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ABSTRACT 29 

Clostridioides difficile is the leading cause of healthcare-associated infectious diarrhea. 30 

However, it is increasingly appreciated that healthcare-associated infections derive from both 31 

community and healthcare transmission, and that the primary sites of C. difficile transmission 32 

may be strain dependent. We conducted a multisite genomic epidemiology study to assess 33 

differential genomic evidence of healthcare vs. community spread for two of the most common 34 

C. difficile strains in the U.S.: sequence type (ST) 1 (associated with Ribotype 027) and ST2 35 

(associated with Ribotype 014/020). Isolates recovered from stool specimens collected during 36 

standard clinical care at three geographically distinct U.S. medical centers between 2010 and 37 

2018 underwent whole genome sequencing and phylogenetic analyses. ST1 and ST2 isolates 38 

both displayed some evidence of phylogenetic clustering by study site, but clustering was 39 

stronger and more apparent in ST1, consistent with our healthcare-based study more 40 

comprehensively sampling local transmission of ST1 compared to ST2 strains. Analyses of 41 

pairwise single nucleotide variant (SNV) distance distributions were also consistent with more 42 

evidence of healthcare transmission of ST1 compared to ST2, with 44% of ST1 isolates being 43 

within 2 SNVs of another isolate from the same geographic collection site compared to 5.5% of 44 

ST2 isolates (p-value = <0.001). Conversely, ST2 isolates were more likely to have close genetic 45 

neighbors across disparate geographic sites compared to ST1 isolates, further supporting non-46 

healthcare routes of spread for ST2 and highlighting the potential for misattributing genomic 47 

similarity among ST2 isolates to recent healthcare transmission. Finally, we estimated a lower 48 

evolutionary rate for the ST2 lineage compared to the ST1 lineage using Bayesian timed 49 

phylogenomic analyses, and hypothesize that this may contribute to observed differences in 50 
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geographic concordance among closely related isolates. Together, these findings suggest that 51 

ST1 and ST2, while both common causes of C. difficile infection in hospitals, show differential 52 

reliance on community and hospital spread. This conclusion supports the need for strain-53 

specific criteria for interpreting genomic linkages and emphasizes the importance of 54 

considering differences in the epidemiology of circulating strains when devising interventions to 55 

reduce the burden of C. difficile infections.  56 

 57 
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DATA SUMMARY: All whole genome sequence data was uploaded to the National Center for 59 

Biotechnology Information (NCBI) Sequence Read Archive (SRA) under Bioproject accessions 60 

PRJNA595724, PRJNA561087, and PRJNA594943. Metadata that comply with patient privacy 61 

rules are included in the Supplementary Materials. 62 

 63 
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INTRODUCTION 65 

Clostridioides difficile is a gram-positive spore-forming anaerobic bacterium that is a dominant 66 

cause of infectious diarrhea, colitis, and colitis-associated death in the United States [1,2]. 67 

While C. difficile infection (CDI) is classically considered nosocomial [3], recent molecular 68 

epidemiologic research suggests that less than 40% of CDI cases are linkable to other 69 

symptomatic CDI cases within the same hospital [4–6]. This insight has disrupted the paradigm 70 

of C. difficile as an exclusively nosocomial pathogen and expanded interest into the roles of 71 

alternative routes of C. difficile transmission, including community-based acquisition with 72 

subsequent progression to CDI within healthcare settings [7].  73 

 74 

Different C. difficile strains may have varying propensities for transmission within healthcare vs. 75 

the community, and fluroquinolone resistance has been raised as a potential defining 76 

characteristic of strains that spread more readily within healthcare settings [8]. In particular, 77 

the largely fluoroquinolone-resistant (FQR) Ribotype (RT) 027—also known as NAP1 via pulse-78 

field gel electrophoreses or sequence type (ST) 1 via multi-locus sequence typing (MLST)—has 79 

been implicated in numerous hospital-based CDI outbreaks and is most commonly healthcare-80 

associated according to surveillance definitions based on past hospitalizations [9–12]. Another 81 

common C. difficile lineage in the U.S., RT014/020 (corresponding to STs 2, 49, and 13), is 82 

largely fluoroquinolone sensitive (FQS) and, while it is frequently characterized as healthcare-83 

associated using these same surveillance definitions, has not been associated with hospital-84 

based outbreaks [13]. Associations between C. difficile strain type and propensity for 85 

