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 2 

Abstract 23 

Background: Investigating associations between metabolites and late midlife cognitive 24 

function could reveal potential markers and mechanistic insights relevant to early dementia. 25 

Here, we aimed to identify the metabolic underpinnings of cognitive outcomes in late 26 

midlife by exploring and integrating associations of single metabolites, metabolic pathways 27 

and networks. We further aimed to untangle the influence of life course factors on these 28 

relationships; a previously unexplored avenue using a systems biology approach. 29 

 30 

Methods and Findings: Levels of 1019 metabolites were detected by liquid 31 

chromatography-mass spectrometry (Metabolon Inc) and quantified at age 60-64 among 32 

participants of the British 1946 Birth Cohort (N=1740). Cognitive outcomes were assessed at 33 

the same age and 5-9 years later, and included short-term memory (age 60-64, 69 and 34 

change), delayed memory (age 60-64), processing speed (age 60-64, 69 and change) and 35 

Addenbrooke’s Cognitive Examination III (age 69). Using a combination of linear regression 36 

analysis, quantitative pathway analysis and weighted gene correlation network analysis, we 37 

evaluated relationships between metabolite measures (single-metabolites, pathways and 38 

network modules) and cognitive outcomes. Single-metabolite and network analyses were 39 

sequentially adjusted for life course factors across four models, including: sex and blood 40 

clinic information (model 1); model 1 + BMI and lipid medication (model 2); model 2 + 41 

childhood cognition, education and socioeconomic position (model 3); model 3 + smoking, 42 

exercise, alcohol intake, blood pressure and diet (model 4).  43 

After correcting for multiple tests, we identified 155 metabolites, 10 pathways and 5 44 

modules to show relationships with cognitive outcomes. Thirty-five metabolites were 45 

influential in their module and identified in single-metabolite analyses. Notably, we report 46 
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independent relationships between a module comprised of acylcarnitines and processing 47 

speed, revealing palmitoylcarnitine (C16) as a key driver of associations (model 4: ß = -0.10, 48 

95%CI = -0.15 to -0.052).  Two modules demonstrated associations with several cognitive 49 

outcomes that were partly explained by life course factors: one enriched in modified 50 

nucleosides and amino acids (ß range (model 1) = -0.12 to -0.09, attenuation (model 4)= 51 

39.2 to 55.5%), and another in vitamin A and C metabolites (ß range (model 1) = 0.11 to 52 

0.23, attenuation (model 4) = 68.6 to 92.6%). Our other findings, including a module 53 

enriched in sphingolipid pathways (ß range (model 1) = 0.085 to 0.10, attenuation (model 4) 54 

= 87.0 to 116%), were entirely explained by life course factors - particularly childhood 55 

cognition and education. The limitations of this study include those commonly seen with 56 

population-based cohorts, such as possible residual confounding and generalisability to 57 

other populations, as well as a lack of longitudinal metabolite data. 58 

 59 

Conclusions: Using a large birth cohort study with information across the life course, we 60 

highlighted potential metabolic mechanisms underlying cognitive function in late midlife, 61 

suggesting marker candidates and life course relationships for further study.  62 

  63 
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Introduction 64 

Cognitive function in late midlife is indicative of future cognitive trajectories and risk of 65 

dementia (1). As dementia is proposed to have a long prodrome, where pathology is 66 

accumulating but clinical criteria are not yet met, there presents a promising window to 67 

prevent or delay pathology (1). However, a lack of clinically significant symptoms impedes 68 

our ability to identify individuals for potential risk-reduction and treatment strategies. As 69 

such, our understanding of early disease mechanisms are not well established and no 70 

effective disease-modifying treatments are currently used in clinic (2). 71 

 72 

Comprehensive longitudinal studies are required to detect early mechanisms and markers 73 

preceding diagnosis, for which studying metabolic correlates may be fruitful. Metabolites, 74 

such as fatty acids and amino acids, are low molecular weight compounds derived from 75 

cellular metabolism. Lying in closest proximity to the phenotype, they integrate upstream 76 

biological systems (e.g. genetics, transcriptomics, proteomics) as well as environmental and 77 

lifestyle influences, allowing for a holistic insight into the physiological status of an 78 

individual (3). Additionally, they are accessible and potentially modifiable, presenting as 79 

promising candidates for markers of pathology (4).  80 

 81 

The biological relevance of metabolic alterations in cognitive function and dementia has 82 

been established. Contextually, genome-wide association studies have highlighted 83 

enrichment in lipid metabolism pathways in the genetic underpinnings of Alzheimer’s 84 

disease (AD) (5). Further, many studies have linked metabolites to cognitive function and 85 

AD, consistently highlighting species such as sphingolipids, phospholipids, fatty acids, 86 
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cholesterol and amino acids (6–10), although replication of specific metabolites has proved 87 

challenging. 88 

 89 

As metabolites are known to act in concert, investigating many metabolites together can 90 

enhance biological interpretation. Systems-level analyses, that are able to capture the 91 

complex interactions between metabolites, are required to guide our understanding and 92 

identify potential marker candidates for future studies. We recently employed a network 93 

approach to explore systems-level changes in AD phenotypes, whereby lipids and proteins 94 

were grouped into clusters based on their connectivity, highlighting important pathways in 95 

AD pathogenesis (11). A similar methodology was previously applied in the Bogolusa Heart 96 

Study to explore the metabolic signature of cognitive function in early midlife (10). 97 

However, the molecular correlates of cognitive function relevant to this prodromal window 98 

remains unknown. Additionally, given that both metabolites and cognitive function can be 99 

influenced by life course factors, it is necessary to evaluate relationships from this context. 100 

To our knowledge, life course influences have not yet been explored using a systems 101 

approach; it is hoped that this could highlight independent associations as well as suggest 102 

relationships for further study - a potentially invaluable layer in untangling early pathology. 103 

 104 

Using the Medical Research Council (MRC) National Survey of Health and Disease (NSHD) - 105 

the British 1946 Birth Cohort - we aimed to comprehensively investigate associations 106 

between metabolites and cognitive function in late midlife using a life course approach (Fig 107 

1). Previously, levels of 233 metabolites and their association with cognitive function were 108 

explored in this cohort (6). Since that publication, we now have levels of >1000 metabolites 109 

quantified, as well as availability of the Addenbrooke’s Cognitive Examination (ACE-III), a 110 
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comprehensive measure of cognitive state that is also able to screen for cognitive 111 

impairment and dementia (12). This provides a good opportunity to delineate pathways and 112 

networks associated with cognitive outcomes in late midlife. Integrating the depth and 113 

breadth of metabolite-level, pathway-level and network-level approaches, we aimed to 114 

identify functionally significant metabolites that may show merit as markers of early 115 

pathology. With lifelong information available, we explored the influence of life course 116 

factors to untangle these associations further. 117 
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Fig 1. Overview of study workflow. Created with BioRender.com 131 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.23.20236463doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.23.20236463
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

2. Methods and Materials 132 

2.1 Participants 133 

The MRC NSHD is a nationally representative study, originally consisting of 5362 participants 134 

born in England, Scotland and Wales during one week of March in 1946 (13). Twenty-four 135 

waves of data have been collected since birth, with the most recent two follow-ups 136 

occurring at ages 60-64 (n=2229) and 68-69 years (n=2149). The study sample remains 137 

broadly representative of the British-born population at the same age (see (13,14) for 138 

further details on participant attrition and representativeness). Participants with full 139 

cognition, metabolite and blood clinic data at ages 60-64 were included for this analysis, 140 

giving a total sample of 1740 (see S1 Fig for further details on participant flow). 141 

