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Abstract 

Background: Genome-wide association studies for atopic dermatitis (AD, eczema) have identified 25 
reproducible loci associated in populations of European descent. We attempt to prioritise candidate 
causal genes at these loci using a multifaceted bioinformatic approach and extensive molecular 
resources compiled into a novel pipeline: ADGAPP (Atopic Dermatitis GWAS Annotation & 
Prioritisation Pipeline). 
Methods:  We identified a comprehensive list of 103 accessible molecular resources for AD 
aetiology, including expression, protein and DNA methylation QTL datasets in skin or immune-
relevant tissues. These were used to test for overlap with GWAS signals (including colocalisation 
testing where possible). This was combined with functional annotation based on regulatory variant 
prediction, and independent genomic features such as chromatin accessibility, promoter-enhancer 
interactions, splicing sites, non-coding RNA regions, differential expression studies involving eczema 
patients and fine-mapping of causal variants. For each gene at each locus, we condensed the 
evidence into a prioritisation score. 
Results: Across the 25 AD loci investigated, we detected significant enrichment of genes with 
adaptive immune regulatory function and epidermal barrier formation among the top prioritised 
genes. At 8 loci, we were able to prioritise a single candidate gene (IL6R, ADO, PRR5L, IL7R, ETS1, 
INPP5D, MDM1, TRAF3). At a further 2 loci, 2 candidate genes emerge (IL18R1/IL18RAP, 

LRRC32/EMSY). For the majority of these, the prioritised gene has been previously proposed as a 
plausible candidate, but the evidence we combine here, strengthens the case for many of these. In 
addition, at 6 of the 25 loci, our ADGAPP analysis prioritises novel alternative candidates (SLC22A5, 

IL2RA, MDM1, DEXI, ADO, STMN3), highlighting the importance of this comprehensive approach. 
Conclusions: Our ADGAPP analysis provides additional support for previously implicated genes at 
several AD GWAS loci, as well as evidence for plausible novel candidates at others. We highlight 
several genes with good/converging evidence of involvement in AD that represent potential new 
targets for drug discovery. 
 
 
Keywords: atopic dermatitis, eczema, immune disease, GWAS, colocalisation, gene prioritisation, 
fine-mapping, eQTL 
 
Background 

 
Defined by inflamed dry, hyperplastic eczematous skin and pruritus, atopic dermatitis (AD) is among 
the world’s top 50 common disease, with prevalence in 2010 estimated at close to 230 million cases 
and increasing[1]. AD is particularly common in childhood, with 10-16.5% prevalence in the first 5 
years of life[2,3], 80% of which will then progress in the so-called atopic march and develop other 
allergic conditions[4]. In 2015, the burden of AD in terms of cost born by individuals, their families 
and society at large, was estimated at close to 5.3 billion dollars[5,6]. AD comorbidities include 
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conditions such as: allergic rhinitis, asthma, allergic conjunctivitis, eosinophilic esophagitis and food 
allergy[7]. Due to the systemic immune nature of the disease, AD is also associated with increased 
risk for many inflammatory diseases: rheumatoid arthritis (RA), inflammatory bowel disease (IBD), 
systemic lupus erythematosus (SLE) and decreased risk for type 1 diabetes (T1D) [8,9].  
 

AD is highly heritable - with estimates of up to 75% in twin studies[10]. The largest and most recent 
genome-wide association study (GWAS) of AD, undertaken by the EAGLE consortium in 2015 
identified 25 loci (explaining 14.9% of the variance) that were associated with AD in individuals of 
European descent and replicated in an independent sample[11]. The majority of disease associated 
variants are located in non-coding regions. This observation implies that many disease-associated 
variants have a regulatory role rather than affecting protein function. It has now been widely 
recognised that integrating various biological data resources can provide complementary evidence 
about GWAS causal genes[12]. Across several disease it has been estimated that ~50% of the time, 
the gene through which the causal SNP acts is not the closest gene to the index SNP[13,14]. 
 
The EAGLE GWAS utilised small eQTL resources (TwinsUK LCL and skin microarray samples[15]), fine-
mapping tools (MANTRA[16]), variant annotation software (RegulomeDB[17] and HaploReg[18]) and 
two differential expression studies on eczema to investigate potential causal genes at the identified 
loci. Since 2015  there has been an explosion of new datasets from many cell types (such as 
eQTLGen[19], full GTEx release[20], Blueprint[21], GoDMC, promoter-enhancer HiC datasets) and 
new methods (such as finemap[22], JAM[23], fastPaintor[24], TWAS[25]) being made available that 
offer an opportunity to refine prioritisation of genes at the GWAS loci.  
 
Several excellent computational approaches to aid identification of causal genes at GWAS loci exist, 
but these methods were not deemed suitable for our purpose as they either apply a single method 
across a large number of GWAS (such as SMR[26] and PhenomeXcan[27]) but do not integrate 
evidence from across many sources, are out of date (e.g. GWASrap[28], last updated in 2013), 
assemble a lot of data but do not show clear target prioritisation such as FUMA[29], INFERNO[30], or 
their source datasets are less relevant to our disease in terms of tissue selection because they target 
another specific disease, e.g. INQUISIT and breast cancer[31].  
 
In this paper, we aim to comprehensively dissect AD GWAS loci by prioritising candidate causal 
genes and illuminating biological mechanisms through which candidate genes can impact AD risk.  

We applied a number of fine-mapping approaches and integrate evidence from across many sources 
relevant for skin disease. We developed ADGAPP (Atopic Dermatitis GWAS Annotation & 

Prioritisation Pipeline) which offers a consistent method of prioritising AD candidate genes and 

variants by devising a ranking system. ADGAPP which explicitly models our assumptions about the 

importance of different types of evidence as well as strength of the associations relating the features 
to genes and variants.  

In our GWAS target prioritisation pipeline, we use methods (coloc, TWAS) to formally compare the 

association patterns in QTL studies and GWAS to test for their colocalisation whenever full summary 
statistic are available, as ~50% of common variants are associated with one eQTL or more in 

GTEx[32] so simple lookups for variant overlap alone will result in many false positives. We also 
integrate the results of two independent pipelines: enrichment-based regfm[33] and network-based 

PrixFixe[34] for GWAS-wide prioritisation of target genes. 

We aimed to select relevant datasets to reflect the full molecular aetiology of AD. Broadly speaking, 

AD pathogenesis is thought to stem from epidermal barrier disfunction, as well as abnormal immune 

system activation[35]. In addition to skin lesions, AD abnormalities are also seen in non-lesional skin 
and blood[36,37].  Therefore, we made it a priority to include molecular QTLs from skin, blood and 
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immune-specific cell types in ADGAPP.  Direct importance in AD physiology is evaluated by including 

differential gene expression and DNA methylation studies and proteome comparisons involving 
eczema patients. 

As the lead SNPs identified in the initial GWAS analysis may not be causal[38], we use three Bayesian 

fine-mapping algorithms to initially prioritise causal SNPs.~90% of index SNPs are placed in the non-

coding regions of the genome, and so causal variants are expected to have mainly regulatory 
functions[18]. In order to include the functional potential of each variant in our ranking, we directly 

look up overlap of potential GWAS causal variants with experimentally generated functional 
annotations as well as predictions for regulatory impact of the variant generated by machine 

learning models. Integration with high-throughput chromatin conformation capture (3C) data allow 

us to check if our variants of interest are located in enhancer regions or promoters of genes 

highlighted in eQTL analysis in the matching tissue. 

We integrate several established fine-mapping and gene prioritisation methods in a unique AD-
focused gene prioritisation pipeline to comprehensively evaluate the causal genetic evidence at each 

locus and utilise an exhaustive set of AD-related molecular datasets to best support these methods. 
Our pipeline in combining these methods generates a global score, which can be used to assess the 

magnitude of evidence for (and relative evidence between) tested genes as the causal gene at a 
particular locus. Such a score can serve as a metric which allows rapid gene prioritisation by 

molecular biologists and other interested parties, such as pharmaceutical companies. 

 

Methods 

Source GWAS 

Paternoster et al. (2015)[11] is the biggest GWAS on AD to date, consisting of EAGLE Consortium 
data of 21,399 cases and 95,464 controls from populations of mostly European, but also African, 

Japanese and Latino ancestry. In our analysis, we investigate 25 loci, which show either genome-
wide significance and for novel loci are replicated in independent European ancestry sample (21 

loci), or are significant loci prioritized by the MAGENTA gene set enrichment analysis[39] presented 
in the original paper (4 loci)[11]. 

Bayesian fine-mapping 

To identify likely causal genetic variants in the regions harbouring AD GWAS signals, using only 

information on association strength and LD structure, we used three different Bayesian fine-
mapping methods: Finemap[22], fastPaintor[24] and JAM[23]. Each method relies on different prior 

assumptions and model formulation.  

As input data we used, the association statistics from the AD GWAS in individuals of European 
ancestry, published in Paternoster et al. (2015). For LD structure, in Finemap and Paintor analysis, 

we used r correlations calculated from the 1000 Genomes[40] European reference (n=503), as it 

allowed inclusion of more high confidence SNP calls compared to UK Biobank[41] - 9,265,840 versus 

8,391,826. UK Biobank panel[41] filtered for European ancestry (n=48,167) with standard QC 
applied[42] was used as LD reference panel in JAM analysis. This was because JAM requires a high 

number of individuals in the reference and removal of highly correlated SNPs for the genotype 
matrix to be invertible. To that end, we also pruned SNPs prior to feeding them to JAM. We used a 

threshold of r2 > 0.95 in Priority Pruner (http://prioritypruner.sourceforge.net/) and set minor allele 
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frequency (MAF) threshold at 0.05 and minimum SNP call rate of 0.9, while force selecting all the 

index SNPs.  