healthcare-associated transmission would indicate that devising effective interventions for 86 
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reducing the burden of CDI may require an understanding of the molecular epidemiology of 87 

locally circulating strains, and that strain-specific incidence may be a more accurate metric of 88 

the successful prevention of C. difficile transmission within hospitals. 89 

 90 

Whole genome sequencing (WGS) can provide insight into the potential contribution of 91 

healthcare vs. community spread of particular strains, even in the absence of comprehensive 92 

sampling of transmission networks. Recent studies that applied WGS to European clinical C. 93 

difficile isolates found that RT027/ST1 displayed genomic patterns consistent with healthcare-94 

associated-spread, while RT014/020/ST2 displayed genomic patterns more consistent with 95 

community-associated reservoirs [6,8]. However, these distinct epidemiologic patterns have 96 

not yet been assessed using genomic data gathered from U.S.-based C. difficile isolates. Here, 97 

we applied WGS to isolates collected from three geographically distinct U.S. medical centers to 98 

assess differential genomic evidence of healthcare vs. community spread between two of the 99 

most common C. difficile strains: ST1 and ST2.  100 

 101 

METHODS 102 

Data collection 103 

New C. difficile sequences were derived from clinical stool specimens collected as part existing 104 

molecular surveillance programs that took place at three U.S. medical centers: Michigan 105 

Medicine (UM) between 2010 and 2013 [14], Texas Medical Center Hospitals (TMC) between 106 

2011 and 2017 [15], and Memorial Sloan Kettering Cancer Center (MSKCC) between 2013 and 107 

2017 [16]. At all three sites, toxigenic C. difficile positive stool specimens were collected, C. 108 
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difficile isolates were recovered from the speciemens, and DNA was extracted from a single 109 

colony as previous described [14–16]. Isolates underwent molecular typing via ribotyping at UM 110 

and TMC [17], and MLST at MSKCC [18]. DNA from a sample of isolates that were typed as 111 

RT027 or RT014/020 at UM and TMC and ST1 or ST2 at MSKCC was extracted for whole genome 112 

sequencing. The Institutional Review Boards at each of the study sites approved the study 113 

protocols.  114 

 115 

Whole genome sequencing and bioinformatic methods  116 

DNA was sent to UM and the Nextera XT library preparation kit (Illumina, San Diego, CA) was 117 

used to prepare sequencing libraries according to the manufacturer’s instructions. WGS was 118 

executed on an Illumina Hiseq platform with 150 base-pair paired-end reads and a targeted 119 

read depth of >100X. Sequence data are available from the National Center for Biotechnology 120 

Information (NCBI) Sequence Read Archive (SRA) under BioProjects PRJNA595724, 121 

PRJNA561087, and PRJNA594943. The bioinformatics methods applied to the new C. difficile 122 

sequences to identify single nucleotide variants (SNVs) and build phylogenetic trees were 123 

executed as previously described [19]. Briefly, raw sequencing reads were trimmed using 124 

Trimmomatic to remove low quality bases and adapter sequences. Trimmed reads were then 125 

mapped to existing complete reference genomes within the same ST (R20291 for ST1 [GenBank 126 

accession number FN545816], and W0022a for ST2 [GenBank accession number CP025046]) 127 

with the Burrows-Wheeler short read aligner [20–22]. PCR duplicates were discarded and 128 

variants were called using SAMtools mpileup and bcftools [23]. Gubbins was used to remove 129 

variant sites located in putative recombinant regions [24]. In silico multilocus sequence typing 130 
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(MLST) was performed using ARIBA and only isolates that were identified as ST1 and ST2 were 131 

included in all analyses [25]. Maximum-likelihood phylogenies were built using IQ-TREE with a 132 

generalized time reversible nucleotide substitution model; phylogenies were rooted using C. 133 

difficile 630 as an outgroup (GenBank accession number GCA_000009205.2)[26,27]. 134 

