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Abstract 20 

The emergence of coronavirus disease 2019 (COVID-19) has infected more than 37 million people 21 

worldwide. The control responses varied across countries with different outcomes in terms of epidemic 22 

size and social disruption. In this study, we presented an age-specific susceptible-exposed-infected-23 

recovery-death model that considers the unique characteristics of COVID-19 to examine the effectiveness 24 

of various non-pharmaceutical interventions (NPIs) in New York City (NYC). Numerical experiments 25 

from our model show that the control policies implemented in NYC reduced the number of infections by 26 

72% (IQR 53-95), and the number of deceased cases by 76% (IQR 58-96) by the end of 2020, 27 

respectively. Among all the NPIs, social distancing for the entire population and the protection for the 28 

elderly in the public facilities is the most effective control measure in reducing severe infections and 29 

deceased cases.  School closure policy may not work as effectively as one might expect in terms of 30 

reducing the number of deceased cases. Our simulation results provide novel insights into the city-31 

specific implementation of NPIs with minimal social disruption considering the locations and population 32 

characteristics.  33 

Keywords 34 

SARS–CoV-2, mathematical model, non-pharmaceutical interventions 35 

Introduction  36 

The outbreak of coronavirus disease 2019 (COVID-19) has become a global pandemic with unanticipated 37 

consequences to the global community. As of 13 October 2020, severe acute syndrome coronavirus 2 38 

(SARS-CoV-2), the cause of COVID-19, has infected more than 37 million people and resulted in more 39 

than 1 million deaths (1). A variety of non-pharmaceutical interventions (NPIs) were introduced to reduce 40 

the transmission by lowering contact intensity at different locations (2), such as school closure, workplace 41 

shutdown, and the closure of bars, churches, and other public facilities, which has been shown to be 42 

successful in China (3), South Korea (4), and other countries (5). The NPIs, such as city-wide school 43 

closures, were implemented as part of its State of Emergency plan (6) in New York City (NYC) that has 44 

been identified as a major epicenter with over 258,000 cases and 23,915 confirmed deaths (7). However, 45 

the effectiveness of these NPIs remains unclear, promoting a critical need to evaluate them and to derive 46 

more effective NPIs with the consideration of social disruption.  47 

  48 

Increasing evidence shows that the demographic structure and age-specific contacts at different locations 49 

play an essential role in the COVID-19 epidemic, as well as the effectiveness of varying NPIs (8-12). For 50 

instance, school closure is useful in controlling the infections among the young people (13, 14), who tend 51 
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to have mild or moderate symptoms and usually can recover without treatment. On the other hand, severe 52 

and deceased cases are often among the elderly and those with comorbidities (15). According to the data 53 

from the CDC of the US, 79.2% of death in the US are the population whose age is over 64. (16) Existing 54 

studies (17, 18) addressed this problem by dividing the population into several age groups and defining 55 

the social contacts at different locations. However, utilizing these unique epidemiological characteristics 56 

to reduce the total number of infections and the severe and deceased cases and the social disruption is 57 

under-researched. 58 

 59 

In this article, we develop a novel age-specific susceptible-exposed-infected-recovery-death (A-SEIRD) 60 

model (19, 20) to examine the effect of a set of common NPIs on reducing the total number of infections 61 

and the severe and deceased cases. More importantly, we obtain the NPIs that can contain the epidemic 62 

with minimal social disruption by quantitatively examining all possible NPIs. The latest epidemiological 63 

parameters (21, 22) of COVID-19 were adopted by the A-SEIRD model. 64 

  65 
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Methods  66 

Adjusted Contact Matrix and Transmission Rate 67 

The contact patterns vary across locations. Previous studies (17, 18) divide the contact intensity into four 68 

locations within a city: households, workplaces, schools, and public facilities represented as 𝐶𝐻, 𝐶𝑊, 𝐶𝑆, 69 

and 𝐶𝑃 individually. Note here the original contact matrix 𝐶 is estimated by survey data achieved in 2008 70 

(17). To get the updated contact matrix, we adjust the original contact matrix 𝐶 by the latest population 71 

structure that refers to the age distribution which is assumed to be static during the simulation period for 72 

the same city. We divide the total population of a city into 17 age groups including 16 groups with a 5-73 

year band between birth and 80-year-old, and the 17th group representing aged >80. The adjusted contact 74 

intensity (𝑀𝑖𝑗) of age group 𝑗 made by age group 𝑖 is obtained by taking the product of 𝐶𝑖𝑗 and the ratio of 75 

the current population sizes of age group 𝑖 (𝑝𝑖) and age group 𝑗 (𝑝𝑗) as follows: 76 