Our fine-mapping integration protocol involved running all the 3 programs with all the SNPs within 

the interval of 10kbp, 100kbp, 500kbp, 1Mbp, 3Mbp centred on the index SNP. We also used r2 -

based and D’-based haploblock intervals defined with the BigLD[43] and Gpart[44] algorithms, 

respectively, in 1000 Genome EUR panel. 

We ran our Finemap analysis using shotgun stochastic search, whereas for Paintor, we varied the 
algorithm from exact exhaustive search to MCMC when considering from up to 2 or max. 5 causal 

SNPs in the region, accordingly. Maximum number of algorithm iterations was set at 1000 in Paintor 
and 10 million in JAM. In order to permit analysis of a binary trait in JAM, linear mapping of log-odds 

ratios was performed[45] and the residual variance inverse gamma hyperpriors were set to   
"GaussianResidualVarianceInvGammaPrior_a" = 2, "GaussianResidualVarianceInvGammaPrior_b" = 

proportion of cases * (1-proportion of cases). 

When comparing output of Finemap, Paintor and JAM we only considered top fine-mapped SNPs 
with Bayes Factor > 100 and posterior probability of being causal of at least 0.1.  

Variant filtering 

In subsequent gene analyses, shown below, we limited ourselves to SNPs within the region in 

significant LD with the index SNP in 1000 Genomes EUR population, henceforth referred to as the 
GWAS locus interval. The region in each case was defined by the furthest removed SNP with r2 >= 0.2 

within 1 Mbp interval centred on the index SNP and all the SNPs within the boundary were 

considered. We confirmed that we captured all the SNPs within the broadly defined haploblock by 

re-defining the boundaries based on maximum 3 Mbp interval. Definition of our haploblock changed 
only in the case of 3 index SNPs: however in all cases there was a stretch of at least 100 kbp 

(rs61813875 with a very sharp LD decay and rs41293864 situated in the MHC region with complex 
LD), up to 350 kbp (rs77714197) of SNPs with no r2 > 0.2 so we dismissed those as outliers and used 

the 1 Mbp interval-defined region in all cases. 

Identification of key tissues and cell types 

In order to focus on key tissues/cell types associated with eczema variants, we used gene set 

enrichment in SNPSea[46] with the supplied gene expression datasets: Gene Atlas Affymetrix 

expression in 79 human tissues[47], Immunological Genome Project[48] Affymetrix expression in 
249 murine blood cell types and FANTOM CAGE[49] in 533 human cell types. We ran SNPSea using 

recommended settings and used index SNPs as input. SNPsea considers genes in LD with the index 
SNPs and for each locus and cell-type combination, selects one gene which shows highest tissue-

specificity of expression. The merged gene set across loci is then scored for its cell-type specificity 

and the resulting score compared to the ones obtained from the null distribution of results for 

random SNP sets matched on the number of genes in LD in order to obtain a permutation p-value. 

Secondly, we used MAGMA[50] gene enrichment analysis on GTEx 7.0[20] data as carried out by 
FUMA[29]. Briefly, MAGMA gene-based analysis was done using SNPs in the locus interval to identify 

all the genes associated with our GWAS hits, and subsequently MAGMA gene-property analysis was 
applied to test tissue type specificity in expression of identified genes.  

TwinsUK eQTL identification 
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We used genotype array data and RPKM -normalised expression in lymphoblastoid cell line (LCL) and 

skin tissue for females in the TwinsUK cohort[51]. RPKM values were rank-transformed to normality 
using GenABEL[52] R package before eQTL mapping.  cis-eQTLs 1.5 Mbp upstream and downstream 

of TSS were identified using linear mixed model implemented in GEMMA[53]. We used age as 
covariate in the analysis involving all samples and centred relatedness matrix as random effects. 

PEER analysis was run to identify any additional hidden covariates not captured above[54]. eQTL 

associations were identified using the Wald test.  

CEDAR eQTL re-identification 

In the analysis involving the CEDAR cohort (e.g. Momozawa et al. (2018)[55]), we used the publicly 
available data: imputed genotypes and normalized gene expression values from blood and intestinal 

cell types (CD4+ T lymphocytes, CD8+ T lymphocytes, CD19+ B lymphocytes, CD14+ monocytes, CD15+ 
granulocytes, platelets, ileum, colon, rectum) adjusted for 4 top PCs and covariates (sex, age, 

smoking status, batch). We used GEMMA’s linear mixed model and Wald test to re-identify cis-eQTLs 
within 1.5 Mbp upstream and downstream of TSS. 

Colocalisation with coloc and TWAS 

We obtained full summary statistic results for cis-eQTLs detected in whole blood in the eQTLGen 

dataset[56] – accessed on 08/08/2018, eQTLs from GTEx ver. 7 dataset identified in the following 
tissues: whole blood, spleen, sun-exposed and unexposed skin, transformed fibroblasts and EBV-

transformed lymphocytes[57], eQTLs published from the Kim-Hellmuth et al. (2017) study 
investigating monocyte response to microbe-associated molecular patterns[58], eQTLs in the 

monocytes, neutrophils and CD4+ T cells from the BLUEPRINT project[21], and pQTLs from whole 
blood in the Sun et al. (2018) dataset[59] as well as TwinsUK and CEDAR eQTLs identified above 

(Dataset S1). Subsequently, colocalisation signal between betas from GWAS and eQTLs/pQTLs for 
genes within 1.5Mbp upstream and downstream of index SNP was evaluated with the coloc[60] R 

package. In addition, three-way colocalisation of GWAS and whole blood molecular phenotypes: 
pQTLs and eQTLs was investigated with moloc[61] with default priors but brought no significant 

results.  In coloc analysis, we considered loci with posterior probability of H4 (PPH4) > 0.5 as 
informative enough to be included in ADGAPP, as done previously[62]; with H4 stating the 

hypothesis of both traits being associated and sharing a single causal variant.  

We also carried out a TWAS[25] analysis, where reference datasets with gene expression and 
genotype data (GTEx ver. 7.0, CEDAR and TwinsUK) were used to predict gene expression in our 

target GWAS. We used 100 permutations to conservatively calibrate the imputed gene expression 

association statistic conditional on the GWAS strength of association and used provided 

European1000 Genomes panel for LD reference. Any significant gene expression associations with 
AD were then post-processed to identify conditionally independent associations. In addition, coloc 

analysis was carried out, based on marginal TWAS weights with provided scripts. 

The analysis pipeline for the SMR analysis has been described previously[26]. In brief, eQTL datasets 
from the eQTLGen consortium[19], BLUEPRINT[21] across 3 cell types (monocytes, neutrophils and T 

cells) and GTEx ver. 7[20] across 48 tissue types were downloaded and. The SMR method applies the 
Wald Ratio method systematically for all genes with an eQTL at P<1x10-4, using lead eQTL as 

instrumental variables and eczema estimates as the outcome. The HEIDI (heterogeneity in 
dependent instruments) test was applied to filter out genetically predicted effects which may be 

attributed to heterogeneity in a region which may lead to spurious results. 

Regfm and PrixFixe analysis 
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To further prioritize GWAS gene targets, we used two gene prioritisation methods: regfm[33] and 

PrixFixe[34]. PrixFixe strategy relies on prioritisation of groups of candidate genes from multiple 
GWAS loci based on 'cofunction' networks (CFNs). A genetic algorithm optimisation approach selects 

optimal sets consisting of one gene per locus where there exists a dense subnetwork of functional 
relationships with genes at other GWAS loci. Each gene is then scored to reflect its contribution to 

the top subnetworks. Regfm’s workflow involves intersection of fine-mapped credible interval SNPs 

with consensus DHS sites and genes whose expression they control predicted based on 

ROADMAP[63] chromatin accessibility and gene expression data to prioritise target genes. 

Variant functional prediction 

KGGSeq[64] was used to measure non-coding variant regulatory potential and coding variant 

deleteriousness using functional scores derived by combining scores from CADD[65], DANN[66], 
Funseq2[67], fathmm-MKL[68], GWAS3D[69], SuRFR[70], GWAVA[71] algorithms. The new extended 

version of fathmm: fathmm-XF[72], GWAS4D[73] and fitCons[74] were also used independently. 
Overlap with ChIP-Seq defined binding sites of transcriptional regulators was cross-referenced in the 

ReMap2018 database[75]. Splicing regulatory potential of variants was evaluated with SPIDEX[76].  

We also looked at variant overlap within different regulatory regions: insulator[77], promoter-
enhancer interactions[78],[79],[80],[81],[82],[83],[84],[85],[86] , regulatory non-coding 

RNAs[87],[88],[89],[90],[91], topologically associating domains (TADs)[92],[93],[79],[94],[81],[95], and 

CTCF binding sites[96] culled from various publications, using giggle[97] search engine. 

Independently, we looked for overlap inside Roadmap regions classified as containing active 
chromatin state (states 1-8)[63] and FAIRE-Seq-determined regions of accessible chromatin in 

human epidermis during barrier maturation and disruption[98]. Cell-type specific regulatory 
elements[99] were also annotated based on histone marks and chromatin state. 