 142 

At age 60-64, ethical approval was obtained from the Greater Manchester Local Research 143 

Ethics Committee for the four English sites and the Scotland A Research Ethics Committee. 144 

Ethical approval for age 69 was obtained from Queen Square Research Ethics Committee 145 

(13/LO/1073) and Scotland A Research Ethics Committee (14/SS/1009). Research was 146 

conducted in accordance with the Declaration of Helsinki and all participants provided 147 

written informed consent at each wave.  148 

 149 

2.2 Metabolomics 150 

2.2.1. Metabolomics platform 151 

Blood samples were collected during the nurse visit at ages 60-64 (96% fasted, 4% non-152 

fasted). Samples were aliquoted and stored at -80°C. 153 

 154 
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Levels of 1401 plasma metabolites were profiled by Metabolon Inc (Durham, NC, USA) using 155 

Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS). 156 

(see S1 Methods for further details). Metabolites were assigned to nine families: lipids 157 

(n=494), xenobiotics (n=256), amino acids (n=211), cofactors and vitamins (n=35), 158 

nucleotides (n=38), peptides (n=28), carbohydrates (n=22), partially characterised molecules 159 

(n=17) and energy (n=9). Additionally, the identity of 291 metabolites were unknown; these 160 

metabolites were allocated numbers prefixed by an “X” and were not assigned to any 161 

family. Metabolites were further organised into pathways by Metabolon based on their 162 

proposed biological function informed by the Kyoto Encyclopaedia of Genes and Genomes 163 

(KEGG) database.  164 

 165 

2.2.2. Metabolomics data quality control (QC) 166 

For full details on data QC, see S1 Fig. Briefly, metabolites with >20% of missing data were 167 

excluded, leaving 1019 for further analysis. Of the 1019, 193 were metabolites with an 168 

unknown identity. Remaining missing data were then taken forward for imputation using k-169 

nearest-neighbours with k=10, as recommended for LC-MS data elsewhere (15). Imputation 170 

was carried out using the impute package in R (16). Imputed data were then log10 171 

transformed to achieve approximately normal distributions. 172 

 173 

2.3 Cognitive outcomes 174 

Cognitive outcome measures were recorded at two ages, 60-64 and 69. Four aspects of 175 

cognitive function were assessed: 176 

 177 

 178 
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Short-term memory (age 60-64 & 69) 179 

Participants were asked to recall a 15-item word list, developed by the NSHD, after being 180 

presented with each word for two seconds. The task was repeated over three trials and the 181 

number of accurately recalled words was recorded (max score=45) (17). 182 

 183 

Processing speed (age 60-64 & 69) 184 

Participants were asked to cross out the letters P and W, randomly distributed on a page 185 

containing other letters. One minute was given to complete the task and participants were 186 

scored by the number and accuracy of the letters crossed out (max score=600) (17). 187 

 188 

Delayed memory (age 60-64) 189 

After the processing speed task, an uncued delayed free recall trial was administered (17). 190 

 191 

Addenbrooke’s Cognitive Examination-III (ACE-III) (age 69) 192 

The ACE-III captures cognitive state, and is also a screening tool for cognitive impairment, 193 

comprised of five domains: attention and orientation, verbal fluency, memory, language and 194 

visuospatial function. Scores represent the total over all domains (max score=100), with 195 

lower scores indicating poorer cognitive function (12). 196 

 197 

Cognitive change 198 

For outcomes with available data at two time points - short-term memory and processing 199 

speed - we additionally investigated change in cognition, represented by the standardised 200 

residuals of a regression model fit between scores at age 60-64 and 69. 201 

 202 
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2.4 Covariables 203 

As with previous analyses (6), covariables included the following: sex, blood clinic 204 

information (age at blood collection, clinic location and fasting status), body mass index 205 

(BMI), lipid medication, childhood cognition, educational attainment, childhood 206 

socioeconomic position (SEP), midlife SEP, lifetime smoking, alcohol intake, systolic blood 207 

pressure, physical activity and diet. 208 

 209 

BMI was calculated using height and weight measures collected during the nurse visit at 210 

ages 60-64. At blood collection, the self-reported use of lipid medication was recorded and 211 

coded as a binary variable reflecting use in the previous 24 hours. 212 

 213 

Childhood cognition was represented as a standardised composite score of four tests at age 214 

15, including the Heim AH4 (measuring non verbal and verbal ability) (18), the Watts Vernon 215 

reading test (measuring reading comprehension) (19), and a test of mathematical ability 216 

(19) . Educational attainment represented highest level of educational qualification by age 217 

26, grouped into three categories: no qualifications, ordinary (‘O’) level secondary 218 

qualifications, or advanced (‘A’) level secondary and higher. SEP was represented in 219 

childhood and midlife, coded using the current or last known occupation of the father at age 220 

11 and the study member at age 53, respectively. These categories corresponded to those 221 

specified in the UK Registrar General’s classification: unskilled, partly skilled, skilled manual, 222 

skilled nonmanual, intermediate, or professional. 223 

 224 

For lifestyle, lifetime smoking was represented by pack years per person between the ages 225 

of 20 and 60-64. Physical activity was coded as three categories depending on the self-226 
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reported frequency of participation in sports, exercises or intense leisure activities in the 227 

month prior to the age 60-64 interview: none, 1-4 times per week, or >4 times per week. 228 

Where data were present for at least three of four timepoints, average daily alcohol intake 229 

during midlife was curated from 3-5 day diet diaries at age 36, 43, 53 and 60-64. This 230 

measure was then used to assign participants into three categories: no consumption, light-231 

to-moderate consumption, and heavy consumption. Systolic blood pressure was 232 

represented by the second measurement (mmHg) taken at age 60-64. Finally, the diet 233 

variable represented adherence scores for the Dietary Approaches to Stop Hypertension 234 

(DASH) diet, estimated from 3-5 day diet diaries at age 60-64 (20). The DASH diet is based 235 

on a high intake of fruits, vegetables, low-fat dairy products and wholegrains, and a low 236 

intake of saturated fat and refined sugars (21). Participants were assigned to sex-specific 237 

quintiles, with lower quintiles indicating lower adherence, as described previously (20). 238 

 239 

APOE genotype was determined from blood samples collected at age 53 or 69 and analysed 240 

as described previously (22). Participants with ε2/ε4 were excluded (n=46) and APOE 241 

genotype was coded as homozygous ε4 (n=46), heterozygous ε4 (n=361) or non ε4 242 

(n=1068). Genotypes were treated as continuous variables. 243 

 244 

2.5 Statistical analyses 245 

To optimise power and minimise bias, missing covariate data were imputed using multiple 246 

imputation chained equations (mice) (23), resulting in fifty imputed datasets (see Table 1 for 247 

further details of missing data). All analyses were conducted in R and all results are reported 248 

in SD units. 249 

 250 
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2.5.1 Single-metabolite analyses 251 

Predictors and outcomes were z-standardised prior to statistical analysis to allow for direct 252 

comparisons. Statistical models evaluated associations between metabolites (predictor) and 253 

cognitive test scores (outcome) using multiple linear regression. Regression analyses were 254 

performed on each imputed dataset, and estimates were pooled using Rubin’s rules. To 255 

investigate associations in the context of life course influences, a series of statistical models 256 

with sequential adjustment were performed:  257 

 258 

Model 1 (basic covariates): sex, blood clinic, age at blood clinic, fasting status 259 