𝑀𝑖𝑗 = 𝐶𝑖𝑗 ×
𝑝𝑖

𝑝𝑗
, (1) 77 

The overall social mixing pattern is defined as the weighted sum of the adjusted contact matrix across the 78 

four locations,  79 

𝑀 = 𝑤𝐻𝑀𝐻 + 𝑤𝑊𝑀𝑊 + 𝑤𝑆𝑀𝑆 + 𝑤𝑃𝑀𝑃, (2)  80 

where 𝑤𝐻 , 𝑤𝑊, 𝑤𝑆, 𝑤𝑃 are the location-specific decay factors compared to the normal situation (𝑤𝐻 =81 

𝑤𝑊 = 𝑤𝑆 = 𝑤𝑃 = 1) and the effects of different NPIs are reflected by the reduction of these decay 82 

factors. The contact matrixes of the four locations under the normal situation are shown in Figure 1.  83 

 84 

 85 

Figure. 1: Age-specific and location-specific contact intensities under normal situation for NYC.  86 

(A), (B), (C), and (D) denote the contact intensity among all the 17 age groups, respectively. The grid in 87 

each panel represents the mean number of contact per day. The colour change denotes the value change: 88 

more blue, more contacts. 89 

 90 
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The transmission rate 𝛽 varies with NPIs shown on the overall adjusted social mixing pattern 𝑀. 91 

Following Prem et al. (17) we projected the adjusted contact matrix with the basic reproduction number to 92 

the transmission rate as follows: 93 

𝑑𝑒𝑡(𝑀 − 𝜆𝐼) = 0, (3) 94 

𝛽 =
𝑅0

max(𝜆) × 𝑑𝐼
, (4) 95 

where  𝑅0 is the basic reproduction number and 𝑑𝐼 is the average length of the infectious period. 96 

 97 

The A-SEIRD Model 98 

The proposed A-SEIRD model is based on the classic SEIR model (19, 20). In the classic SEIR model, 99 

the population is divided into four groups according to the infection status: susceptible (𝑆), exposed (𝐸), 100 

infected (𝐼), and recovery (𝐸). Based on the evidence of the asymptomatic infections of COVID-19 (23, 101 

24), we add three new statuses for the infected individuals: asymptomatically infected (𝐼𝑎𝑠), mildly 102 

infected (𝐼𝑚) and severely infected (𝐼𝑠). Susceptible individuals may become exposed after contacting 103 

infected ones. Exposed individuals may become either mildly infected or asymptomatically infected. We 104 

assume that the deceased cases come from both mild and severe infections, and all asymptomatically 105 

infected individuals will recover. The model structure is presented in Figure 2. 106 

 107 

 108 

Figure. 2: The proposed age-specific SEIRD model. 109 

 110 

Considering the huge drop in human movement between cities (25), we assume that NYC is a closed 111 

system throughout the course of the epidemic (from 1 Jan 2020 to 31 Dec 2020) and initially there are 112 

1,000 infected individuals for simplicity. The initially infected individuals are distributed in different age 113 

groups with the same proportion (0.016%). The epidemic parameters are age-dependent, such as the elder 114 