 

Independent lookups 

We have also performed gene and variant lookups among published significant results from various 

eQTL[21,51,99–125], mQTL (including GoDMC results[126])[121,124] pQTL[127,128],, hQTL[21,129], 
caQTL[130], where full GWAS results were not available, as well as differential expression[131–135] , 

DNA methylation[136,137] and proteome[138,139] comparisons between skin in AD patients and 
healthy controls (Dataset S1). We also interrogated the GWAS Catalog[140] (accessed on 

11/01/2019) for any variants that have been identified as genome-wide significant in previous GWAS 
studies on related inflammatory conditions. We used the significance threshold defined in each 

paper, as it varied due to a number of comparisons made. 

 

Generation of candidate gene and SNP rankings 

The results of analyses and lookups listed above were then integrated to provide two rankings of: 1) 

all the SNPs within each GWAS locus interval and 2) all the genes within 3 Mbp window centred 

around index SNP. This was achieved by given a score to each piece of evidence and summing across 
these sources to generate a causal prioritisation score for every SNP and every gene tested. These 

scores represent the strength of evidence for a causal role of the SNP or gene in AD based on the 
evidence assimilated.  
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Detailed method of calculation of basic score per gene or variant in a given experiment/analysis is 

presented in Additional File 1: Supplementary Text. Briefly, the score is proportional to the 
magnitude of result effect or significance, down-weighted based on total SNP/gene hits in a locus in 

the experiment/analysis, n experiments in the study, and up-weighted based on pre-assigned 
evidence weight of the study (Dataset S2). Finally, after summing up scores from individual 

analyses/experiments, the score is further adjusted based on average number of studies and study 

types showing evidence for a given SNP/gene.  

We down-weighted evidence from any single experiment/analysis which highlighted multiple 
genes/variants as being less specific. Down-weighting based on n experiments in the study was 

introduced since experiments in the same study are not independent, and so we wanted to 

attenuate the importance of multiple hits to experiments within the same study. 

We also scaled the score by the weight of evidence, ie. subjective prior belief in strength of the 

evidence. We strongly prioritised hits with evidence weight 1 (formal test of association using the 
full set of summary statistics from experimental data - here finemapping, coloc, TWAS). The other 

two evidence weight categories included direct lookups among significant results obtained in 
experiments and predictions using a machine learning model trained on experimental data, for 

instance variant pathogenicity prediction.  

Lastly, the total score for a given gene or SNP was adjusted by the average number of studies and 

study types showing evidence for a given SNP/gene, which aimed to promote heterogeneity of 

evidence sources and their types, such as different types of molecular markers.  The decisions made 
in calculating the final score reflected various trade-offs. For example, for gene rankings, we wanted 

to reward consistent association of a given gene with SNPs in LD with lead variant, but at the same 
time did not want the score to be artificially inflated by repeated associations of different variants to 

the same gene in just one study. 

 

Results 

Identification of key tissues and cell types in AD GWAS loci 

Skin, as the primary affected organ, and blood cell types, given the established immune component, 

are of relevance for AD[141]. We also attempted to identify additional tissues of importance by 

using gene-set enrichment methods on gene expression datasets across available tissue/cell types to 
identify any tissue/cell-specificity enriched in genes linked to our GWAS loci. 

MAGMA gene-property analysis on 53 tissue types from GTEx ver. 7 identified significant enrichment 

(at p <0.001) for genes with tissue-specific expression in EBV-transformed lymphocytes, whole 
blood, spleen, sun-exposed and non-exposed skin at our GWAS loci. Despite not reaching statistical 

significance, we also included transformed fibroblasts (p = 0.1), due to the role of dermal fibroblasts 
in skin maintenance and repair[142]. 

SNPSea enrichment analysis in the Gene Atlas dataset prioritised (at permuted p <0.05, 79 tissues 

tested) whole blood and blood cell types: CD4+ T cells, CD14+ monocytes, CD8+ T cells, and dendritic 
cells. In addition, Immunological Genomics dataset (249 cell types) prioritised Natural Killer T cells, 

while FANTOM CAGE dataset (533 cell types) prioritised stimulated monocytes, basophils, Mast cells, 
eosinophils, neutrophils, Langerhans cells, CD34+ progenitor cells, hair follicle outer root sheath cells 

as well as spleen. For that reason, we decided to include datasets involving all possible types of 
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immune cell datasets in our analysis, in addition to skin (including fibroblast), spleen and whole 

blood. 

We reviewed the literature to identify 103 separate datasets from these tissue-types with relevant 

data for the prioritisation of genes (and SNPs). We identified 83 SNP-based datasets with individual 

variant-based (molecular QTLs, variant functional prediction software) or interval-based (TAD, 

promoter-enhancer interactions) information that we used to aid variant prioritisation.  We 
identified 73 gene-based datasets with SNP-gene associations (molecular QTLs, promoter-enhancer 

interactions) or gene-centric (differential expression, GWAS target prioritisation pipelines – PrixFixe, 
regfm) information (Figure 1 subpanel 2, Additional file 2: Supplementary Figure 1). 

 

Prioritisation of candidate genes  

ADGAPP generates a causal gene prioritisation score for every gene within a 3Mb window centred 

on each of the 25 index GWAS SNPs and a causal SNP prioritisation score for every SNP within the 
LD-generated boundary, which allows subsequent ranking of genes and variants at each locus 

(Figure 1 subpanel 1). To generate the prioritisation score, each source of evidence is assigned a 
weight based on subjective strength of evidence: highest for results from statistical tests using full 

set of summary statistics, such as molecular QTL colocalisation methods; lowest for prediction 
results from machine learning models such as variant functional prediction software and 

intermediate for positional overlap with significant experimental results, such as identified 
promoter-enhancer loops (Figure 1 subpanel 3 & 4). In calculating the final score, we also took into 

account the magnitude of result significance or effect, specificity (overall number of SNPs/genes 
significant in a given experiment), independence of evidence (number of experiments conducted in 

the same study, such as measuring both expression and DNA methylation levels). The final score was 
adjusted by heterogeneity of evidence (I.e. genes or variants consistently supported by a range of 

evidence sources - alternative functional assays and statistical methods – are upweighted in 
proportion to the square root of mean number of unique study types and unique study IDs), as well 

as absolute number of studies providing supportive evidence, consistent with criteria used in 
triangulation and assessment of causal links in epidemiology, such as Bradford-Hill criteria[143].   

Gene prioritisation scores ranged from 0 to 1405 while for SNPs from 0.5 to 968 (Dataset S4). For 8 

loci the top prioritised SNP was not the index SNP, and for 10 loci the closest gene did not score best 
(Table 1). In detailing the results, we focus on genes ranked in the top 3 and SNPs ranked in top 10 at 

each locus as although quite arbitrary, this limit agrees with the sharp score decay observed in 

ADGAPP scores (Additional File 3 & 4). 

Excluding the complex MHC locus, the highest gene scores were seen for genes at 5 loci: IL18R1 

(score=1384) and IL18RAP (score= 1341) at the 2q12.1 locus, PPP2R3C (score= 996) at the 14q13.2 
locus, IL7R (score= 965) at the 5p13.2 locus, TRAF3 (score= 848) at 14q32.32 locus and IL6R (score= 

743) at 1q21.3 locus (Table 1). Assuming that the true model is one of a single causal gene at each 
locus (unlikely to always be true), prioritisation can also be evaluated by comparing the score of the 

top prioritised gene at a locus with all other genes at that locus. Eight loci (1q21.3 - IL6R, 10q21.2 - 
ADO, 11p13 - PRR5L, 5p13.2 - IL7R, 11q24.3 - ETS1, 2q37.1 - INPP5D, 12q15 - MDM1, 14q32.32 - 

TRAF3; Table 1) have a single stand-out candidate for causal gene – with the top gene contributing 
more than 50% of the total score of top 10-ranked genes. The top candidate by that metric is PRR5L 

(79% of top 10 genes at 11p13 locus), with a score of 598 compared to 65 for the second-ranked 
gene at this locus. Most top-prioritised genes by the total score are also prioritised by this metric. 
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Two further loci show good evidence (>75% cumulative score) shared across two candidate genes 

(IL18R1 and IL18RAP at 2q12.1 and EMSY and LRRC32 at 11q13.5, which share 77% and 84% of the 
cumulative score respectively). At 2q12.1 (where IL18R1 and IL18RAP reside) there is evidence for 

two independent genetic signals, and these may affect each of these genes. 

Out of genes at these 11 loci with good prioritisation evidence, 6 have strong supportive eQTL 

colocalisation evidence (coloc posterior probability of colocalisation (PPH4) >90% or TWAS p-value 
<1 x 10-5, Figure 2, and Additional File 5: Supplementary Table 1): PRR5L in whole blood, LCL, skin 

and CD4+ T cells, TRAF3 in whole blood, IL6R in whole blood, IL18R1 in whole blood and LCL, IL18RAP 
in whole blood and CD4+ cells, LRRC32 in whole blood, PPP2R3C in skin, CD15+ granulocytes, and 

whole blood. In addition, 20 other genes ranked 1-3 in ADGAPP have strong colocalisation evidence.  

For the majority of the loci, we prioritise genes that have previously been considered in annotation 
of these GWAS loci[11], but ADGAPP provides additional resolution on the likely causal genes 

through the integration of new evidence. Thus, for many loci we are able to strengthen the evidence 
for existing candidates. However, for some loci, our present analysis prioritises an alternative gene 

to the original GWAS. At 10p15.1 IL15RA was previously reported as the most likely candidate. Our 
ADGAPP analysis ranks IL2RA in the top spot (score=331). Subsequent to the EAGLE GWAS, CRISPR 

experiments have been conducted which have established that the SNP which ADGAPP ranks as top 
SNP at this locus, regulates IL2RA expression, providing validation for our prioritisation 

approach[144]. 