Fluroquinolone resistance was assigned based off of the presence of previously identified 135 

fluroquinolone resistance-associated gryA and gyrB alleles [28]. ST1 isolates were further 136 

classified into previously identified FQS,  FQR1, and FQR2 lineages by examining how new 137 

isolates clustered with publicly available FQR1 and FQR2 isolates [29].  138 

 139 

Evaluation of phylogenetic clustering  140 

To compare the level of clustering by geographic collection site between newly sequenced ST1 141 

and ST2 isolates, we overlaid geographic collection site onto the maximum-likelihood whole 142 

genome phylogenies and applied a previously described approach for formal clustering 143 

assessment [30]. First, we tabulated the number of isolates in a “pure” subtree of each 144 

phylogeny—defined as a subtree made up of 2 or more isolates collected from a single 145 

geographic site that was found in >90% of bootstrapped phylogenies. To determine whether 146 

this number was different than would be observed by chance given the phylogenetic topology 147 

and location frequency, we calculated an empirical p-value by randomizing geographic labels 148 

and re-calculating this number 1000 times.  149 

 150 

 151 

 152 
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Evaluation of evidence of recent transmission  153 

Evidence of recent transmission was assessed using pairwise SNV distance matrices and two 154 

analytic approaches. First, we compared the lower tail (5th percentile) of the distribution of 155 

pairwise SNV distances of pairs of isolates collected from the same collection site to that same 156 

metric among pairs of isolates collected from different collection sites by calculating a 5th 157 

percentile SNV-distance ratio (5th percentile SNV distance within sites/5th percentile SNV 158 

distance between sites). To assess whether this ratio indicated an enrichment of close linkages 159 

within collection sites greater than could be expected by chance, we randomly permuted 160 

collection sites and re-calculated the ratio 10,000 times; an observed ratio below the 2.5% 161 

percentile of the distribution of expected ratios was applied to support significant enrichment 162 

of close genetic linkages within study sites. Second, we classified genomic linkages using an 163 

SNV-distance threshold of 2 SNVs and compared the proportion of genomically linked isolates 164 

(defined as being linked to at least one other isolate) among ST1 isolates compared to those 165 

among ST2 isolates using chi-squared tests. An SNV threshold of 2 SNVs is commonly used to 166 

identify pairs of C. difficile isolates that were likely related via direct transmission/acquisition 167 

from a common source; this threshold is based off of evolutionary rates estimated from within-168 

host evolution [4]. We then assessed the sensitivity of these results to larger thresholds of 5-10 169 

SNVs. We also compared the proportion of isolates genomically linked to at least one isolate 170 

collected from a different geographic collection site between ST1 and ST2 using chi-squared 171 

tests. All analyses were completed in R v4.0.2.  172 

 173 

 174 
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Estimation of evolutionary rates  175 

We applied Bayesian timed phylogenomic analyses in order to estimate and compare 176 

evolutionary rates between ST1 and ST2 lineages using BEAST v1.10.4 [31]. To increase the 177 

power of timed phylogenomic analyses, existing ST1 and ST2 whole genome sequences were 178 

downloaded from the NCBI SRA; isolates were selected from a recent publication that compiled 179 

isolates from several previous C. difficile genome collections along with their ST and sampling 180 

date [32]. The combined collection of existing and new sequences was then pared down to 181 

facilitate running Bayesian phylogenomic analyses. First, in an effort to maximize genetic 182 

diversity, one randomly selected isolate from each pair of isolates within 2 SNVs of one another 183 

was removed. Second, isolates from overrepresented geographic locations were randomly 184 

downsampled until the total number of isolates was less than 425. The final list of isolates that 185 

were included in these analyses can be found in Supplementary Table 1.  186 

 187 

We assessed the suitability of the data for timed phylogenomic analyses by examining temporal 188 

signal—or the relationship between genomic differences and sampling date—using two 189 

methods. First, we examined a regression of sampling time vs. root-to-tip genetic distance using 190 

Tempest and BactDating [33,34]. We then formally evaluated temporal signal using date 191 

randomization tests, randomly permuting the sampling dates 10 times and comparing the 192 

evolutionary rate estimates and their 95% credible intervals for the random datasets to the 193 

estimates from the real data. We report both the more relaxed and more strict criteria for 194 

temporal signal assessment using this approach: with the more relaxed criteria being met if the 195 

estimated evolutionary rate was not included in the 95% credible intervals of 10 date 196 
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randomized datasets (CR1), and the more strict being met if the 95% credible interval of the 197 

estimated evolutionary rate did not overlap any of the 95% credible intervals of the date 198 

randomized datasets (CR2) [35]. We proceeded with evolutionary rate estimates so long as the 199 

data met CR1.  200 

 201 

To select BEAST model assumptions for both the date randomization tests and the final 202 

evolutionary rate estimates, we started with a general time reversible nucleotide substitution 203 