Model 2 (common metabolite confounders): model 1 + BMI, lipid medication 260 

Model 3 (social factors and childhood cognition): model 2 + childhood cognition,  261 

attainment, SEP (childhood and midlife) 262 

Model 4 (lifestyle influences): model 3 + blood pressure, physical activity, alcohol, smoking, 263 

diet 264 

 265 

To account for the number of tests performed and correlations between metabolites, a 266 

Bonferroni-adjusted significance threshold was set as 0.05 divided by the number of 267 

principal components explaining >95% variance in the metabolite data (6); p <1.15x10-4.  268 

 269 

2.5.2 Pathway analyses 270 

First, metabolon sub-pathway definitions were used to organise metabolites into pathways. 271 

Those containing <5 metabolites were excluded, resulting in 53 separate pathways. 272 

Metabolite pathway assignment can be found in S1 Table. 273 

 274 
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To investigate pathway-level associations, quantitative pathway analysis was performed 275 

using an approach reported previously (24). Briefly, we derived pathway z-scores for each 276 

participant, representing the standardised expression of metabolites in the pathway. To do 277 

this, metabolites were z-standardised, and the mean expression was computed for each 278 

pathway. Associations between pathway z-scores and outcomes were then evaluated using 279 

linear regression, adjusting for the basic (model 1) covariables listed above.  280 

 281 

A Bonferroni-corrected significance threshold was set at 0.05/53 pathways; p <9.43x10-4. 282 

 283 

2.5.3 Network analyses 284 

Network construction 285 

To define metabolic networks, we applied weighted gene coexpression network analysis 286 

(WGCNA) to metabolite data, using the WGCNA package in R (25–27). WGCNA is a network 287 

analysis approach that organises data into densely connected modules based on pairwise 288 

correlations, whereby data in the same module will show high connectivity and those in 289 

differing modules, low. Subsequently, the first principal component of the module (module 290 

eigenvalue) can be derived and relationships between modules and outcomes can be 291 

explored. To infer biological function, overrepresentation analyses are commonly conducted 292 

to identify enriched pathways within the module. Additionally, the function of metabolites 293 

showing the greatest modular connectivity can be interrogated (25).  294 

 295 

Metabolites were first adjusted for model 1 covariables and the standardised residuals were 296 

used for subsequent analysis. Next, the standardised connectivity (Z.k) for each sample was 297 

computed to identify outliers, resulting in the exclusion of ten individuals with a Z.k of < -4. 298 
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We then derived a pairwise correlation matrix using biweight midcorrelations between all 299 

metabolites. From this, a weighted, signed adjacency matrix was constructed by raising 300 

correlations to a soft thresholding power of 9, chosen to meet a scale-free topology 301 

threshold of >= 0.85 while maximising mean connectivity (S3 Fig). Subsequently, the 302 

adjacency matrix was transformed into a topological overlap matrix (TOM), representing the 303 

network connectivity of metabolites. Metabolites were then hierarchically clustered into a 304 

dendrogram using an average linkage method based on their dissimilarity (1-TOM), and the 305 

dendrogram was cut using a dynamic hybrid tree cutting algorithm (28) (parameters - 306 

minModuleSize=20, deepSplit=4 and mergeHeight=0.3), resulting in 15 metabolite modules. 307 

Of these, the ‘grey’ module, comprised of metabolites that were not assigned to any 308 

particular module, was dropped from further analysis. Module eigenvalues were computed 309 

for the remaining 14 modules. 310 

 311 

Overrepresentation analyses using the hypergeometric test were performed on modules to 312 

identify pathways expressed more than expected by chance. Pathway assignment is detailed 313 

in 2.5.2. For all module analyses, a Bonferroni-corrected significance threshold was set at 314 

0.05/14 modules; p <1.14x10-3. 315 

 316 

Regression analyses 317 

To evaluate module-outcome relationships in the context of life course influences, modules 318 

were subject to the same series of regression models listed in 2.5.1, using z-standardised 319 

module eigenvalues as predictors. As modules were curated using the residuals of a 320 

regression model fit between metabolites and model 1 covariables, only models 2-4 were 321 

performed. 322 
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Identification of module hubs 323 

Metabolites that have a high intramodular connectivity (“hub” metabolites) are highly 324 

influential in module structure and likely to play central roles in biological function. Highly 325 

connected metabolites that also associate with our outcomes thus present as relevant and 326 

functionally important candidates for further study. 327 

 328 

To identify hubs, we evaluated associations between metabolites and their assigned module 329 

(module membership; kME) using correlations between metabolites and module 330 

eigenvalues. Metabolites with a kME of >0.65 were defined as hubs, and filtered for those 331 

identified in single-metabolite analyses. 332 

 333 

2.5.4 Additional analyses 334 

In our preliminary analysis, we investigated associations between all covariables and 335 

metabolites, and all covariables and outcomes (adjusting for model 1 covariables) (S2 336 

Table). To further investigate whether particular covariables may be driving attenuations, 337 

we repeated single-metabolite and module regression analyses, adjusting for model 1 338 

covariables and each additional covariable individually (S3 Table and S4 Table). 339 

 340 

For any results significant at the Bonferroni threshold, analyses were rerun additionally 341 

adjusting for APOE genotype to investigate whether relationships were independent of 342 

APOE (S5 Table and S6 Table). 343 

  344 
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3. Results 345 

3.1 Participant characteristics 346 

Complete metabolite, cognition and blood clinic data at age 60-64 were available for 1740 347 

study participants. Repeated measures at age 69 were present for 1482 (short-term 348 

memory) and 1496 (processing speed), and ACE-III scores were present for 1255. 349 

Characteristics of participants with complete data for each outcome are shown in Table 1. 350 

 351 

Table 1. Clinical and demographic characteristics of participants of the MRC 1946 British 352 

Birth Cohort study 353 

 Full cognition and metabolite data  
Age 60-64 
(N=1740) 

Age 60-64 & 
processing 
speed age 
69 (N=1496) 

Age 60-64 & 
short-term 
memory age 
69 (N=1482) 

Age 60-64 & 
ACE-III age 69 
(N=1255) 

Sex 
    

Male 854 (49.1%) 732 (48.9%) 727 (49.1%) 607 (48.4%) 
Female 886 (50.9%) 764 (51.1%) 755 (50.9%) 648 (51.6%) 
Fasting blood sample 

    

Yes 1675 
(96.3%) 

1446 
(96.7%) 

1432 
(96.6%) 

1212 (96.6%) 

No 65 (3.7%) 50 (3.3%) 50 (3.4%) 43 (3.4%) 
Age 

    

Mean (SD) 63.20 (1.12) 63.21 (1.12) 63.21 (1.12) 63.22 (1.13) 
Father's socioeconomic position, n (%) 

   

Missing (n) 86 75 75 60 
Professional 128 (7.7%) 118 (8.3%) 118 (8.4%) 106 (8.9%) 
Intermediate 375 (22.7%) 325 (22.9%) 323 (23.0%) 272 (22.8%) 
Nonmanual skilled 293 (17.7%) 264 (18.6%) 261 (18.6%) 217 (18.2%) 
Manual skilled 488 (29.5%) 421 (29.6%) 419 (29.8%) 362 (30.3%) 
Partly skilled 282 (17.0%) 227 (16.0%) 225 (16.0%) 185 (15.5%) 
Unskilled 88 (5.3%) 66 (4.6%) 61 (4.3%) 53 (4.4%) 
Socioeconomic position (age 15-53), n 
(%) 