In addition, for five loci, ADGAPP prioritises genes in top position (and with a score >300) that were 
not considered in the original annotation of these loci in the GWAS paper[11]; MDM1 at 12q15 

(score=728), ADO at 10q21.2 (score=615), STMN3 at 20q13.33 (score=608), SLC22A5 at 5q31.1 
(score=461) and DEXI at 16p13.13 (score=376). Some in this list (such as SLC22A5) represent 

promising looking candidates, whilst others are in loci where there are far more promising biological 

candidates (e.g. at 12q15, where IL22 and IFNG appear to represent more plausible candidates than 

the top ranking MDM1). It will therefore be of interest to prospectively follow these loci, as more 
evidence is gathered and experimental work done, to assess whether any of the novel candidates 

presented here do in fact transpire to be the causal target genes. 

In order to independently establish if restriction of the tissues to those known to be mechanistically 
linked to eczema and enriched in our GWAS signal in MAGMA and SNPSea analysis was likely to have 

influenced the final gene ranking, we compared our results to those run on the full set of 53 GTEx 
tissues, Blueprint and eQTLGen datasets using  Mendelian randomization-based colocalisation 

method, SMR. Twelve out of 20 (Additional File 6: Supplementary Table 2) genes showing strong 
evidence (p<6.5 x 10-6) for colocalisation using SMR were among the top 3 hits for a given locus from 

our ADGAPP analysis. Of the remaining 8, 3 were prioritised by SMR in tissues absent in ADGAPP: the 
established eczema filaggrin gene in aorta artery (ranked 6 at 1q21.3 - a locus in ADGAPP), its 

antisense transcript FLG-AS1 in esophagus muscularis (ranked 21 at the same locus), and RTEL1 
helicase in tibial and aorta artery (ranked 15 at the 20q13.33 locus). However, further investigation 

of these eQTL signals suggest some may not be biologically meaningful due to very low expression 
levels of these genes in the respective tissues (FLG TPM 0.59 in aorta artery and FLG-AS1 TPM 0.62 in 

esophagus muscularis in GTEx[20]) and so inclusion of likely irrelevant tissues may increase the 
chance of spurious results. Therefore, restriction to six GTEx tissues is unlikely to have had significant 

impact on the final gene ranking. On balance, restriction of tissues will retain eQTLs shared across 
tissues[14] but removes the problem of increased false positive rate for eQTLs in tissues less related 

to the pathophenotype[145].  
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Prioritisation results for choice loci 

A full discussion of each locus in Table 1 is available in Additional File 7: Supplementary Text 2. Here 
we highlight several loci with especially compelling prioritisation evidence (Figure 2 & 3, see Dataset 

S3 and Additional File 8: Supplementary Figure 4 for all loci) and integrate this with knowledge from 

literature. 

Locus 1q21.3 - b 

At this locus we tested 104 genes within the 3 Mb interval (Figure 3A & Dataset S4). Interleukin 6 

receptor (IL6R) had the highest prioritisation score – 743 (62% of top 10 cumulative score; Table 1 & 
Figure 3A), with the next best gene being UBE2Q1- score of 93 (only additional 8% of top 10 

cumulative score). The high prioritisation of IL6R by ADGAPP is mostly driven by colocalisation 
(Figure 2) in whole blood in eQTLGen and GTex (coloc posterior probability of colocalisation (PPH4) = 

63%-88% and TWAS p-value = 5 x 10-6), in lipopolysaccharide-/muramyl dipeptide- primed 

monocytes in Kim-Hellmuth et al. (PPH4 = 75%-77%) and sun-unexposed skin in GTEx (PPH4 = 64%) 

(Additional File 5: Supplementary Table 1[11]. Possible placement of many locus interval SNPs within 
an enhancer of the gene is highlighted by HiC interaction data in human embryonic stem cells[79], 

whole blood[81], CD34+ hematopoietic cells and lymphoblastoid cell lines[146] and epidermal stem 
cells  along with keratinocytes[84]. Previously, IL6R was also implicated as the potential causal gene 

at this locus in the EAGLE GWAS[11],  as one of the variants in the MANTRA-based credible set of 23 

variants, rs2228145, represents a missense (Asp358Ala) mutation in the gene [147]. This variant is 

ranked 3rd in ADGAPP and is associated with blood serum levels of IL6R protein as well as 
transcript[127]. However, the actual action of rs2228145 is to shift IL6R protein from membrane-

bound state to soluble cell fraction, or in other words, from the anti-inflammatory classical signalling 
pathway to pro-inflammatory trans-signalling [148]. Mendelian randomization analyses indicated 

increased soluble IL6R levels as causal for higher AD (and asthma) risk and decreased soluble IL6R 

levels indicative of increased rheumatoid arthritis (RA) risk[149]. This is in agreement with the 

Asp358Ala mutation being protective towards RA and increasing risk in AD[150]. However, in our 
colocalisation analyses the AD risk allele is linked to overall reduction in IL6R transcript levels, likely 

due to the complex balance of IL6 classical and trans-signalling. A range of anti-IL6 biologics are in 
clinical use and development for inflammatory diseases, including, tocilizumab, which inhibits both 

soluble and membrane-bound IL6R, and is approved for treatment of RA and juvenile idiopathic 

arthritis[151]. However, AD adverse events have been reported in tocilizumab trials[152], consistent 

with the opposing effects of this GWAS locus on RA and AD. 

Locus 2q12.1 

This locus consists of two independent signals represented by rs6419573 and rs3917265 lead 
SNPs[11]. Altogether, we considered 46 genes located within the 3 Mbp interval of each SNP (Figure 

3B & Dataset S4). As mentioned earlier, the highest scores were obtained by Interleukin-18 receptor 

1 - IL18R1 (score=1384, Table 1) and Interleukin-18 receptor accessory protein 1 - IL18RAP 

(score=1341) which together account for 77% of the top 10 cumulative score at the locus, and so are 

likely to represent the causal genes behind the two signals. IL18R1 and IL18RAP’s roles are 

supported by abundant expression colocalisation evidence in the whole blood in GTEx (IL18R1: PPH4 
= 51%-80% and p-value = 7 x 10-6; IL18RAP: PPH4 = 96%-99% and p-value = 4 x 10-12) and immune cell 

types in CEDAR, TwinsUK and Kim-Hellmuth et al. (IL18R1: PPH4 = 55%-86% and p-value = 2 x 10-5, 
IL18RAP: PPH4 = 55%-97% and p-values = 5 x 10-5 to 6 x 10-8), as well as skin in TwinsUK for IL18R1 

only (p-value = 1 x 10-4; Figure 2 & Additional File 5: Supplementary Table 1). The direction of effect 

indicates increased expression of both genes for AD risk alleles, with one exception in GTEx whole 
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blood for IL18RAP (Additional File 5: Supplementary Table 1). Interestingly, opposing expression 

effects of the same allele in a variant has previously been reported in monocytes and whole blood 
for IL18RAP[104]. SNPs in LD with the lead SNP at the three top-ranked genes overlapped whole 

blood mQTL SNPs in the GoDMC study[126], likely influencing the methylation of promoters of those 
genes. Differential gene expression (DGE) consistently shows significant upregulation of 

IL18RAP[132] and IL18R1[135,153] in the skin of AD patients (Dataset S5). Both genes were put 

forward as candidate genes in the EAGLE GWAS annotation, as the credible set variants span both 

genes and individual variants linked to IL18R1 eQTLs in TwinsUK skin microarray data, but previously 
there was little evidence for colocalisation. 

In general, cytokine IL-18, in the formation of whose receptor complex both IL18RAP and IL18R1 

participate, has been shown to elicit significant immune gene expression change in keratinocytes 

from AD lesions[153]. IL18R1 and IL18RAP are both involved in T-cell, especially T helper cell 
signalling and activation of the NFkB-pathway. IL18R1 and IL18RAP mediate IL-18-dependent signal 

transduction, which is of special importance in Th1 response. Thus, it would not be surprising if one 

variant affected the expression of the whole gene cluster, and that has indeed been shown to be the 
case with SNP rs917997 associated with IBD and coeliac disease[154]; and ranked 8th among the two 

signals. A variant situated 15 kbp away from rs917997 - rs990171, again associated with celiac 
disease and lymphocyte counts[140], is ranked as second-best among the two signals in the locus 

(Dataset S4). There is strong pQTL support for association of rs990171 with IL18R and IL1RL1 
resulting in increased protein availability [128] (Dataset S5). In addition, rs990171 overlaps allele-

specific eQTLs for IL18RAP and acetylation hQTLs in neutrophils[21] appearing during Th1 
polarization[155].   