model with gamma distributed rate heterogeneity and the simplest clock and demographic 204 

model assumptions: a strict molecular clock and constant demographic prior. We then 205 

systematically examined to what extent the data violated the strict clock and constant 206 

demographic model prior assumptions and thus, to what extent more complex models were 207 

warranted. To assess whether the data violated a strict clock assumption, we evaluated 208 

whether the coefficient of variation parameter in the models with an uncorrelated relaxed 209 

lognormal clock had a 95% highest posterior density interval (HPD) that overlapped 0; if not, we 210 

used this as evidence of the assumptions of a strict clock being violated and applied an 211 

uncorrelated relaxed lognormal clock with a lognormal prior distribution with a mean of 5.0x10-212 

7 and standard deviation of 8x10-7 based on previous evolutionary rate estimates (while 213 

allowing still allowing for significant deviation) [29,36]. To assess to what extent the data 214 

violated a constant demographic model, we ran models with exponential growth demographic 215 

model prior, and evaluated whether the 95% credible interval of the exponential growth rate 216 

parameter overlapped 0. If the exponential growth rate parameter was substantially different 217 

from 0, we attempted running a more flexible but parameter rich Gaussian Markov Random 218 
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Field (GMRF) skyride model, which allows for periods of growth as well as periods of stasis [37]. 219 

For each model, a Markov-chain Monte Carlo was run for 200 million generations and sampled 220 

every 10,000 iterations; a Tempest-rooted starting tree was included in all runs to accelerate 221 

convergence [33]. All ESS values were checked for being above 200 using Tracer after removing 222 

the first 10% of steps as burn-in [38].   223 

 224 

RESULTS 225 

There were 382 new whole genome sequences generated from the 3 U.S. study sites located in 226 

Michigan, Texas, and New York; 199 ST1 and 183 ST2 (Supplementary Figure 1). The majority of 227 

ST1 isolates were FQR, relatively evenly distributed between the previously described FQR1 and 228 

FQR2 lineages, and the FQS isolates clustered together in one ancestral clade. Conversely, ST2 229 

isolates were largely FQS, with FQR isolates occurring in a two small clusters as well as 230 

singletons scattered throughout the phylogeny (Figure 1). ST1 sequences were less diverse than 231 

ST2 sequences: after quality and recombination filtering, the ST1 alignment consisted of 1108 232 

SNVs (median pairwise SNV distance 35, range 0-85), while the ST2 alignment consisted of 2119 233 

SNVs (median pairwise SNV distance 52, range 1-156) (Figure 2).  234 
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Figure 1: Maximum likelihood phylogenetic trees of newly sequenced C. difficile isolates that 235 

are ST1 and ST2. Tips are colored by fluroquinolone-resistant (FQR) vs. fluroquinolone-sensitive 236 

(FQS) as determined by the presence of previously identified fluroquinolone-resistance-237 

associated gryA and gyrB alleles. Previously identified ST1 lineages (FQS, FQR1, and FQR2) are 238 

highlighted, collection site is included in an adjacent heatmap. Tree scales are in single 239 

nucleotide changes per quality- and recombination-filtered site.  240 

 241 
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ST1 exhibits stronger evidence of phylogenetic clustering by geography compared to ST2 242 

To begin our comparison of ST1 and ST2 isolates, we first examined the association between 243 

phylogenetic and geographic structure by overlaying the geographic site each isolate was 244 

collected from onto strain-specific whole genome phylogenies. Visual examination of these 245 

phylogenies revealed a striking difference in geographic clustering, with ST1 displaying larger 246 

clusters and ST2 displaying more numerous, smaller clusters and more geographic mixing 247 

(Figure 1). The exception to this observation was the FQS ST1 clade, which appeared more 248 

geographically mixed than the FQR ST1 clades. While statistical assessments demonstrated that 249 

both ST1 and ST2 displayed more evidence of geographic clustering than would be expected to 250 

occur by chance (empiric p-values both <0.001), clustering was more non-random for ST1 than 251 

ST2 (Supplementary Figure 2). This enhanced geographic clustering among ST1 isolates could 252 

reflect that our healthcare-based study more completely sampled local transmission networks 253 

among ST1 isolates compared to ST2 isolates, or it could reflect ST1 spreading via more 254 

localized community or healthcare reservoirs with minimal long-distance transmission.  255 