individuals have a higher severe rate and death rate than the youth (22). 115 

For a given age group 𝑖, the epidemic transitions can be described by 116 

𝑑𝑆𝑖

𝑑𝑡
= −∑ 𝛽

𝑛

𝑗=1
𝑀𝑖𝑗

𝐼𝑗
𝑚

𝑁𝑗
𝑆𝑖 − ∑ 𝛼

𝑛

𝑗=1
𝛽𝑀𝑖𝑗

𝐼𝑗
𝑎𝑠

𝑁𝑗
𝑆𝑖, (5) 117 
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𝑑𝐸𝑖

𝑑𝑡
= ∑ 𝛽

𝑛

𝑗=1
𝑀𝑖𝑗

𝐼𝑗
𝑚

𝑁𝑗
𝑆𝑖 + ∑ 𝛼𝛽

𝑛

𝑗=1
𝑀𝑖𝑗

𝐼𝑗
𝑎𝑠

𝑁𝑗
𝑆𝑖 − 𝜎𝑖𝐸𝑖 , (6) 118 

𝑑𝐼𝑖
𝑎𝑠

𝑑𝑡
= 𝜌𝑖 · 𝜎𝑖𝐸𝑖 − 𝛾𝑖

𝑎𝑠𝐼𝑖
𝑎𝑠, (7) 119 

𝑑𝐼𝑖
𝑚

𝑑𝑡
= (1 − 𝜌𝑖)𝜎𝑖𝐸𝑖 − 𝛾𝑖

𝑚(1 − 𝜇𝑖 − 𝜅𝑖
𝑚)𝐼𝑖

𝑚 − 𝜇𝑖𝐼𝑖
𝑚 − 𝜅𝑖

𝑚𝐼𝑖
𝑚, (8) 120 

𝑑𝐼𝑖
𝑠

𝑑𝑡
= 𝜇𝑖𝐼𝑖

𝑚 − 𝛾𝑖
𝑠 · (1 − 𝜅𝑖

𝑠)𝐼𝑖
𝑠 − 𝜅𝑖

𝑠𝐼𝑖
𝑠, (9) 121 

𝑑𝑅𝑖

𝑑𝑡
= 𝛾𝑖

𝑎𝑠𝐼𝑖
𝑎𝑠 + 𝛾𝑖

𝑚(1 − 𝜇𝑖 − 𝜅𝑖
𝑚)𝐼𝑖

𝑚 + 𝛾𝑖
𝑠 · (1 − 𝜅𝑖

𝑠)𝐼𝑖
𝑠, (10) 122 

𝑑𝐷𝑖

𝑑𝑡
= 𝜅𝑖

𝑚𝐼𝑖
𝑚 + 𝜅𝑖

𝑠𝐼𝑖
𝑠, (11) 123 

where 𝑆𝑖, 𝐸𝑖, 𝐼𝑖
𝑎𝑠, 𝐼𝑖

𝑚, 𝐼𝑖
𝑠, 𝑅𝑖, and 𝐷𝑖 denote the number of susceptible, latent, asymptomatic infectious, 124 

mild infectious, severe infectious, recovery, and deceased individuals at age group 𝑖, respectively. 𝑁𝑗 is 125 

the number of individuals in age group 𝑗. 𝛽 is the transmission rate that differs by the contact intensity 126 

and population structure and 𝛼 is the proportion of the transmission rate of the asymptomatic infections 127 

over that of the mild infections (26). Note that here we assume the severe infections will not spread the 128 

virus due to their limited mobility (usually isolated in hospital). 𝑀𝑖𝑗 denotes the total contact intensity of 129 

age group 𝑗 made by age group 𝑖. For individuals in the age group i, 𝜌𝑖 = 𝐼𝑖
𝑎𝑠/(𝐼𝑖

𝑎𝑠 + 𝐼𝑖
𝑚) is the estimated 130 

fraction of asymptomatic cases among both asymptomatic and mild infections; 𝜎𝑖 = 1/𝑑𝐿 is the daily 131 

probability that an exposed individual becomes infectious (either asymptomatic or mild) where 𝑑𝐿 is the 132 

average latent period; 𝛾𝑖
𝑎𝑠, 𝛾𝑖

𝑚, and 𝛾𝑖
𝑠 are the daily recovery probability for the asymptomatic, mild, and 133 

severe infections, respectively. They are related to specific disease period: 𝛾𝑖
𝑎𝑠 = 1/𝑑𝐼, 𝛾𝑖

𝑚 = 1/𝑑𝑚, 134 

𝛾𝑖
𝑠 = 1/𝑑𝑠, where 𝑑𝐼, 𝑑𝑚, 𝑑𝑠 are the infectious period, mild duration, and severe duration generated from 135 

literature, respectively. 𝜇𝑖 is the daily probability of hospitalisation that a mildly infected patient becomes 136 

severely infected. 𝜅𝑖
𝑚 = 𝜅𝑖

𝑠 = 𝜓𝑖/𝑑𝑑 is the daily crude mortality rate, where 𝜓𝑖 is the crude mortality rate 137 

and 𝑑𝑑 is the period from the symptom onset to death. The crude mortality rate 𝜓𝑖 is estimated from the 138 

official confirmed case report (27) which equals the proportion of the number of deceased individuals to 139 

the infected individuals within one age group. The parameters used in the model from literature are 140 

presented in Table 1 and Table 2. 141 

 142 

Table 1. The parameters used in the model from the literature.  143 

Parameters Value Reference 
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Basic reproduction number 𝑅0 2.0 (1.3-2.6)* Riou and Althaus (21) 

Mean latent (incubation) period 𝑑𝐿 6.0 days Li et al.(28) 

Mean infectious period 𝑑𝐼 4.6 days Moghadas et al. (29) 

The proportion of the transmission rate of 

the asymptomatic infections over that of 

the mild infections 𝛼 

1.0 for all ages Assumption 

The fraction of asymptomatic cases 

among both asymptomatic and mild 

infections 𝜌𝑖 

0.4 for all ages Nishiura et al. (30) 

Mild duration 𝑑𝑚 
10 days for all 

age groups 
Wang et al. (31) 

Severe duration 𝑑𝑠 
16.25 days for 

all ages 
Moghadas et al. (29) 

The period from symptom onset to death 

𝑑𝑑 

10 days for all 

ages 
Yang et al. (32) 