   

Missing (n) 10 5 5 3 
Professional 139 (8.0%) 125 (8.4%) 124 (8.4%) 104 (8.3%) 
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Intermediate 724 (41.8%) 641 (43.0%) 638 (43.2%) 542 (43.3%) 
Nonmanual skilled 404 (23.4%) 354 (23.7%) 349 (23.6%) 296 (23.6%) 
Manual skilled 250 (14.5%) 200 (13.4%) 198 (13.4%) 164 (13.1%) 
Partly skilled 165 (9.5%) 132 (8.9%) 130 (8.8%) 114 (9.1%) 
Unskilled 48 (2.8%) 39 (2.6%) 38 (2.6%) 32 (2.6%) 
Educational attainment (age 26), n (%) 

   

Missing (n) 90 71 68 55 
No qualification 462 (28.0%) 376 (26.4%) 370 (26.2%) 308 (25.7%) 
Up to GCSE 477 (28.9%) 409 (28.7%) 406 (28.7%) 354 (29.5%) 
A-level or higher 711 (43.1%) 640 (44.9%) 638 (45.1%) 538 (44.8%) 
Childhood cognition (age 15) (z-score) 

  

Missing (n) 252 217 215 177 
Mean (SD) 0.00 (1.00) 0.05 (0.99) 0.06 (0.98) 0.07 (0.99) 
Lipid medication (age 60-64), n (%) 

  

No 1318 
(75.7%) 

1135 
(75.9%) 

1124 
(75.8%) 

946 (75.4%) 

Yes 422 (24.3%) 361 (24.1%) 358 (24.2%) 309 (24.6%) 
BMI (age 60-64) (weight(kg)/height(m)2) 

 

Missing (n) 2 2 2 2 
Mean (SD) 27.76 (4.70) 27.70 (4.56) 27.69 (4.58) 27.61 (4.45) 
Physical activity (age 60-64), n (%) 

  

Missing (n) 48 40 37 32 
None 1036 

(61.2%) 
862 (59.2%) 857 (59.3%) 714 (58.4%) 

1-4 times a month 251 (14.8%) 229 (15.7%) 225 (15.6%) 192 (15.7%) 
4+ times a month 405 (23.9%) 365 (25.1%) 363 (25.1%) 317 (25.9%) 
Lifetime smoking (age 20-64), n (%) 

  

Missing (n) 347 291 285 243 
Mean (SD) 10.79 

(15.54) 
10.40 
(15.28) 

10.26 
(15.18) 

10.51 (15.43) 

Lifetime alcohol consumption (age 36-64), n (%) 
 

Missing (n) 285 226 221 192 
No consumption 90 (6.2%) 77 (6.1%) 76 (6.0%) 63 (5.9%) 
Light-moderate 
consumption 

1134 
(77.9%) 

993 (78.2%) 987 (78.3%) 845 (79.5%) 

Heavy consumption 231 (15.9%) 200 (15.7%) 198 (15.7%) 155 (14.6%) 
Diet quintiles (age 60-64), n (%) 

  

Missing (n) 246 189 185 166 
1 332 (22.2%) 276 (21.1%) 276 (21.3%) 231 (21.2%) 
2 302 (20.2%) 266 (20.4%) 263 (20.3%) 209 (19.2%) 
3 309 (20.7%) 266 (20.4%) 263 (20.3%) 230 (21.1%) 
4 270 (18.1%) 244 (18.7%) 244 (18.8%) 199 (18.3%) 
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5 281 (18.8%) 255 (19.5%) 251 (19.4%) 220 (20.2%) 
Systolic blood pressure (age 60-64) 

  

Missing (n) 12 7 6 5 
Mean (SD) 136.40 

(18.30) 
135.78 
(18.18) 

135.83 
(18.20) 

135.72 (18.28) 

APOE genotype, n (%) 
   

Missing (n) 217 169 167 146 
ε2/ε2 10 (0.7%) 9 (0.7%) 9 (0.7%) 5 (0.5%) 
ε2/ε3 177 (11.6%) 152 (11.5%) 151 (11.5%) 119 (10.7%) 
ε2/ε4 48 (3.2%) 39 (2.9%) 38 (2.9%) 31 (2.8%) 
ε3/ε3 881 (57.8%) 771 (58.1%) 763 (58.0%) 650 (58.6%) 
ε3/ε4 361 (23.7%) 316 (23.8%) 314 (23.9%) 270 (24.3%) 
ε4/ε4 46 (3.0%) 40 (3.0%) 40 (3.0%) 34 (3.1%) 

 354 

3.2 Single-metabolite analyses 355 

Overall, we identified 155 metabolites to be associated with a least one cognitive outcome 356 

after adjusting for multiple testing: 65 metabolites showed positive relationships, with 357 

increased abundance reflecting better cognitive function, and 90 showed negative 358 

relationships. No metabolites were associated with cognitive change measures at the 359 

Bonferroni threshold; as such, these outcomes will not be further discussed in this section 360 

but are presented in S1 Table. Significant metabolites represented all metabolon families 361 

but were largely defined as lipids (n=46) and amino acids (n=32). The largest proportion of 362 

these metabolites were associated with short-term memory at age 60-64 only, and just over 363 

half were associated with more than one outcome (Fig 2). As expected, this indicates some 364 

molecular overlap between the cognitive outcomes, although we did observe some unique 365 

relationships for processing speed in particular (Fig 2). Full summary statistics are available 366 

in S1 Table and visualised in S2 Fig. 367 

 368 
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Fig 2. (Main) Upset plot depicting the number of metabolites associated with each outcome and combination of outcomes at the adjusted 384 

threshold, split by metabolite family. Outcomes are shown in the matrix below, with shaded circles demonstrating those represented by 385 

the bar chart above. Where more than one outcome is indicated, lines further highlight these intersections. Bars are coloured by 386 

metabolite family and total metabolite counts are displayed on top of each bar, alongside the corresponding percentage proportion of all 387 

significant metabolites identified across all outcomes. As no metabolites were significant at the adjusted threshold for change outcomes, 388 

these were not included. (Left) Barplot showing the number of metabolites identified overall for each outcome. Bars are coloured by 389 

metabolite family and counts are displayed on the top of each bar. This plot was produced using (66). Underlying data are present in S1 390 

Table. ACE-III = Addenbrooke’s Cognitive Examination-III.391 
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Of the 155 metabolites identified across all models, 151 metabolites were identified in 392 

model 1. For all non-change outcomes, the metabolites showing the strongest positive 393 

effects were cofactors and vitamins involved in vitamin A metabolism; ß-cryptoxanthin and 394 

carotene diol (1), although this relationship was not significant at the adjusted threshold for 395 

processing speed at age 69 (ß=0.08, 95%CI=0.027 to 0.13, p=3.02x10-3). The strongest 396 

negative relationships were more distinct. Palmitoylcarnitine (C16), a lipid involved in fatty 397 

acid (acyl carnitine) metabolism, showed the largest negative association with processing 398 

speed at age 60-64. For the other outcomes, several unknown metabolites were revealed: 399 