Locus 5p13.2 

We considered 41 potential candidate genes situated within the 3 Mbp window centred on index 

SNP for this locus (Figure 3C & Dataset S4). Most of the cumulative score was assigned to interleukin-

7 receptor subunit alpha - IL7R (score=965, which contributes to 65% of top 10 cumulative score, 
Table 1), followed by SPEF2 (score=203 and a further 14%). While our GWAS results do not directly 

colocalise with any eQTLs for the gene (in datasets where this could be tested), there are multiple 
eQTL associations for SNPs in LD with the index SNP: in whole blood[117,121], CD4+ T 

cells[21,102,103], macrophages[108] and monocytes[101] and pQTLs in whole blood[127,128] as 

well as promoter-enhancer interactions in human embryonic stem cells [79], CD34+ hematopoietic 

cells[146], naïve T regulatory cells and T helper 17 cells[156] (Figure 2, Dataset S5). IL7R is among the 
genes found to be upregulated in the skin in eczema patients in a meta-analysis[132]. Our results 

confirm initial prioritisation of IL7R in the GWAS which was supported by 18 credible set variants 
spanning the gene, including one non-synonymous (Thr>Ile) variant, rs6897932[11]. In ADGAPP, 

rs6897932 was ranked as the 8th most likely causal variant. The variant affects splicing of the IL7R 

transcript, with the minor C allele, the risk allele for multiple sclerosis (MS), favouring secreted over 

surface isoform of the protein. Elevated levels of secreted isoform exacerbate symptoms of MS in 
animal model[157,158]. In common with opposite effects seen in AD compared to autoimmune 

diseases, the minor allele is protective in eczema[150]. IL7R is part of the thymic stromal 
lymphopoietin (TSLP) receptor/IL-7/IL7R axis required for correct lymphocyte maturation, especially 

of Th2 lymphocytes of interest in AD, with overexpression associated with acute lymphoblastic 

leukaemia[159], whereas recessive mutations in the gene resulting in reduction of gene expression is 
seen in severe combined immunodeficiency (SCID) patients[160].  

Locus 11p13 
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This locus stands out as having one clearly prioritised target gene - PRR5L (score=598, 79% of top 10 

cumulative score; Table 1), with its final score nine times higher than the second-ranked gene, 
TRAF6 (score=65 - only 9%). In total, we considered 15 genes located in the 3 Mbp region around 

index SNP (Figure 3D & Dataset S4). We could not tease apart the target behind the secondary signal 
represented by lead SNP rs12295535, with the same genes prioritised as for the primary signal 

represented by rs2592555. rs2592555, the top prioritised variant at the locus (score=246, Dataset 

S4), is situated in the intron of proline rich 5 like (PRR5L). We also note that ADGAPP’s second best 

SNP rs7925585 (score=132) for the primary signal, also positioned within the intron of PRR5L, was 
independently prioritised for eczema in FINDOR analysis[161].  Strong expression colocalisation was 

detected with the coloc method (Figure 2, Additional File 5: Supplementary Table 1) in: eQTLGen - 
whole blood (PPH4 = 95%); TwinsUK – skin (PPH4 = 91%), LCL (PPH4 = 98%); CEDAR - CD4+ T cells 

(PPH4 = 98%) with protective AD allele associated with increased expression. The gene’s role was 

also supported using the network method PrixFixe (Dataset S5) and strongest methylation signal 

detected through mQTL overlap with locus interval SNPs in whole blood in the GoDMC study[126]. 
PRR5L was proposed as the candidate gene in the EAGLE GWAS due to position of the lead SNP in 

PRR5L’s intron and PRR5L eQTL overlap with the credible set variants[11]. However, there was 
previously very little evidence for colocalisation of these signals. 

PRR5L is part of the rapamycin complex 2 (mTORC2) which responds to extrinsic stimuli through 

cytoskeleton re-organisation and cell migration[162]. PRR5L specifically plays a role in regulation of 
fibroblast migration, and decreased expression of the gene conferred by the risk allele is predicted 

to lead to increase in fibroblast migration.  

Locus 14q13.2 

Out of 70 genes considered as causal at this locus (Figure 3E & Dataset S4), we find 2 of them to 

have comparably high scores - Protein phosphatase 2 regulatory subunit B''Gamma (PPP2R3C) with 

the score of 996 (31% of top 10 cumulative score, Table 1), and KIAA0391 with the score of 814 (25% 

of top 10 cumulative score).  

Three (PP2R3C, KIAA0391, FAM177A1) out of the four top-ranking ADGAPP genes at this locus 
display partial co-expression. The top-ranked candidate gene PPP2R3C shows colocalisation (Figure 

2, Additional File 5: Supplementary Table 1) in sun-exposed (PPH4 = 94%) and unexposed skin (PPH4 
= 95%, p-value = 2 x 10-7 ), whole blood in GTEx (PPH4 = 97%, p-value = 2 x 10-7), CD15+ granulocytes 

(PPH4 = 96%) and colon (PPH4 = 96%) in CEDAR, and neutrophils (PPH4 = 93%) in Blueprint. The next 
best gene, KIAA0391 recapitulates the colocalisation in the skin in GTEx (sun exposed PPH4 = 97%, 

unexposed PPH4 = 96%), and LCL and individual immune cell types: LCL from TwinsUK (PPH4 = 94%, 
p-value = 3 x 10-9), CD8+ T cells (PPH4 = 97%) and CD14+ monocytes from CEDAR cohort (PPH4 = 

60%, p-value = 1 x 10-4), in addition to the spleen in GTEx (PPH4 = 95% and p-value = 2 x 10-7). 
Moreover, we find hundreds of individual variants in LD with the index SNP to overlap blood and skin 

eQTLs for those genes (Dataset S5). The orchestrated expression of these genes is underscored by 
their differential expression in atopic dermatitis skin: PPP2R3C is upregulated regardless of FLG 

genotype[135,137] and KIAA0391 is strongly downregulated in homozygous FLG mutation AD 
patients[135]. Comparing that with our colocalisation results, we see tissue-specific regulation for 

PPP2R3C, upregulation in the skin (in line with the differential expression results) but 
downregulation in the blood associated with the AD risk allele. For KIAA0391, the downregulated 

expression seen in AD patients is at odds with the eQTL result, where the AD risk allele is associated 
with increased expression; this conflict could indicate that KIAA0391 is not an AD susceptibility gene. 

The original GWAS annotation[11] also suggested PPP2R3C, KIAA0391 and FAM177A1 as plausible 
causal genes, with the 47 credible interval SNPs scattered throughout the three genes and the lead 
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SNP mapping to an intron within PPP2R3C; strong colocalisation with TwinsUK microarray eQTLs in 

that paper was found only for KIAA0391.  

Considering gene function, PPP2R3C is the most viable candidate. Targeted B-cell mouse knockout 

mutants show profound abnormalities in humoral immune response: reduced B cell proliferation, 

maturation, abnormal activation and small spleen[163]. Similarly, loss of PPP2R3C in T cells results in 

atrophy of the thymus, decreased thymocyte abundance, especially of CD4+ and CD8+ double-
positive thymocytes[164]. Variants at the locus related to pleiotropic phenotype of chronic 

inflammatory diseases (AS, CD, psoriasis, primary sclerosing cholangitis, UC)[165] map to intron 
positions within PPP2R3C. Next, linking the gene’s mutant phenotype established in mouse to 

human GWAS, it has been reported that decrease in lymphocyte counts[166] significantly correlates 

with the risk allele at rs2038255, the index variant in AD GWAS and ADGAPP top prioritised variant 

(score=389, Dataset S4). PPP2R3C encodes a regulatory subunit of protein phosphatase 2A, known 
as G5PR, which associates with phosphatases PP2A, PP5, GANP protein and represses JNK and IKKβ 

(inhibitor of NF-κB) phosphorylation[167]. It is involved in regulating antigen-based B-cell and early T 

cell selection in the thymus promoting thymocyte and B cell survival. G5PR becomes upregulated in 
activated B cells and prevents B-cell receptor-mediated activation-induced cell death in B cells 

through suppression of late-phase JNK activation[168]. Overexpression results in the increase of 
production of non-specific B cells after immunisation and generation of autoantibodies in non-

stimulated mice[169]. Therefore, PPP2R3C upregulation in the skin could be a contributing factor to 
autoimmune activation seen in a subset of severe AD patients and particularly directed against 

epidermal proteins[170].  

KIAA0391 in contrast does not appear to be so directly functionally linked to the AD phenotype. It 

encodes a component of mitochondrial RNase P complex which catalyses the last step in pre-tRNA 
maturation process: removal of the tRNA 5’ leader sequence[171].  

Locus 14q32.32 

Accounting for 55% of the cumulative score at the locus, TNF receptor associated factor 3 (TRAF3) is 

clearly prioritised among the 59 genes positioned within 3 Mbp of the index SNP at the locus (Figure 
3F & Dataset S4). While TRAF3’s score is 848, the second-ranked AMN scores only 281 (18%) (Table 

1). TRAF3 is the only gene at the locus with direct colocalisation evidence (Additional File 5: 
Supplementary Table 1): in the whole blood in eQTLGen (PPH4 = 93%) and with lower confidence 

(PPH4 = 85%) in CD4+ T cells in Blueprint. In addition, many locus interval SNPs are possibly situated 
within an enhancer interacting the gene’s promoter in human embryonic stem cells[79], whole 

blood[81], CD34+ hematopoietic cells and lymphoblastoid cell lines[146], naïve T regulatory cells and 
T helper 17 cells[156]  and epidermal stem cells along with keratinocytes[84] as shown by Hi-C data. 

In AD GWAS, risk alleles correlate with upregulated expression of TRAF3 and in IBD there is 
increased expression of the gene in inflamed intestinal mucosa[172]. However, changes in 

expression have not been consistently observed in AD lesions relative to healthy skin (Dataset S5).  