 256 

ST1 isolates display more evidence of recent transmission than ST2, while ST2 isolates are 257 

more likely to share intermediate genetic linkages across disparate geographic sites 258 

To further investigate whether plausible healthcare-associated transmission among ST1 isolates 259 

was driving the geographic clustering patterns we saw in the phylogenies, we next examined 260 

the prevalence and nature of close genetic linkages within each lineage as captured by pairwise 261 

SNV distances. Isolates linked by very small SNV distances are plausibly linked via recent 262 

transmission, and we would expect our healthcare-based study to more comprehensively 263 
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sample healthcare-associated transmission than community-associated transmission. When 264 

examining the SNV distance distributions between and within collection sites, among ST1 265 

isolates, we observed more closely related pairs of isolates from the same geographic collection 266 

site (reflected by a heavier lower tail of the distribution) compared to pairs of isolates collected 267 

from different geographic collection sites (5th percentile SNV distance within sites/5th percentile 268 

SNV distance between sites = 0.59, expected ratio 95% interval 0.93-1.00, Figure 2). However, 269 

we did not observe this same pattern among ST2 isolates (5th percentile SNV distance within 270 

sites/5th percentile SNV distance between sites = 1.00, expected ratio 95% interval 0.93-1.00, 271 

Figure 2). Application of SNV distance thresholds demonstrated that 88 (44%) ST1 isolates were 272 

within 2 SNVs of another isolate from the same geographic collection site compared to 10 273 

(5.5%) ST2 isolates (p-value = <0.001). As the SNV threshold was increased to intermediate 274 

values of 5 and 10 SNVs, this trend was maintained (all p < 0.001, Figure 3A). Conversely, at the 275 

5 and 10 SNV thresholds, linked ST2 isolates were more likely to be linked to an isolate from a 276 

different geographic collection site compared to linked ST1 isolates (all p < 0.001, Figure 3A). 277 

These geographically discordant intermediate genomic linkages among ST2 were not associated 278 

with temporal linkages, with the days between sample collection ranging from 6 to 2,479 days 279 

(Figure 3B). Among geographically discordant ST1 isolates pairs, FQS isolates were 280 

overrepresented, with the only pair of geographically discordant ST1 isolates linked within 5 281 

SNVs being FQS and 14/31 (45.2%) geographically discordant ST1 isolates linked within 10 SNVs 282 

being FQS even though FQS isolates made up only 21/199 (10.6%) of isolates overall. Together, 283 

these findings are consistent with evidence of recent healthcare transmission among ST1 284 

isolates and transmission outside of the hospital among ST2 isolates, and also raise questions 285 
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about the underlying reasons why ST2 isolates are more likely to be closely related across 286 

disparate geographic sites.  287 

 288 

Figure 2: Pairwise single nucleotide variant (SNV) distribution between pairs of isolates from 289 

the same collection site vs. pairs of isolates from geographically distinct collection sites for both 290 

ST1 and ST2. The black diamond indicates fifth percentile SNV distances for each category.  291 

 292 

293 
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Figure 3: A) Bar plot showing the proportion of ST1 and ST2 isolates that are genomically linked 294 

to another isolate, either from the same collection site (green) only or from at least one 295 

different collection site (orange), at varying SNV thresholds. B) Scatter plot of days between 296 

collection and pairwise SNV distance up to 10 SNVs, where each dot represents one pair of 297 

isolates. Points are colored by whether they are collected from the same geographic collection 298 

site (green) or different geographic collection sites (orange). Points are jittered to improve 299 

clarity.  300 

 301 
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Timed phylogenomic analyses demonstrate evidence of evolutionary rate heterogeneity 302 

within and between ST1 and ST2 lineages 303 

Our observation that ST2 is more likely to be genomically linked at intermediate SNV thresholds 304 

across disparate geographic sites compared to ST1 isolates led us to explore the potential 305 

mechanisms underlying this difference. Two factors we hypothesized might contribute to these 306 

findings are 1) increased transmission of ST2 via community-based reservoirs that facilitate 307 

more rapid spread over large geographic distances and/or 2) a slower average evolutionary rate 308 

among ST2 isolates resulting in less genetic changes over larger amounts of time and space. 309 

While examining the former hypothesis was beyond the scope of this study, we explored the 310 

plausibility of the latter hypothesis by estimating evolutionary rates for ST1 and ST2 using the 311 

