  Vvia its overdispersion parameter 7. This is evidenced by the variability bands presented
2 in Figures 7 and 9(b) which successfully enclose most of the reported case numbers. This
w5 coverage is further improved in Figure 9(b) by a redistribution of delayed cases. We also
»s  provide the loglikelihood values corresponding to the Poisson and negative binomial ob-
a2 servation models in Table 5 for Malaysia (with original case numbers), Malaysia (with
ws redistributed case numbers), Selangor and Sarawak. Note that the negative binomial log-
a0 likelihood values are consistently larger than the Poisson counterparts indicating a better

20 model fit to observed data.
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Country/State | Window | Parameter | MAP | 95% Credible Interval
1/7 7.121 (6.330, 8.223)
1/7. 7.694 (6.829, 8.993)
1/0 7.379 (6.211, 7.954)
Wi o 3.018 (1.643, 3.451)
i 0.709 (0.218, 0.778)
P 0.810 (0.545, 0.892)
_ 1/7 6.821 (6.058, 7.452)
Malaysia
1/7. 7.322 (6.652, 8.921)
1/0 7.074 (5.959, 8.195)
Wr a -2.075 (-2.888, -0.476)
c 8.438 (0.675, 29.336)
i 0.621 (0.105, 0.807)
D 0.756 (0.540, 0.957)
— T 18 (17, 21)

Table 4: Summary results for Malaysia (with redistributed cases).

Figure 9: Effect of redistribution: Panel (a) shows the redistributed daily cases and the corresponding
best fit curves of v, I,(t) (blue line) and AR,(t) (green line) based on ©p4p. Panel (b) shows the
variability of the fit based on the ensemble set {7},
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Country/State Distribution Log-likelihood values
. Negative Binomial -254.68
Malaysia -
Poisson -490.42
] o Negative Binomial -245.66
Malaysia (redistributed) -
Poisson -417.66
Negative Binomial -191.41
Selangor -
Poisson -276.06
Negative Binomial -136.30
Sarawak -
Poisson -162.12

Table 5: Loglikelhood values of the NB and Poisson likelihoods.

- 9  Conclusion

12 Quantitative models and assessment of the impacts of the Sri Petaling gathering and im-
a3 plementation of MCO on COVID-19 spread in Malaysia are developed in this paper. The
s MCO implementation is found to be highly effective in containing (an exponential rise
a5 of) the COVID-19 outbreak in Malaysia. The analysis here quantitatively demonstrates
a6 how quickly transmission rates fall under effective NPI implemention within a short time
s period. Higher disease transmission is found in Selangor (a state with higher population
a8 density) compared to Sarawak. We also found that under MCO, the decline in transmis-
130 sion was faster in Selangor compared to Sarawak. The rise and fall of disease transmission
mo in Selangor mirrored the national level whereas Sarawak showed a more gradual increase
s and decrease in COVID-19 transmission. The change points were mostly found to be
w2 close to the date of MCO implementation (18th March 2020) although Sarawak exhib-
w3 ited a larger uncertainty around that date due to its gradual and slower increasing and
us  decreasing trends of reported case numbers. Our study developed a new model to rep-
us  resent COVID-19 spread in Malaysia that accounts for heterogeneity and asymptomatic
us transmissions. We found that reported case numbers in Malaysia exhibited large vari-
w7 abilities which can possibly be attributed to a delay in reporting, particularly during the
as early stages of the pandemic as the experience with handling COVID-19 was new to the
ao country. Nevertheless, the model developed here together with the overdispersed negative
w0 binomial likelihood are able to capture salient features of COVID-19 spread in Malaysia
1 and provide reliable quantitative assessments even under the challenges of limited and

52 delayed data.
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Appendix: Prior Elicitation on Remaining Parameters

We describe the prior elicitation for the initial number of infectious and exposed individ-
uals, iy and eq, respectively, relevant only for W;. Conditional on ¢ and ~,, ig (corre-
sponding to observed, not cryptic) is given the prior elicitation 7(ig |, 0) = U(m;, —
Ay, miy + 4A;,) for some m;, and A;,. This prior, 7(ig|7,, 0), on 4o is motivated from
(9) based on the differential equation for the R, compartment. Note that R,(t) = v,1,(t)
from (9), and hence, iy = R,(0)/7,. To obtain an estimate of R,(0), a second order
polynomial is fitted using least squares to the trajectory of cumulative cases in a window
of m > 3 days starting from Ty = 0. R,(0) is then estimated by P(0) where P(t) is the
first derivative of the fitted polynomial, P(t). The mean of the uniform distribution on iy
is taken to be m;, = P(0)/7,. The initial number of exposed individuals, ey, is given the
prior elicitation m(eq | Yo, 0, p) = U(me, — Deyy Mey + A¢,) for some m,, and A,,. To find
an expression for m,,, we rewrite (8) and note that ey = (I1,(0) + 7, 1,(0))/(pd). Next,
substituting P(0)/~, for I,(0), the mean of the uniform distribution on ey is taken as
Me; = (P(0) + 7 P(0))/(7, pd) where P(t) is the second derivative of P(t) with respect
to t. The half-widths for both priors on iy and e, are taken as A;; = A,, = 5. Thus, the
initial prior distributions on 7y and ey are based on the number of infectives and exposed
in the original population; so they are un-normalized. This is because their estimates
are calculated from reported case data. But these estimates are later normalized by the
population size for input into the SIER and modified SEIR models.

The hyperparameters ae and be for £ € {1, %, ve, 0, p, w; o, w; ., w,, o} are chosen based

on values reported in previous studies where available. ]F‘or’example7 the incubation
period, defined as the period from being infected by COVID-19 to the onset of symptoms,
is typically reported to be between 6 and 8 days on average [30]. Hence, we take a5 = 6
and bs = 8 for the prior elicitation of 1/J. For the infectious period, we consider a,, =6
and b,, = 8 to encompass corresponding values available from the literature; see, for

example, [16, 17, 18, 27]. The values of parameters reported in the literature are only

24


https://doi.org/10.1101/2020.11.20.20233890

medRxiv preprint doi: https://doi.org/10.1101/2020.11.20.20233890; this version posted November 23, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

s taken as starting points.
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