The original EAGLE GWAS annotation also presents TRAF3 as the candidate gene at the locus due to 

the location of the index SNP, pathway enrichment in MAGENTA gene set analysis and mouse 

knockout phenotype, but no eQTL evidence[11]. Two out of the 3 top prioritised SNPs at the locus in 
ADGAPP (1st ranked rs79589176 and 3rd ranked rs12880641) as well as index SNP (rs7146581) are 

intronic, situated within the TRAF3 gene, whereas the remaining top 3 SNP (2nd ranked rs71421262) 
is 2 kbp 5’ upstream of TRAF3. TRAF3’s role in signal transduction in immunity is well-established, 

with early studies describing a serious imbalance in T cell composition in mouse model knockouts 

which eventually leads to their perinatal death[173]. TRAF3 is a repressor of CD40- and B cell-
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activating factor-mediated signalling and limits homeostatic B cell survival[174]. TRAF3 is also related 

to possible candidates at two other GWAS loci (TRAF6 at 11p13 and IL6R at 1q21.3).  TRAF6 
positively regulates MAPK signalling and production of inflammatory cytokines and chemokines, 

whereas TRAF3 needs to be degradatively ubiqutinated during MyD88-dependent Toll-like receptor 
signalling to activate the JNK and p38 MAPK cascade[175]. TRAF3 exerts a negative effect on Th17-

based inflammation by sequestering IL-17R, however, normally this is prevented by competitive 

binding of TRAF3 by NRD1. This allows formation of IL17R-Act1-TRAF6 complex and subsequent 

propagation of IL-17-induced signal down through MAPK and NF-κB pathways leading to production 
of pro-inflammatory molecules, including cytokine IL-6, whose receptor is prioritised in the AD 

GWAS at locus 1q21.3[176].  

 

Validation of ADGAPP gene prioritisation – enrichment and network analysis 

Due to limited knowledge of heritable atopic dermatitis loci, we did not have any significant number 

of “gold standard” true positive genes to which we could compare our ranking of prioritised genes in 
the atopic dermatitis GWAS. For that reason, we evaluated the quality of our results in two indirect 

ways. 

Firstly, many GWAS gene prioritisation algorithms focus on prioritising genes which share similar 
profiles, be it in membership in gene sets, co-expression or protein-protein interaction 

networks[177]. Here, we work this approach in reverse and ask if our prioritised genes are enriched 
for their presence in any gene sets and networks. Using enrichr[178], we carried out gene set 

enrichment tests of our top 3 prioritized genes, to see if they align well with categories from 
additional previously implicated AD genes (Additional File 9: Supplementary Table 3, Additional File 

10: Supplementary Table 4). In general, highly-prioritised genes had functions related chiefly to the 
immune system but also dermis structure, lipid metabolism and cytoskeleton organisation.  

We find that both lists are significantly enriched for immune system-related genes (Figure 4). In 

particular, cytokine categories were overrepresented: GO cytokine-mediated signalling pathway 

(adjusted p-value for ADGAPP prioritised genes = 1x10-9 versus 0.004 for other previously implicated 

AD genes), positive regulation of cytokine production (GO, 0.009 ver. 9 x 10-4), cellular response to 
cytokine stimulus (GO, p=0.011 ver. 0.009), cytokine-cytokine receptor interaction (KEGG, p=1 x 10-4 

ver. 7 x 10-4), interleukin-7-mediated (GO, p=0.053 ver. 0.048) and interleukin-4-mediated signalling 
pathways (NCI, p=0.011 ver. 0.007), interleukin-2 (Jensen, p=0.003 ver. 0.035), interleukin-12 

(Jensen, p=1 x 10-5 ver. 0.001) and interleukin-23 complex (Jensen, p=7 x 10-6 ver. 0.010).  The genes 

in the cytokine pathways identified by ADGAPP include IL6R, IL22, INPP5D, IL2RA, IFNG, IL18R1, 

IL18RAP, IL1RL1 and IL7R. 

Signalling involved in regulation of response to interferon γ (GO, p=0.039 ver. 0.043), JAK1-/JAK2-
STAT3-interacting genes and JAK-STAT signalling pathway in general (KEGG, p=4 x 10-5 ver. 2 x 10-

4),genes downstream of NF-κB-RelA transcription factor (TRRUST, p=0.036 ver. 0.012) also 
overlapped between the two gene sets, as did regulation of T cell differentiation (GO, p=0.011 ver. 

0.007), selective expression of chemokine receptors during T-cell polarization (WikiPathways, 
p=0.036 ver. 0.004) and Th1, Th2 (KEGG, p=2 x 10-4 ver. 6 x 10-4), Th17 cell differentiation (KEGG, p=4 

x 10-7 ver. 7 x 10-4). Beside the previously mentioned cytokine-related genes, we found other targets 
in different immune pathways: e.g. STAT3, SOCS3, ETS1, TRAF3, TRAF6, IRF1. We did not find 

enrichment of genes in any specific type of immunity – with all of Th1, Th2, Th17, Th22 represented 
and previously shown to play a role in certain subsets of AD patients, despite overall particular 
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importance of Th2 and Th22[36,179,180]. We did not see much in the way of B cell-specific effects, 

despite selective expansion of certain B-cell subsets in AD patients[181]. 

Genes concerned with establishment of the skin barrier were marginally enriched for in ADGAPP 

(due to the prioritisation of cornified envelope genes, HRNR and RPTN), but less than the previously 

reported AD genes (GO, p=0.045 ver. 8 x 10-8).  

The second way we validated our results was to test if our candidates interacted with each other and 
with the genes with established roles in AD pathogenesis. We used STRING[182] to visualise the 
highest-confidence interactions (Figure 5) among the top 3 prioritised genes at each locus from 
ADGAPP and other AD genes previously implicated (Additional File 9: Supplementary Table 3). Not 
surprisingly, the analysis revealed an extensive network that included 25 ADGAPP prioritised genes, 
centred on key immune regulators, such as STAT3, STAT6, SOCS3, IRF1, TRAF6. It included direct 
binding interactions between targets prioritised in the current AD GWAS and outside of it – between 
INPP5D and FCER1G as well as FCER1A, IL7R/STAT3 and TSLP, IL7R and TSLPR, IFNG and IFNGR1; and 
SOCS3 and IFNGR1. However, when it came to the genes directly taking part in establishing skin 
barrier, 2nd ranked gene at the epidermal differentiation locus - RPTN, was the only one shown to 
interact with the late cornified envelope genes. 

 

Discussion 

Previous annotations of AD GWAS loci have been limited in their ability to identify likely causal 

genes[11]. Here we provide a thorough and objective investigation of the 25 European AD loci, by 
integrating all relevant available data that can be used to provide evidence for identifying potentially 

causal genes, and combine this data in such a way as to produce a ranking for every gene at each 
locus. We intend that this thorough analysis and ranking will provide a prioritised list of AD 

candidate genes for further experimental work, and the detailed presentation of evidence for each 
gene will enable appropriate and tailored follow-up investigations to be designed. 

For 10 loci the top ranked gene is not the gene closest to the index GWAS SNP. 8 loci have a single 
stand-out candidate causal gene (score >50% of the top 10 gene cumulative score) and 7 genes score 

particularly high (>700) and/or have a particular stand-out score (>75%). These are IL6R at 1q21.3, 
IL18R1/IL18RAP at 2q12.1, PRR5L at 11p13, IL7R at 5p13.2, PP2R3C at 14q13.2 and TRAF3 at 

14q32.32. Whilst in many cases our analysis strengthens the evidence for existing candidate causal 

genes at these loci, for 6 loci our score ranks alternative candidates as the most likely causal gene. 

One of these 6 can be considered an interesting validation of our approach. IL15RA was previously 

considered the most plausible candidate gene at the 10p15.1 locus due to the limited eQTL evidence 
that was available at the time. Our ADGAPP approach however prioritised IL2RA over IL15RA. Since 

the publication of the GWAS in 2015 this locus has been followed up with CRISPR experiments, 

which reported that the T-allele at rs61839660 down-regulates IL2RA expression[144], suggesting 

that ADGAPP’s prioritisation at this locus is correct. 

Other validations of our approach are provided by tests of enrichment of ontology terms and 

evidence of protein-protein interactions amongst the top ranked genes across all loci. Enrichment 

(amongst the top 3 prioritised genes at each locus) was found for the following ontology terms: skin 
barrier integrity, T helper cell polarisation, cytokine signalling and JAK-STAT signalling. JAK-STAT 

signalling has recently been confirmed as enriched for among genes prioritised for inflammatory skin 
diseases (including AD) with HiChIP-derived T cell enhancer connectome[183]. Furthermore, our 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.11.30.20240838doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.30.20240838
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 

enrichment analysis highlighted the role of JAK1, JAK2-interacting genes, and interestingly the two 

genes themselves were shown to contain an over-representation of rare coding variants in a new AD 
study[184], which underscores the functional importance of the pathway in AD.  

Analogously, in investigating protein-protein interactions (using the STRING database) among our 
ADGAPP-prioritised candidate genes and other established candidates interactions between genes 
with immune regulation (but not skin barrier) functions were found amongst the established AD 
players: TSLP and its receptor, TLR2, STAT6, IL4 and interferon γ receptor. Some roles in skin 
maintenance are supported by some of our candidate gene network modules. The gp130-SOCS3-

STAT3 axis promotes proliferation, migration and differentiation of keratinocytes[185] in skin-wound 
healing, activated amongst other by IL-6. SOCS3 negatively regulates STAT3 activation by 
simultaneously binding to phosphorylated JAK kinase and gp130 cytokine receptor[186].  

STRING data is not entirely comprehensive and omits other functional relationships between 
prioritised genes. ETS1 activation results in downregulation of IL-6 pathway and in STAT3 
phosphorylation[187]. SOCS3 antagonises IL1-dependent activation of NFkB pathway by inhibiting 
ubiquitination of TRAF6 in the TRAF-6/TAK1 complex[188]. LGP2’s negative regulation of type 1 
interferon response is exerted through antagonizing TRAF ubiquitin ligase activity, including TRAF3 
and TRAF6[189]. Finally, STAT3 is a regulator necessary for maintenance of STMN3 expression, and 
its phosphorylation as well as expression correlates with STMN3 expression[190]. STMN3 interacts 
with STAT3 via its C-terminal tubulin-associating region[191,192]. 