BEAST Bayesian phylogenetic software [31]. There were 418 ST1 and 418 ST2 isolates included 312 

in this analysis; sequences included a mix of newly sequenced and publicly available global 313 

genomes in order to maximize temporal and genetic diversity while maintaining a sample size 314 

manageable by the BEAST software (Supplementary Table 1). For ST1 isolate selection, we also 315 

opted to maintain all FQS ST1 isolates, given our observations that they may display distinct 316 

epidemiological patterns from FQR ST1 isolates.  317 

 318 

Temporal signal analyses, while initiated as a necessary precursor to timed phylogenomic 319 

analyses in BEAST, revealed interesting differences between the clock-like nature of ST1 and 320 

ST2 isolates. While root-to-tip regression analyses suggested similarly weak but sufficient 321 

temporal signal to proceed with timed phylogenomic analyses in BEAST (indicated by positive 322 

correlation coefficients, Supplementary Figure 3), the more rigorous hypothesis testing date 323 
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randomization tests demonstrated more evidence of temporal signal among ST1 isolates, which 324 

passed both the more relaxed CR1 and more stringent CR2 criteria for temporal analyses, 325 

compared to  ST2 isolates, which passed CR1 but not CR2 (Supplementary Figure 4). The root-326 

to-tip regression also highlighted different temporal patterns among FQS-ST1 isolates 327 

compared to FQR-ST1 isolates, which was observed again in date randomization tests on FQS-328 

ST1 and FQR-ST1 isolates separately; the FQR-ST1 isolates appeared to drive the temporal 329 

signal in the data, and when considered alone, FQS-isolates were more like ST2 isolates, passing 330 

the more relaxed CR1 temporal signal criteria but not the more stringent CR2. This observation 331 

was consistent with our pairwise SNV distance findings of distinct patterns among FQS ST1 332 

isolates, and motivated conducting further analyses both with all ST1 isolates together as well 333 

as with FQR ST1 isolates (n = 359) and FQS ST1 isolates (n = 59) considered separately.  334 

 335 

All datasets demonstrated evidence of evolutionary rate heterogeneity throughout the 336 

phylogeny, resulting in the application of uncorrelated relaxed lognormal molecular clock 337 

models along with a constant demographic priors (see Supplementary Figures 5-6 and 338 

Supplementary Results for details). Overall, when considering all ST1 isolates together 339 

compared to all ST2 isolates, evolutionary rate estimates were slightly higher for ST1 compared 340 

to ST2, although the 95% credible intervals overlapped. However, ST1’s faster evolutionary rate 341 

was driven by FQR ST1 isolates; when separating out FQS and FQR ST1 isolates, the FQR ST1 342 

evolutionary rate estimates emerged as significantly higher than that of ST2 isolates (with non-343 

overlapping 95% credible intervals) while FQS ST1 isolates had similar evolutionary rate 344 

estimates to ST2 isolates (Figure 4). These evolutionary rates translate to approximately 1.36 345 
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(95% credible interval 1.20-1.52) nucleotide changes per year for FQR ST1, 0.80 (95% credible 346 

interval 0.51-1.08) nucleotide changes per year for FQS-ST1, and 0.89 (95% credible interval 347 

0.74-1.05) nucleotide changes per year for ST2. These results are consistent with the hypothesis 348 

that a slightly slower average evolutionary rate among ST2 and FQS ST1 isolates compared to 349 

FQR ST1 isolates might contribute to our observed discordance between genomic and 350 

epidemiologic linkages among those isolates.  351 

 352 

Figure 4: Posterior probability density of the evolutionary rates estimates for C. difficile ST1 and 353 

ST2 lineages, with ST1 isolates considered together as well as separated out into FQR-ST1 and 354 

FQS-ST1 isolates. Dark shaded areas of the density curves indicate the lower 2.5% and upper 355 

97.5% of the distributions; light shaded areas indicate 95% credible intervals. Evolutionary rates 356 

are considered significantly different from one another when the 95% credible intervals of their 357 

posterior probability densities do not overlap.  358 

 359 

360 
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DISCUSSION 361 

In this study, we investigated the genomic epidemiology of two dominant C. difficile lineages, 362 