X-24953 (short-term memory (both ages) and delayed memory), X-11372 (ACE-III) and X-400 

21470 (processing speed at age 69). 401 

 402 

After adjusting for BMI and lipid medication (model 2), average effect sizes reduced by 4.1% 403 

to 14.8%. However, the bulk of associations were attenuated after adjusting for model 3 404 

(parental and own SEP, childhood cognition and own education). Model 3 attenuations were 405 

most pronounced for memory outcomes and ACE-III, ranging from 51.3% to 58.4%, and 406 

milder for processing speed (age 69 - 10.7%, age 60-64 - 31.5%). Subsequently, seven 407 

metabolites were significant at the adjusted threshold, including one previously nominal 408 

association – margaroylcarnitine (C17)*.  409 

 410 

In the fully adjusted model (model 4), four metabolites remained significant at the adjusted 411 

threshold: X – 17676 (short-term memory and delayed memory at age 60-64), C16 412 

(processing speed at age 60-64), C17 (processing speed at age 60-64) and imidazole 413 

propionate (short-term memory age 69) (see Table 2 for final results and overall change 414 

from models 1 to 4). Eighty metabolites remained nominally significant. For processing 415 
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speed at age 60-64, model 4 adjustments resulted in a modest decrease in effect magnitude 416 

(19.7%), with milder reductions for the other outcomes (3.2-7.9%). Of note, we did not 417 

identify any significant changes in our results following adjustment for APOE (S5 Table). 418 

 419 

Table 2. Biological family, pathway and key results for significant metabolites in the final 420 

model (Model 4) 421 

Metabolite Family Pathway Model 1 Model 4 ß change from 
Model 1 to 4 
(%) 

X – 17676 Unknown Unknown STM (69y) 
ß = -0.14 
95%CI = -0.19 
to -0.089 
p = 5.29x10-8 
DM (60-64y) 
ß = -0.11 
95%CI = -0.15 
to -0.061 
p = 5.45x10-6 
 

STM (69y) 
ß = -0.11 
95%CI = -0.15 
to -0.06 
p = 4.84x10-6 
DM (60-64y) 
ß =-0.082  
95%CI = -0.12 
to -0.04 
p = 1.11x10-4 
 

STM (69y) 
ß change =  
-24.69% 
 
DM (60-64y) 
ß change =  
-23.56% 

Palmitoylcarnitine 
(C16) 

Lipid Fatty Acid 
Metabolism 
(Acyl 
Carnitine) 

PS (60-64y) 
ß = -0.11 
95%CI = -0.16 
to -0.062 
p = 9.19x10-6 
 

PS (60-64y) 
ß = -0.10  
95%CI = -0.15 
to -0.052 
p = 5.99x10-5 
 

PS (60-64y)  
ß change =  
-9.49% 

Margaroylcarnitine 
(C17)* 

Lipid Fatty Acid 
Metabolism 
(Acyl 
Carnitine) 

PS (60-64y) 
ß = -0.067 
95%CI = -0.11 
to 0.020 
p = 5.40x10-3 
 

PS (60-64y) 
ß = -0.095 
95%CI = -0.14 
to -0.048 
p = 8.33x10-5 
 

PS (60-64y)  
ß change = 
+40.75% 

Imidazole 
propionate 

Amino Acid Histidine 
Metabolism 

STM (69y) 
ß = -0.14 
95%CI = -0.19 
to -0.091 
p = 4.98x10-8 
 

STM (69y) 
ß = -0.094 
95%CI = -0.14 
to -0.048 
p = 7.91x10-5 
 

STM (69y)  
ß change =  
-33.48% 

STM = short-term memory, DM = delayed memory, PS = processing speed. 422 

 423 

 424 
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3.3 Pathway analyses 425 

Next, we characterised potential pathway involvement. Our results are presented in Fig 3 426 

and S7 Table. No pathway was significant at the adjusted threshold for processing speed at 427 

age 69, nor for the cognitive change measures, although some nominal associations were 428 

observed.  429 

 430 

Pathways significant at the adjusted threshold (p <9.43x10-4) are discussed hereafter. 431 

Briefly, the Vitamin A metabolism pathway was positively associated with all other 432 

outcomes. Ascorbate and aldarate metabolism, another pathway related to cofactors and 433 

vitamins metabolism, was also positively associated with short-term memory at both time 434 

points. 435 

 436 

Negative relationships were observed between the purine metabolism (adenine containing) 437 

pathway and short-term memory, delayed memory and ACE-III. Short-term memory 438 

displayed some unique relationships at the adjusted threshold, although these pathways did 439 

show nominal relationships with at least two of the other outcomes. At age 60-64, five 440 

pathways (methionine; cysteine, SAM and taurine metabolism; urea cycle (arginine and 441 

proline metabolism); purine metabolism ((hypo)xanthine/inosine); fatty acid (monohydroxy) 442 

and endocannabinoid) showed additional negative associations. At age 69, two pathways 443 

(pyrimidine metabolism (uracil); gamma-glutamyl amino acid) were additionally associated. 444 

445 
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 463 

 464 

Fig 3. Plot representing pathway-outcome associations, organised by metabolite family. 465 

Bonferroni-significant pathways (p<9.43x10-4) are represented by a solid fill and nominal 466 

metabolites by a faint fill (p<0.05. Underlying data are present in S7 Table. 467 

Carb = carbohydrates, Cof & Vit = cofactors and vitamins, PCM = partially characterized 468 

molecules, Pep = peptides. 469 
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3.5 Network analyses 470 

We next adopted a network approach, WGCNA, to explore relationships between groups of 471 

densely connected metabolites and cognitive outcomes. We identified 14 modules 472 

comprised of between 22 to 192 metabolites, with regression analyses revealing five of 473 

these to be associated with cognitive outcomes at the adjusted threshold (p <1.14x10-3): 474 

two showing positive associations and three showing negative associations (Fig 4). All but 475 

one module were enriched in a biological pathway (Fig 4 and S8 Table), and no results were 476 

significant at the Bonferroni threshold for cognitive change measures. As with single-477 

metabolite analyses, we further adjusted for life course factors, detailed below. Key results 478 

are presented in Fig 5 and full summary statistics are available in S9 Table. 479 
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 491 

Fig 4. A) Module dendrogram and heatmap of module-outcome associations. Effect sizes 492 

and unadjusted p-values are presented in the tiles and significant associations  493 

(p<1.14x10-3) are highlighted in bold. For clarity purposes, only outcomes demonstrating a 494 

Bonferroni-significant result are shown. B) Overrepresented pathways for each module. 495 

Only pathways significant at the adjusted threshold (p<9.43x10-4) are shown. P-values are 496 

unadjusted. Underlying data are present in S8 Table and S9 Table.  497 

STM = short-term memory, DM = delayed memory, ACE-III = Addenbrooke’s Cognitive 498 

Examination-III, PS = processing speed. 499 
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 513 

Fig 5.  Forest plot showing associations between modules and outcomes in models 1-4. Bonferroni-significant modules (p<1.14x10-3) are 514 

represented by a solid fill, nominal modules (p<0.05) by a fainter fill and modules that are not significant at either threshold are 515 

represented by the faintest fill. For clarity purposes, only outcomes demonstrating a Bonferroni-significant result are shown. Underlying 516 

data are present in S9 Table.517 
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3.5.1 Positive relationships were seen for yellow and cyan modules 518 