In general, the results of our GWAS prioritisation analysis remind us that interpretation of a GWAS 
locus is complicated due to varying regulation between cell types and widespread coregulation that 
makes identification of the true causal gene difficult. Indeed, recent GWAS explosion reveals that on 
top of each locus being able to contain multiple signals[193], each signal can influence multiple co-
regulated genes[194]. 

Associations with molecular phenotypes follow the same pattern, with at least 9% of human eQTLs 
quantified to contain secondary signals[195] and multiple genes implicated for 50% human 
eQTLs[14]. It is well established that genes in the same locus show often correlated expression, 
especially for genes localised in the same TAD[196], and that correlation itself is heritable[197]. 
According to the multiple enhancer variant hypothesis, several variants in LD can influence multiple 
enhancers and cooperatively affect expression of target gene(s). Corradin et al. (2014) provide 
evidence for it in 6 autoimmune diseases, including RA, Crohn's disease and SLE[198], while two 
adjacent thyroid-related genes are regulated by an enhancer haplotype at a thyroid cancer risk 
locus[199]. Therefore, it is not surprising that many of our loci showed multiple colocalisations for 
different genes and tissues, especially in gene-dense regions, with the caveat that not all may be 
causal. A recent analysis of the TWAS colocalisation method claims that around 75% of hits will be 
non-causal in the instance of correlated gene expression at the locus[145], and we hypothesize that 
may be the case at loci 11q13.1, 14q13.2, and 20q13.33, where expression of as many as 4-6 genes 
colocalises with AD GWAS signal in the TWAS results, alone. Still, due to a distinct possibility of 
detection of multiple target genes and variants at a locus, we do not focus only on top-rated hits in 
our gene and variant ranking. AD GWAS loci which we believe should be further experimentally 
investigated in that regard, include: 2q12.1 (IL18R1, IL18RAP, IL1R1), 5q31.1 (KIF3A, PDLIM4, 
SLC22A4, IRF1) and 20q13.33 (STMN3, LIME1, ARFRP1) – the first two especially due to containing at 
least two independent signals in the GWAS analysis. 
 
Most of the genes which show eQTL colocalisation across many tissues indicate the same direction 
of effect, such as in the case of PRR5L, a top prioritised hit at the 11p13 locus, where the protective 
allele is associated with increased expression in the skin, whole blood and immune cell subsets. 
However, the results at three loci (2q12.1, 14q13.2, and 20q13.33) imply there may be tissue-
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dependent effects on expression. Protective alleles in the skin eQTLs showed positive effect and 
negative effect on expression in blood eQTLs in STMN3 and LIME1, while reverse pattern was seen 
for ARFRP1, and similarly, change of sign between tissue types was also seen for IL18RAP and 
PP2R3C. This indicates that causal variants potentially reside in tissue type-specific regulatory 
regions and context-dependent effect of these genes could impact atopic dermatitis phenotype. 
 
However, even when focusing on a single tissue of interest, we frequently observe lack of 
concordance in results among same tissues from different datasets, which was particularly clear in 
the eQTL colocalisation analysis, where we used eQTLs for the same tissues sourced from different 
studies: skin and LCL from both GTEx and TwinsUK, whole blood from GTEx and eQTLGen, CD4+ T 
cells from Blueprint and CEDAR. Hits such as SLC22A5, PRR5L, IL2RA, TRAF3, FAM177A1 showed 
strong colocalisation in one dataset which was then missing in another. This could be explained by a 
host of factors relating to study design, experimental methods and data analysis choices. The first 
two include sample size and consequently statistical power, demographic composition of studied 
cohort, differences in harvested cell composition and condition, and technical details determining 
sensitivity of the assay. In the third category, choices regarding data clean-up such as quality control 
filters and data analysis parameters such as confounders and genome window size used for eQTL 
detection can also prevent SNP inclusion in QTL analyses and thus affect our ability to interrogate 
the data for a particular association. Nevertheless, consistent eQTL colocalisation replication across 
multiple datasets and tissues, whenever seen - as is the case e.g. for IL6R in whole blood instils us 
with more confidence that the effect seen is real. 
 
Our analysis confirmed many loci where there is pleiotropy between atopy and inflammatory 
diseases. For three genes, the direction of effect matches: DEXI (T1D, MS), SOCS3 (IBD), ETS1 (SLE), 
but for many others the direction of effect is opposite. This is not surprising, as despite generally 
opposing types of immune activation in psoriasis versus eczema (Th17-skewed versus Th2-skewed), 
yet 81% of differentially expressed genes in AD are also DEGs in psoriasis[200]. We observe such 
contrasts for several immune regulators: INPP5D (IBD), TRAF3 (IBD), IL6R (RA), IL7R (MS), IL2RA 
(T1D), CLEC16A (MS) which probably stems from different Th1/Th2/Th17 balance in adaptive 
immune system dysregulation in those diseases[201–204]. 
A strength of our variant prioritisation analysis is that we used three different Bayesian variant fine-
mapping methods: JAM, Paintor and Finemap. We integrated the three methods (ran with different 
parameters) in light of previously shown incongruence in their results resulting from different model 
assumptions[205]. A notable caveat in our fine-mapping of variants is exclusion of indels and bigger 
structural variants. Therefore, variant prioritisation results do not aim to precisely identify the causal 
variants but finemap the broader region with the aim of prioritising SNPs which in turn may provide 
additional evidence for what genes in the region are likely to be involved. Our fine-mapping was also 
restricted by the power and imputation panel (1,000 Genomes) of the published EAGLE GWAS[11]. 
Future GWAS with bigger sample size and denser variant imputations will increase the power of 
future fine-mapping and, in turn, causal gene identification attempts. 
 
Our ADGAPP pipeline for follow-up of GWAS signals, whilst focused on the integration of AD-
relevant resources in this use case, can be easily adapted for other diseases or traits, following 
identification of the most relevant and powerful molecular datasets. For some traits (e.g. blood-
related) there are very well-powered and informative accessible datasets (e.g. eQTLGen) while the 
more specific data may still be lacking, for instance different layers and cell types within the skin. 
Better predictions may be made in the future by integrating evidence from across more tissue types, 
especially at a single-cell resolution – such datasets are already being generated for related 
disorders, such as asthma[206]; considering trans- and isoform-level mechanism of action, and 
explicitly modelling network connectivity via protein-protein interactions and co-expression.  
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Whilst there are limitations in our approach, as outlined in the sections above, we nevertheless find 
ADGAPP useful to easily flag the genes where we find most evidence which can then be carefully 
evaluated. Furthermore, using our standardised scoring system to assess prioritisation, we can use 
absolute score to make direct comparison of strength of prioritisation across and within loci, % of 
cumulative score captured by top gene facilitates comparison of strength of evidence for genes 
within the locus. We use a combination of the two useful metrics to propose the most plausible 
candidate genes in the AD GWAS. Loci where we are more confident in prioritisation of single genes, 
lend themselves to direct experimental investigation, such as TRAF3 at the 14q32.32 locus and 
PRR5L at the 11p13 locus. Additionally, investigating loci with clear candidate genes and association 
with multiple inflammatory diseases showing consistent direction of effect, such as 11p13 (PRR5L – 
MS, asthma), 11q24 (ETS1 - psoriasis, celiac disease) and 16p13.13 (DEXI and CLEC16A - T1D, MS, 
alopecia areata, SLE, asthma) may reveal promising targets with potential drug repurposing future. 
Others with opposing directions of effects may reveal potential adverse side effects for 
consideration in therapeutic development (e.g. with anti-IL6 biologics for RA). 
 
Conclusions 

Through our ADGAPP pipeline, we have developed an integrated approach which has allowed semi-
quantification of the subjective process of prioritisation of genes (and variants) at AD GWAS loci. We 

have amassed 103 datasets (including molecular datasets from relevant tissues) and used these to 
generate prioritisation scores for each gene at the 25 established European AD GWAS loci. At eight 

loci we were able to prioritise single candidate genes with good evidence, many not being the 
closest gene to the GWAS index SNP. For 6 loci we identify genes not previously implicated as the 

top-ranked candidates. We present comprehensive results and discussion of the evidence at each 
locus to enable appropriate follow-up molecular biology investigations, including drug target 

discovery of these potential causal genes. The principles behind the ADGAPP pipeline can be 
adopted in annotating GWAS on other disease in the future.  

 

Additional File 1: Supplementary Text. Description of ADGAPP scoring system. 

Additional File 2: Supplementary Figure 1. Overview of contribution of different type of -omics 

evidence to gene and SNP ranking in all the AD GWAS loci. Each bar represents a number of 
individual studies in a given category contributing to the sum total of evidence. 

Additional File 3: Supplementary Figure 2. Distribution of scores obtained in our model for 

candidate gene ranking at each locus (labelled with lead SNP). 

Additional File 4: Supplementary Figure 3. Distribution of scores obtained in our model for causal 

SNP ranking at each locus (labelled with lead SNP). 

Additional File 5: Supplementary Table 1. Colocalisation results from coloc and TWAS methods 

(either base TWAS or TWAS-based coloc) on AD GWAS and eQTLs in tissues from a number of 
datasets. We report coloc results for genes with posterior probability of a shared causal eQTL and 

GWAS variant (PPH4) > 0. 5 for any gene with at least one strong colocalisation result of PPH4 > 0.9, 
while for TWAS we show genes with genome-wide significant and independent colocalisation 

evidence in conditional and joint analysis. Gene rank at the given locus in our final GWAS gene 
prioritisation model is also given.  