ST1 and ST2, across three geographically distinct U.S. medical centers. We observed more 363 

genomic evidence of geographic clustering and recent transmission among ST1 isolates 364 

compared to ST2 isolates, while also finding more linkages among ST2 isolates from disparate 365 

geographic collection sites at intermediate genomic linkage thresholds. Lastly, we estimated a 366 

slightly more rapid average evolutionary rate for FQR ST1 isolates compared to FQS ST1 isolates 367 

and ST2 isolates using Bayesian timed phylogenomic methods.  368 

 369 

Previous studies have reported both more evidence of broad geographic clustering [8] and 370 

more evidence of recent transmission within healthcare settings [6] among European ST1 C. 371 

difficile isolates compared to other types of C. difficile. To our knowledge, these are the first 372 

U.S.-based multisite data to support these findings. Our observations are consistent with ST1 373 

being associated with hospital outbreaks [9–11], being the most predominant healthcare-374 

associated C. difficile strain according to surveillance definitions based on timing since last 375 

healthcare exposure [13], and being more prevalent in hospital than community environmental 376 

sampling [39]. The factors contributing to increased spread of ST1 within healthcare are not 377 

well defined, however, fluroquinolone resistance has been proposed as a driving feature. In 378 

support of this, Eyre et al. noted that other FQR C. difficile strains were also more likely to 379 

cluster by country compared to FQS C. difficile strains [13]. Our observations of distinct 380 

epidemiological and evolutionary patterns among FQS compared to FQR ST1 isolates are also 381 

consistent with this hypothesis. If within-healthcare transmission is the dominant mode of ST1 382 
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spread, infection control interventions and antimicrobial-stewardship within healthcare should 383 

jointly reduce the incidence of CDI due to ST1. Such reductions have been reported in the UK 384 

after implementation of national infection prevention and antimicrobial stewardship policies 385 

[40]. 386 

 387 

Conversely, ST2 seems to have followed a different route to pathogenic success. RT014/ST2 has 388 

been reported as one of the most common strains In Europe [41], the US [13,42,42], and 389 

Australia [43] during the last decade. ST2 is commonly characterized in the literature as an 390 

endemic strain in the U.S. that has not been associated with hospital outbreaks [44]. However, 391 

it is also frequently classified as healthcare associated: the most recent data from the Centers 392 

for Disease Control and Prevention Emerging Infections Program reports between 41% and 52%  393 

of RT014 were considered healthcare-associated infections between 2012 and 2017 [13]. 394 

Despite this, evidence of transmission of RT014/ST2 within the hospital is sparse, as 395 

demonstrated by this study and others [6,13]. One explanation for this discordance between 396 

genomic evidence of recent transmission and healthcare-associated characterization via 397 

surveillance definitions is that ST2 is frequently acquired in the community, imported into the 398 

hospital, and subsequently progresses to infection after hospitalization. If this is the case, 399 

antimicrobial stewardship interventions may be particularly effective for preventing infections 400 

due to this common strain [7]. Environmental studies that have reported recovery of RT014 401 

isolates in agriculture [45,46], wastewater [47], and parks and homes [39] are also consistent 402 

with community circulation of RT014. Overall, this finding highlights the imperfect nature of 403 

relying on infection onset as a proxy for acquisition. With the advent of more widespread 404 
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pathogen whole genome sequencing, genomic evidence of healthcare transmission could be 405 

used as an alternative and more accurate metric than infection onset for measuring within-406 

hospital transmission of C. difficile.  407 

 408 

We also observed a notable difference in concordance between genomic linkages (isolate 409 

related within small SNV distance thresholds) and epidemiologic linkages (isolates collected 410 

from the same site within temporally proximate time periods) among ST1 and ST2 isolates. 411 

Specifically, ST2 isolates were more likely to have close genomic neighbors across disparate 412 

geographic sites and long time periods. Consistent with this, a pan-European surveillance study 413 

reported that the average most closely related strain to any given RT014 isolate was collected 414 

from hundreds of miles away [13]. The mechanisms behind this finding are not clear, but are 415 

consistent with a reliance on non-healthcare routes of spread. Practically speaking, this finding 416 

highlights the risks of broadly applying SNV thresholds to infer recent transmission, even to 417 

isolates of the same species. In particular, it emphasizes the importance of considering 418 

background genomic diversity and incorporating geographically and temporally diverse strains 419 

when interpreting genomic linkages. Without this context, one might mistakenly attribute a 420 

linkage to transmission when it in fact reflects broader genomic diversity patterns in a 421 

particular lineage. The importance of genomic context has been noted since the early days of 422 