The cyan module – enriched in ascorbate and aldarate metabolism, vitamin A metabolism 519 

and food/plant consumption – exhibited the strongest positive relationship with all but one 520 

of the cognitive outcomes. This effect was significant at the adjusted threshold for most 521 

outcomes, with the exception of processing speed at age 69 (p=0.024) and change measures 522 

(short-term memory – p=8.03x10-3, processing speed – p=0.81). Adjusting for BMI and lipid 523 

medication (model 2) slightly attenuated relationships (5.4-14.1%), with model 3 524 

adjustments again showing the greatest reductions (42.2-72.5%). As a result, short-term 525 

memory at age 60-64 and 69 remained significant at the adjusted threshold, but all other 526 

associations were lost. Our additional analysis indicated that all model 3 covariables were 527 

able to reduce associations, with childhood cognition and education resulting in the biggest 528 

attenuations (S4 Table). After adjusting for lifestyle factors (model 4), effect sizes reduced 529 

by a further 36.1% for processing speed at age 60-64, with smaller reductions (8.4-9.3%) 530 

observed for the other outcomes (Fig 5). Subsequently, short-term memory was no longer 531 

significant at the adjusted threshold, but did remain nominally associated (age 60-64 - 532 

ß=0.068, 95%CI =0.022 to 0.11, p=4.10x10-3; age 69 - ß=0.066, 95%CI=0.013 to 0.12, 533 

p=0.015). Overall attenuations ranged from 68.6-92.6%.  534 

 535 

We similarly found the yellow module – enriched in sphingolipid metabolism and other lipid 536 

pathways – to display positive associations with ACE-III, delayed memory and short-term 537 

memory at age 60-64 at the adjusted threshold. We saw modest to large effect size 538 

reductions (18.1-34.2%) in model 2, with all relationships lost after adjusting for multiple 539 

tests. Model 3 adjustments resulted in substantial further effect reductions (66.3-84.8%), 540 

again with childhood cognition and education resulting in the biggest attenuations (S4 541 
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Table). Minimal additional changes were seen in model 4, and overall attenuations ranged 542 

from 87.0-116%. 543 

 544 

3.5.1 Negative relationships were seen for turquoise, purple and brown modules 545 

The turquoise module - enriched in several amino acid metabolism pathways - displayed 546 

negative associations with ACE-III, short-term memory (both time points) and delayed 547 

memory. Module-outcome relationships were most sensitive to model 2 adjustments, 548 

decreasing by 20.9-30%. As such, associations were lost at the adjusted threshold for ACE-III 549 

and delayed memory, but remained nominally significant. A further attenuation of 11.7-550 

27.1% was observed in model 3, before changing by a small margin (0.95-5.2%) in model 4. 551 

No associations passed multiple testing correction in the final model, but all relationships 552 

remained at the nominal threshold: standardised betas ranged from -0.068 to -0.046; and p 553 

values from 0.0060 to 0.043. Overall attenuations ranged from 39.2-55.5%. 554 

 555 

Negative associations were also identified between the purple module - enriched in fatty 556 

acid (acyl carnitine) metabolism – and processing speed at age 69. This relationship 557 

remained significant and relatively stable across all stages of covariable adjustment, 558 

demonstrating an effect size reduction of 6% overall and a final effect size of ß=-0.080 559 

(95%CI=-0.13 to -0.029, p=2.33x10-3). Similar effect directions were detected for both 560 

processing speed at age 60-64 and change in processing speed throughout, although this 561 

was nominally significant (model 4: age 60-64 - ß=-0.053, 95%CI=-0.10 to -0.0061, p=0.027; 562 

change - ß=-0.065, 95%CI=-0.12 to -0.012, p=0.016). 563 

 564 
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Finally, we identified the brown module - enriched in diacylglycerol and 565 

phosphatidylethanolamine (PE) pathways - to be negatively associated with short-term 566 

memory at age 60-64. In model 2, associations were largely reduced (63.3%) and no longer 567 

significant; this appeared to be mainly driven by BMI (S4 Table). Subsequent model 568 

adjustments resulted in full attenuation. 569 

 570 

Results were largely unchanged after adjusting for APOE, with all previously significant 571 

modules remaining significant at the nominal or Bonferroni threshold in the basic model. In 572 

the final model we observed a similar pattern, with the exception of the turquoise module 573 

and delayed memory which was no longer significant at the nominal threshold (S6 Table). 574 

 575 

3.5.3 Hub metabolites 576 

To highlight possible key drivers, we focused in on metabolites showing a high intramodular 577 

connectivity (kME >0.65) and integrated this with our single-metabolite results. Thirty-five 578 

of the 155 metabolites identified in single-metabolite analyses were revealed to be hubs 579 

(Fig 6 and S1 Table). Hub metabolites belonged to 10 modules and represented various 580 

pathways, including eight of the 10 identified in our pathway analyses at the adjusted 581 

threshold: gamma-glutamyl amino acid; methionine, cysteine, SAM and taurine metabolism; 582 

purine metabolism, (hypo)xanthine/inosine containing; purine metabolism, adenine 583 

containing; pyrimidine metabolism, uracil containing; ascorbate and aldarate metabolism; 584 

vitamin A metabolism; and fatty acid (monohydroxy). In model 4, one hub – C16 – was 585 

significant at the adjusted threshold and 17 were nominally significant.  586 

 587 

 588 
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 599 

 600 
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 602 

 603 

 604 

Fig 6. Heatmap showing trends of associations between hub metabolites and cognitive 605 

outcomes in models 1-4. Panels on the right indicate the pathways (text) and modules 606 

(colour) represented by metabolites. Pathways are suffixed with an asterisk if they were 607 

previously identified in our pathway analyses (** = p<9.43x10-4, * = p<0.05). 608 

Bonferroni-significant metabolites (p<1.15x10-4) are represented by a solid fill, nominal 609 

metabolites by a faint fill (p<0.05), and non-significant metabolites by no fill (p>0.05). Tiles 610 

are coloured by effect direction and effect sizes are noted in the centre. For clarity 611 
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purposes, only outcomes demonstrating a Bonferroni-significant result are shown. 612 

Underlying data are present in S1 Table. 613 

STM = short-term memory, PS = processing speed, DM = delayed memory, ACE-III = Addenbrooke’s 614 

Cognitive Examination-III. 615 

  616 
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 4. Discussion 617 

Using the British 1946 Birth Cohort, we systematically evaluated the metabolic correlates of 618 

cognitive function in late midlife while untangling the influence of life course factors. We 619 

identified 155 metabolites, ten metabolic pathways and five modules of coexpressed 620 

metabolites to show associations with cognitive outcomes. A large proportion of our results 621 

converged using multiple analytical approaches, adding weight to their involvement in 622 

cognitive outcomes in late midlife. Integrating these, 35 hub metabolites were revealed to 623 

show potential as candidates for further study. Some relationships were independent of life 624 

course influences, providing insight into unique metabolic mechanisms underlying cognitive 625 

outcomes. However, consistent with our previous analyses in the MRC 1946 (6), as well as a 626 

previous lipidomics study in the Lothian Birth Cohort (29), many were sensitive to social 627 

factors and childhood cognition, suggesting important considerations for future studies. 628 

 629 

Our most robust finding was for increased serum acylcarnitines and worse processing 630 

speed. The purple module - enriched in medium and long chain acylcarnitines - showed 631 

negative relationships that were independent of life course factors. Interestingly, 632 

associations were strongest for processing speed 5-9 years later (age 69), although similar 633 

patterns were observed for both baseline (age 60-64) and change at the nominal threshold. 634 