Additional File 6: Supplementary Table 2. Results meeting the genome-wide significance threshold 

with no significant heterogeneity in HEIDI analysis for SMR test of GTEx, Blueprint and eQTLGen 
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eQTL instruments against AD GWAS. Gene rank at the given locus in our final GWAS gene 

prioritisation model is also given. 

Additional File 7: Supplementary Text 2. ADGAPP prioritisation summary for AD loci. 

Additional File 8: Supplementary Figure 4.  Score by types of evidence in all the AD GWAS loci. 

Scores for top 3 ranked genes at each locus are shown partitioned by category of evidence – here 
including the top 10 categories contributing the highest proportion of total score at the top 10 

ranked genes for all loci. Order of loci corresponds to the order in Table 1. 

Additional File 9. Supplementary Table 3. Genes previously implicated in AD, not prioritised by 
ADGAPP. 

Additional File 10: Supplementary Table 4. Comparison of Enrichr-based significant enrichment 

testing results for: top 3 genes combined from across all the AD GWAS loci tested (Genes.top_3) and 
other known AD genes (Genes.previously_known), against select ontologies.List of abbreviations 

AD: atopic dermatitis; ADGAPP: Atopic Dermatitis GWAS Annotation Prioritisation Pipeline; caQTL - 

chromatin accessibility quantitative trait locus; AS: ankylosing spondylitis; CD: Crohn’s disease; DGE: 

differential gene expression; eQTL: expression quantitative trait locus; GTEx: Genotype-Tissue 

Expression project; GWAS: genome-wide association study; hQTL: histone quantitative trait locus; 
LCL – lymphoblastoid cell line; LD: linkage disequilibrium; MHC: major histocompatibility complex; 

mQTL: DNA methylation quantitative trait locus; MS: multiple sclerosis; PP: posterior probability; 
pQTL: protein quantitative trait locus; RA: rheumatoid arthritis; SLE: Systemic lupus erythematosus; 

SNP: single nucleotide polymorphisms; sQTL: splicing quantitative trait locus; T1D: type I diabetes; 

UC: ulcerative colitis 
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Table 1 Genes prioritised by ADGAPP at atopic dermatitis GWAS loci 

The closest genes to the index variant (in either direction) are marked in bold. The two values given in parentheses in top 3 ranked gene columns correspond to the 

ADGAPP gene prioritisation score and percentage of the total score for locus top 10 genes, respectively. 

Locus GWAS Index variant Nearest genes Top ranked gene 2nd ranked gene 3rd ranked gene 

1q21.3 - a rs61813875 CRCT1/LCE3E  HRNR (464, 28%) RPTN (285, 17%) CRNN (249, 15%) 

1q21.3 - b rs12730935 IL6R IL6R (743, 62%) UBE2Q1 (93, 8%) ADAR (61, 5%) 

2p13.3 rs112111458 CD207/VAX2 CD207 (272, 45%) CLEC4F (62, 10%) VAX2 (56, 9%) 

2q12.1 rs6419573/rs3917265* IL18R1/IL18RAP IL18R1 (1384, 39%) IL18RAP (1341, 38%) IL1RL1 (224, 6%) 

2q37.1 rs1057258 INPP5D INPP5D (296, 57%) ATG16L1 (106, 20%) RN7SL32P (29, 6%) 

4q27 rs6827756/rs13152362* KIAA1109  KIAA1109 (220, 35%) BBS12 (112, 18%) TRPC3 (100, 16%) 

5p13.2 rs10214237 IL7R/CAPSL IL7R (965, 65%) SPEF2 (203, 14%) UGT3A2 (89, 6%) 

5q31.1 - a rs12188917 TH2LCRR  SLC22A5 (461, 35%) IRF1 (303, 23%) RAD50 (122, 9%) 

5q31.1 - b rs4705962* KIF3A KIF3A (249, 23%) SLC22A5 (247, 23%) PDLIM4 (142, 13%) 

6p21.32 rs4713555 STAT3 HLA-DRA (1405, 30%) HLA-DQB1 (689, 15%) HLA-DRB1 (566, 12%) 

6p21.33 rs41293864 MICB HSPA1B (173, 15%) HCG27 (165, 14%) CSNK2B (152, 13%) 

8q21.13 rs6473227 MIR5708/ZBTB10 ZBTB10 (192, 41%) TPD52 (70, 15%) PAG1 (69, 15%) 

10p15.1 rs6602364 IL2RA/IL15RA IL2RA (333, 45%) RBM17 (111, 15%) PFKFB3 (51, 7%) 

10q21.2 rs2944542 ZNF365 ADO (615, 61%) ZNF365 (101, 10%) EGR2 (90, 9%) 

11p13 rs2592555/rs12295535* PRR5L PRR5L (598, 79%) TRAF6 (65, 9%) COMMD9 (34, 5%) 

11q13.1 rs10791824 OVOL1 CTSW (336, 23%) OVOL1 (236, 16%) EFEMP2 (168, 11%) 

11q13.5 rs2212434 C11orf30/LRRC32 LRRC32 (545, 43%) EMSY (521, 41%) THAP12 (47, 4%) 

11q24.3 rs7127307 –/ETS1 ETS1 (298, 75%) FLII (35, 9%) APLP2 (18, 5%) 

12q15 rs2227483 IL22  MDM1 (728, 70%) IL22 (99, 10%) IFNG (57, 5%) 

14q13.2 rs2038255 PPP2R3C PPP2R3C (996, 31%) KIAA0391 (814, 25%) SRP54 (433, 13%) 

14q32.32 rs7146581 TRAF3 TRAF3 (848, 55%) AMN (281, 18%) CDC42BPB (186, 12%) 

16p13.13 rs2041733 CLEC16A DEXI (376, 34%) CLEC16A (364, 33%) RMI2 (108, 10%) 

17q21.2 rs12951971 STAT3 DHX58 (254, 32%) STAT3 (101, 13%) RAB5C (100, 13%) 

17q25.3 rs11657987 PGS1  PGS1 (205, 46%) DNAH17 (73, 16%) SOCS3 (52, 12%) 

19p13.2 rs2918307 ADAMTS10/ACTL9 ACTL9 (115, 41%) ADAMTS10 (57, 20%) MAP2K7 (34, 12%) 

20q13.33 rs4809219 RTEL1/TNFRSF6B STMN3 (608, 27%) LIME1 (473, 21%) ARFRP1 (257, 12%) 

                      *index SNP for secondary signal, where ADGAPP did not give different gene prioritisations for the two signals, these are presented on one row.
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Figure 1. Outline of ADGAPP workflow used to prioritize candidate genes and variants based on 

AD GWAS.  

1) Left hand-side: We considered all the genes positioned within a 3Mbp interval centred on 

index GWAS SNP. Right hand-side: We considered variants within the interval around top 

GWAS SNP defined as follows: consider all the SNPs within 1 Mbp interval around the index 

SNP and find the furthest SNP (blue circle) in either direction with r
2
 >= 0.2 in 1000 Genomes 

EUR population – these variants define the boundaries of the locus interval (purple shading) 

within which all SNPs are considered.  For locus interval length, we found it ranged from 

28,133 bp to 915,373 bp, with median at 228,670 bp. The number of candidate SNPs 

contained within a locus interval varied from 93 to 10,710, with a median of 758 SNPs.  

2) We assembled different types of datasets showing significant results for genes within the 

loci (left panel), both genes and SNPs (middle panel) and just SNPs (right panel). Tiles 

represent number of datasets in each category and are further coloured according to 

subjective evidence strength: red (highest): statistical tests based on full summary statistics, 

gray (middle): lookups among significant results in experimental studies, blue (low): 

predictive machine learning models. 

3) We summarised the output of for each experiment/analysis in a set of standardised 

summary tables. 

4) We calculated a final score which allowed ranking of all the considered genes and SNPs for a 

given locus, and prioritisation of targets for downstream research.  

Figure 2. Score by type of evidence for top 3 ranked genes in the 6 highlighted loci. Scores for top 3 

ranked genes at each locus are shown partitioned by category of evidence – here including the top 

10 categories contributing the highest proportion of total score at the top 10 ranked genes for all 

loci. Order of loci corresponds to the order in Table 1. 

Figure 3. Gene scores within the 3 Mbp interval of lead SNP in the 6 highlighted loci. Top prioritised 

gene marked with a black square. A) locus 1q21.3 – b; B) locus 2q12.1; C) locus 5p13.2; D) locus 

11p13; E) locus 14q13.2; F) locus 14q32.32.  

Figure 4. Network visualisation of the functional terms enriched among locus top 3 prioritised 

genes in ADGAPP. The ontology categories are depicted as blue hexagons, with their size linearly 

proportional to -log10 of adjusted enrichment p-value.  AD genes are depicted as pink rectangles, 

with the intensity of the colour fill proportional to gene score and thickness of the green border 

marking the gene rank at the locus, with rank 1 the thickest. 

Figure 5. Highest-confidence interactions between locus top 3 prioritised genes in ADGAPP and 

other AD genes. AD genes prioritised outside of ADGAPP are depicted as olive rectangles. For GWAS 

AD gene legend, refer to Figure 4. 

Edges are coloured according to source of evidence for interaction: light blue - known interactions 

from curated databases, pink - experimentally determined known interactions, green - predicted 

interactions based on gene neighbourhood, red - predicted interactions based on gene fusions, dark 

blue - predicted interactions based on gene co-occurrence, black - co-expression, purple - protein 

homology 
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