bacterial genomic epidemiology [48], but in most cases, sequencing is still not widespread 423 

enough to provide such context. As we continue to consider a future with routine genomic 424 

surveillance in hospital settings to identify outbreaks [49], it is crucial that assessment of 425 
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genomic context remain part of the evidence required for inferring transmission from genomic 426 

data.  427 

 428 

C. difficile’s spore-forming lifestyle may contribute to some of the results reported here. It has 429 

been posited that spore formation likely drags down average estimate evolutionary rates of 430 

bacteria [50]. Extending from that, if isolates belonging to particular lineages spend more time 431 

in spore form than others, that lineage could be expected to have a lower average evolutionary 432 

rate, and thus, less nucleotide differences accumulated over time. We speculate that the ST2 433 

and FQS ST1 lineages may have spent, on average, more time in spore-form than the epidemic 434 

and more recently emerged FQR ST1 lineages resulting in more closely related isolates across 435 

larger amounts of time and space. Ecological niches may influence this: more selective 436 

pressures and a higher density of susceptible hosts in healthcare settings could facilitate more 437 

time in the vegetative state, whereas strains that circulate primarily in the community may be 438 

more likely to stay dormant for longer periods of time. Results from our Bayesian timed 439 

phylogenomic analyses were consistent with this framework in two ways: 1) high evolutionary 440 

rate heterogeneity in both ST1 and ST2 isolates may reflect the effects of spore formation, with 441 

isolates emerging for a long-dormant spore being found on the tips of phylogenetic branches 442 

with a slow estimated evolutionary rate and 2) less evidence of temporal signal and slightly 443 

lower estimated evolutionary rates for FQS-ST1 isolates and ST2 isolates compared to FQR-ST1 444 

isolates may reflect more time spent in spore-form. Whatever the biological and 445 

epidemiological underpinnings of the patterns we observed, this work highlights the challenges 446 
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inherent to applying molecular clock-based methods to studying the epidemiology and 447 

evolution of a variably and relatively slowly evolving pathogen like C. difficile. 448 

 449 

Our findings should be interpreted in the context of multiple limitations. First, the retrospective 450 

nature of the study resulted in some differences in sample collection between the three study 451 

sites: UM and TMC selected based off of PCR Ribotypes, which we then filtered down to only 452 

ST1 and ST2 via in silico MLST, while MSKCC originally selected isolates based off of ST as MLST 453 

is routine at that center. However, all comparisons were made between ST1 and ST2 isolates 454 

and these differences were consistent within the ST1 and ST2 isolates at each site, so we would 455 

not expect them to significantly alter the results reported here. Second, limited epidemiologic 456 

metadata was available for analysis: only study site and collection date. Despite this, the 457 

interesting patterns we observed between genomic linkages and epidemiologic linkages 458 

emphasizes the value of integrating genomic data with even limited epidemiologic metadata. 459 

Finally, the evolutionary rate estimates presented here are subject to uncertainty, particularly 460 

given the observed instances of violated model assumptions and relatively limited temporal 461 

signal in the data. However, the overall trends remained stable with varying models, alleviating 462 

concerns that our findings are artifacts of model misspecification. This study also has several 463 

notable strengths, including the collection of isolates from three distinct geographic sites in the 464 

U.S., the application of whole genome sequencing for high-resolution typing and phylogenetic 465 

analyses, and the incorporation of global isolates for increased context and power in our timed 466 

phylogenomic analyses. 467 

 468 
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Conclusions 469 

Examination of the genomic epidemiology of C. difficile ST1 and ST2 across three geographically 470 

distinct U.S. medical centers revealed divergent epidemiologic and evolutionary patterns 471 

between these two common strains. Specifically, we observed more evidence of geographic 472 

clustering, recent healthcare transmission, and a slightly more rapid average evolutionary rate 473 

among FQR ST1 isolates compared to ST2 and FQS ST1 isolates. One implication of these 474 

findings is that an understanding of local molecular epidemiology may facilitate the 475 

development of effective interventions targeted at reducing the burden of CDI. These findings 476 

also highlight how methodological considerations—including incorporating genomic context 477 

when inferring transmission from genomic linkages and considering the potential effect of 478 

spore formation on the connection between genomic differences and epidemiology—need to 479 

be accounted for when applying genomic epidemiology methods for studying C. difficile 480 

transmission.  481 

  482 
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