These relationships were specific to processing speed, indicating a possible mechanism 635 

unique to this outcome; our pathway analysis was largely in support of this. One metabolite, 636 

C16 (a long chain acylcarnitine) appeared to be a key driver in these associations, suggesting 637 

a potential candidate and pathway for further investigation. 638 

 639 
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Biologically, medium and long chain acylcarnitines are derivatives of fatty acid metabolism 640 

and known to be pivotal in mitochondrial fatty acid oxidation (30). Increased abundances in 641 

serum have thus been regarded as proxies for mitochondrial dysfunction and impairments 642 

in subsequent energy production (30). More specifically, C16 has also been linked to the 643 

induction and regulation of apoptotic events (31). Both apoptosis and mitochondrial 644 

dysfunction have been implicated in neurodegeneration, indicating a plausible biological 645 

mechanism behind our observations (32,33).  646 

 647 

Perturbations in acylcarnitine levels have been reported in early cognitive impairments and 648 

AD (7,34,35). Serum levels have also been linked to other traits, such as insulin 649 

resistance(36,37), obesity (37) and cardiovascular disease (38), similarly demonstrating 650 

independent effects from known risk factors. Although these factors show influence on 651 

cognitive function, our associations remained following adjustment for several related 652 

factors such as blood pressure, BMI and lipid medication. Taken together, this presents the 653 

possibility that alterations may reflect metabolic dysfunction, conferring vulnerability to 654 

adverse health outcomes including decline in processing speed. Future studies will seek to 655 

further establish whether these changes lie on the causal pathway.  656 

 657 

We also discovered a module comprised of nucleotides and amino acids, turquoise, to 658 

demonstrate negative associations with short-term memory, delayed memory and ACE-III. 659 

As the largest module, it was enriched in several pathways, including three which were 660 

brought to our attention in pathway analyses (histidine metabolism; methionine, cysteine, 661 

SAM and taurine metabolism; gamma-glutamyl amino acid metabolism). Purine and 662 

pyrimidine metabolism pathways were additionally represented by module hubs and 663 
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further corroborated by pathway analyses. Relationships remained nominally significant 664 

after adjusting for life course factors, reducing by 39.2-55.5% overall.  665 

 666 

The top driver of the module was 2,3-dihydroxy-5-methylthio-4-pentenoic acid 667 

(DMTPA), belonging to the methionine, cysteine, SAM and taurine metabolism pathway. 668 

Additional module hubs were amino acids and nucleosides that were unified by the 669 

presence of modifications. Included in these were several markers of RNA turnover, a 670 

gamma-glutamyl amino acid and a marker of oxidative stress (39–41). The methionine, 671 

cysteine, SAM and taurine metabolism pathway has a key role in post-transcriptional and 672 

post-translational modifications, including the sourcing of methyl and aminocarboxypropyl 673 

groups demonstrated in some module hubs (42,43), indicating plausible relationships linking 674 

these metabolites. 675 

 676 

With key roles in the expression, function and stability of molecules, RNA and amino acid 677 

modifications are able to regulate a multitude of biological and pathological processes, 678 

although precise mechanisms remain elusive (44,45). Aberrant patterns are thought to 679 

underly a host of chronic diseases (44), and are gaining attention in the field of 680 

neurodegeneration, with a recent paper reporting differential expression of RNA 681 

modifications in the post mortem brains of dementia patients (46). Interestingly, the many 682 

module hubs have been consistently reported together in adverse outcomes, including 683 

hypertension (47), chronic kidney disease (48,49), inflammation (50) and mortality (51). This 684 

signature has been previously shown to be relevant to cognitive function as well; in the 685 

Bogalusa heart study, a module was curated with similar top drivers, showing associations 686 

with cognitive outcomes in midlife (10). For the first time, we have reported such an 687 
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association in the context of late midlife cognitive outcomes, finding observational 688 

relationships with ACE-III, as well as with memory more generally.  689 

 690 

The widespread associations of these module hubs together in adverse outcomes presents 691 

the possibility that they could reflect global disease burden or converging pathological 692 

mechanisms. A previous study hypothesised that increased levels of modified amino acids 693 

may represent an accelerated ageing phenotype and suggested modified nucleotides to be a 694 

marker of tissue breakdown and oxidative stress (52), which we know to be implicated in 695 

decline in cognitive function (53). Lending some support for this, life course factors related 696 

to these processes, such as BMI and smoking, were associated with the module. However, 697 

none were able to suitably explain relationships, suggesting that our findings could be 698 

capturing converging mechanisms that are independent of these factors. 699 

 700 

We reported relationships between sphingolipids and improved cognitive function which 701 

were entirely explained by life course factors, particularly childhood cognition and 702 

education. Positive associations were observed between the yellow module - enriched in 703 

several pathways related to sphingolipid metabolism - and the ACE-III, as well as short-term 704 

and delayed memory at age 60-64. Nominal associations were also recorded for sphingolipid 705 

pathways and these outcomes. Module associations exhibited major reductions in model 3, 706 

and attenuated by 87-116% overall, with no hubs remaining associated with cognitive 707 

outcomes; this was surprising given the attention sphingolipid metabolism has received in 708 

the neurodegeneration field. We saw similar patterns for the brown module - enriched in 709 

diacylglycerol and PE – for which relationships attenuated in model 2, although effects were 710 

relatively small and only reported for short-term memory at age 60-64. 711 
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Previous research has implicated disturbances in sphingolipid balance in cognitive 712 

development (54,55), function (55), ageing (55,56) and AD (57). Sphingolipids are a lipid 713 

family comprised of sphingomyelins, ceramides and glycosphingolipids, and are present in 714 

large quantities in the CNS (57). Forming important components of cell membranes, they 715 

are highly dynamic and display crucial roles in cognitive development and function (55). In 716 

this regard, all yellow module hubs were sphingomyelin species - the most abundant 717 

sphingolipid with pivotal roles in myelin integrity and function (54). However, despite 718 

findings highlighting altered sphingolipid balance in cognitive decline and AD, replication of 719 

specific sphingolipids has proved challenging. This could be due to their delicate balance and 720 

dynamicity, or perhaps due to fluctuations as a function of pathology, with differing 721 

relationships observed throughout the disease course. Alternatively, inconsistencies in 722 

incorporating life course factors in analytical models could be a contributor. 723 

 724 

Given observational findings linking sphingolipids and cognitive function at several stages of 725 

the life course, there exists several possibilities of the loss of relationships after model 3 726 

adjustments, and particularly for childhood cognition and education. Attenuations following 727 

adjustment for childhood cognition suggests confounding through reverse causation. In the 728 

case of education, this may influence levels through other exposures, resulting in spurious 729 

associations between late midlife sphingolipid levels and late midlife cognitive outcomes. 730 

However, due to a lack of longitudinal metabolite data, we cannot rule out the possibility 731 

that later life sphingolipid levels may be a proxy for those of earlier life. In this regard, 732 

childhood cognition and education could be mediators of early life sphingolipid levels and 733 

later life cognitive function; or perhaps they may be linked by common genetic or 734 

environmental causes. Future studies aiming to unravel the precise nature of these life 735 
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course relationships will be crucial in understanding the importance of sphingolipids in 736 

cognitive outcomes in later life. Nevertheless, our findings suggest that these factors need 737 

to be carefully considered in future investigations into metabolic underpinnings of cognitive 738 

function and decline. 739 

 740 

Finally, a module enriched in vitamin A and C metabolites, cyan, showed positive 741 

associations with most cognitive outcomes. Notably, our model 1 results suggested a 742 

ubiquitous positive role of vitamin A metabolites for cognitive outcomes, with the cyan 743 

module, vitamin A metabolism pathway and metabolites (carotenoids) contained within this 744 

pathway displaying the largest overall effects across all stages of analysis. Despite large 745 

effect sizes, associations were sensitive to adjustment for life course factors, namely 746 

childhood cognition and social factors. In the final model, relationships were largely 747 

explained for processing speed and ACE-III, displaying attenuations of >90%. Reductions 748 

were also seen for short-term memory at both time points (68.6 and 71.1%), but 749 

associations remained at the nominal threshold. 750 

 751 

Oxidative stress is thought to be involved in the pathogenesis of neurodegenerative 752 

diseases and is characterised by an overabundance of reactive oxygen species, initiating a 753 

host of deleterious effects (58). Antioxidants, including vitamin C metabolites and 754 

carotenoids, may inhibit such processes through scavenging of these species (59). Due to 755 

this, their involvement in ageing, cognitive decline and AD has been discussed, and all five of 756 

the present hubs have previously shown apparent protective effects in small studies 757 

investigating cognitive impairments (60–62). Nevertheless, contributions are debated, with 758 

epidemiological studies showing conflicting results (63,64).  759 
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While generally acquired through food consumption, it is unclear whether our findings 760 

reflect increased intake or bioavailability, or accumulate consequentially as a marker of 761 

reduced antioxidant requirements. In a previous study exploring metabolite markers of 762 

healthy nutritional patterns, three of the module hubs (glycerate, stachydrine and oxalate) 763 

were highly correlated with the intake of foods rich in antioxidants and minerals (65). 764 

Although we identified strong relationships between the module and dietary scores, diet 765 

was not able to suitably explain observed relationships. As the cyan module exhibited 766 

significant associations with all covariables, it is plausible that it could be capturing a more 767 

pervasive mechanism such as oxidative stress and subsequent antioxidant requirements. 768 

 769 

It was interesting to note that, following life course adjustment, relationships were largely 770 

explained for processing speed and ACE-III, but nominal residual relationships remained for 771 

short-term memory at both time points, with age 60-64 just shy of the adjusted threshold. 772 

Although these relationships still showed marked attenuations, this indicates that there may 773 

be some independent effects specific to short-term memory at these ages. As discussed 774 

with previously, attenuations suggest confounding by childhood cognition and social factors, 775 

or may reflect relationships we are not able to capture without longitudinal metabolite 776 

data. Further research is required to understand these relationships in greater depth. 777 

 778 

Findings should be considered in light of several strengths and limitations. First, our study 779 

incorporated a variety of known confounders and our results converged through a variety of 780 

methodological techniques. Using a sequential analytical design further allowed for greater 781 

insight into influencing life course factors. However, our results may still be subject to 782 

residual confounding. We additionally do not have longitudinal metabolomics data, 783 
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precluding investigation into lifelong relationships and directionality. Our next step will be 784 

to interrogate the causal nature of associations highlighted in this study through methods 785 

such as Mendelian Randomisation, as well as to externally replicate our work. Next, 786 

cognitive change measures were curated from data collected at two time points within a 787 

small time window, which could explain the lack of relationships observed; it will be 788 

interesting to investigate this in future waves. Further, change measures were represented 789 

by residualised change scores which can be subject to bias and our findings should be 790 

interpreted with this in caution. The NSHD is a large nationally recruited sample with a 791 

narrow age range, thus overcoming confounding by age or recruitment strategy. With a 792 

large array of available measures, we were able to investigate prospective measures 793 

collected from birth as well as comprehensive measures of cognitive function, including the 794 

ACE-III. Looking at several domains of cognition further allowed us to identify more specific 795 

relationships that may otherwise have been missed. As seen with many cohort studies, 796 

individuals remaining in the study at this stage were generally of higher cognitive ability in 797 

childhood and more socially advantaged compared to the sample initially recruited at birth. 798 

Additionally, the study sample was ethnically homogenous. For generalisation, it is 799 

paramount to replicate this work in more diverse populations. Finally, we used a 800 

comprehensive metabolomics platform to acquire untargeted metabolite data, which 801 

provided unbiased and granular metabolite profiles for our analyses. Due to this, levels of 802 

metabolites with unknown identities were captured; module analysis yielded some insight 803 

into a broad identity and function, but precise characterisation is not yet available. 804 

 805 

In summary, we conducted one of the largest LC-MS studies to date on cognitive outcomes 806 

in late midlife, and are the first to systematically evaluate associations in the context of life 807 
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course factors. We integrated metabolites, pathways and networks, offering biological 808 

interpretation while retaining granularity, illuminating important pathways and drivers of 809 

cognitive outcomes in late midlife. Our results illustrate the importance of incorporating life 810 

course influences, with many relationships largely explained by childhood cognition and 811 

education; our further studies will aim to unpick this. Finally, we identified several 812 

metabolites (e.g. C16) that were both pivotal to module function and associated with our 813 

outcomes, presenting as potential marker candidates for additional study. 814 

815 
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collection centre. 1024 

 1025 

S3 Table. Pathway analyses results. 1026 

 1027 

S4 Table. Module overrepresentation analysis results. 1028 

 1029 

S5 Table. Full module analyses results (models 1-4). 1030 

 1031 

S6 Table. Linear regression analyses results for the associations between metabolites and 1032 

outcomes, after adjusting for each covariable individually. All analyses are adjusted for 1033 

sex, age at blood collection and blood collection centre. 1034 

 1035 

S7 Table. Linear regression analyses results for the associations between metabolites and 1036 

outcomes with and without adjusting for APOE. The maximum N with APOE genotype was 1037 

used. 1038 

 1039 
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S8 Table. Linear regression analyses results for the associations between modules and 1040 

outcomes, after adjusting for each covariable individually.  1041 

 1042 

S9 Table. Linear regression analyses results for the associations between modules and 1043 

outcomes with and without adjusting for APOE. The maximum N with APOE genotype was 1044 

used. 1045 

 1046 

S1 Fig. Flow chart depicting metabolomic data quality control. 1047 

 1048 

S2 Fig. Heat map showing trends of associations between the 155 metabolites and 1049 

cognitive outcomes in models 1-4, organised by metabolite family. Bonferroni-significant 1050 

metabolites (p<1.15x10-4) are represented by a solid fill, nominal metabolites by a faint fill 1051 

(p<0.05), and non-significant metabolites by no fill (p>0.05). 1052 

Carb = carbohydrates, Cof & Vit = cofactors & vitamins, En = energy, PCM = partially 1053 

characterised molecules, Pep = peptides, ACE-III = Addenbrooke’s Cognitive Examination-III, 1054 

DM = delayed memory, STM = short-term memory, PS = processing speed 1055 

 1056 

S3 Fig. Scale free topology and mean connectivity plots for weighted gene coexpression 1057 

network analysis. 1058 

 1059 

S1 Methods. Supplementary methods 1060 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 27, 2020. ; https://doi.org/10.1101/2020.11.23.20236463doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.23.20236463
http://creativecommons.org/licenses/by-nc-nd/4.0/