*Data are median (IQR). 144 

 145 

Table 2. The age-specific parameters used in the model from the literature. 146 

Description 0-19 19-44 45-65 65-75 75+ Reference 

Daily probability 

of hospitalisation 

𝜇 

0.0250 0.0320 0.0320 0.6400 0.6400 

Moghadas et al. (29) and 

WHO-China Joint Mission 

Report (33) 

Crude mortality 

rate 𝜓 
0.0215 0.0782 0.2257 0.4600 0.6085 

Estimated from official 

confirmed case report (27) 

 147 
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Non-Pharmaceutical Intervention Scenarios 148 

Some study (34) points out that the seeding of the virus likely occurred in the US between 25 December 149 

2019 and 15 January 2020, thus we set the starting date of the simulation to be 1 January 2020 for a better 150 

fitting, and simulate the epidemic based on the real-time responses by the government. Before the state 151 

governor declared a state of emergency in New York State on 7 March, we assume the residents have 152 

already had a certain degree of awareness of the COVID-19, and thus the contact intensities at schools, 153 

workplaces, and public facilities were reduced by 20%. Between the emergency declaration and the state-154 

wide stay-at-home order (7 March to 22 March), the awareness of precaution has been elevated to reduce 155 

the contact intensity at workplaces, schools, and public facilities by 50%. After the state-at-home order 156 

was put in place, the city was at a full lockdown status (6), so we set the decay factor of the contact 157 

intensity at schools to 0 and further reduce the contact intensities at workplaces and the public facilities to 158 

30% of the normal situation. To model the four reopening phases (35) implemented on 8 June, 22 June, 6 159 

July, and 20 July, respectively, we assume the contact intensities at both the workplaces and public 160 

facilities increase by 5% at each phase. In addition, we simulate the scenario in which NYC has a larger-161 

scale reopen back to the situation before the state-at-home order (50% for all locations except household) 162 

on 1 September. The decay factor of contacts in households is set to 1 over the course of the epidemic.  163 

 164 

We investigate five common NPIs: theoretical no intervention, school closure, social distancing for the 165 

entire population, social distancing for the elderly (age > 64 years) (36), and adaptive policy proposed by 166 

Ferguson et al. (37). In the adaptive policy, a stringent control measure (full lockdown) is triggered when 167 

certain conditions are met. Here we assume that the condition is the number of daily new severely 168 

infected cases is over 𝑁. We examined two values of 𝑁 (100 and 150) for the robustness of results. The 169 

details of the decay factor setting for each NPIs are shown in Table 3. We assume the NPIs were 170 

implemented through the whole course of the epidemic simulation. 171 

  172 
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Table 3. Summary of NPIs considered. 173 

NPIs Description 

Theoretical no intervention 𝑀 = 𝑀𝐻 + 𝑀𝑊 + 𝑀𝑆 + 𝑀𝑃 

School closure 𝑀 = 𝑀𝐻 + 𝑀𝑊 + 0 × 𝑀𝑆 + 𝑀𝑃 

Social distancing for the entire 

population 
𝑀 = 𝑀𝐻 + 0.5𝑀𝑊 + 0.5𝑀𝑆 + 0.5𝑀𝑃 

The social distancing for the 

elderly (age > 64 years) 

𝑀 = 𝑀𝐻 + 𝑤𝐸𝑀𝑊 + 𝑤𝐸𝑀𝑆 + 𝑤𝐸𝑀𝑃 

𝑤𝐸 =

[
 
 
 
 
 
 
1 0 0 ⋯ 0 0 0
0 1 0 ⋯ 0 0 0
0 0 ⋮ ⋯ ⋮ 0 0
0 0 0 ⋯ 0 ⋮ 0
0 0 0 ⋯ 0.5 0 ⋮
⋮ ⋮ ⋮ ⋯ 0 0.5 0
0 0 0 ⋯ 0 0 0.5]

 
 
 
 
 
 

 

Adaptive policy 

𝑀 = 𝑀𝐻 + 0 × 𝑀𝑊 + 0 × 𝑀𝑆 + 0.1𝑀𝑃 

𝑖𝑓 𝑁𝑠 > 100 (150) where 𝑁𝑠 denotes the number of new 

severe infections per day 

 174 

Identifying Effective NPIs Considering Social Disruption 175 

The objective of NPIs should not be limited to reducing infections without the consideration of social 176 

disruption. First, we measure the social disruption caused by the NPIs at the four locations. Here, the 177 

social disruption at a location is measured as (1 − 𝑤)𝑀 × 𝑠, which is the product of the reduced amount 178 

of contacts (1 − 𝑤)𝑀 and the relative importance of these contacts 𝑠 . Thus, the total social disruption 𝐿 179 

caused by the NPIs can be represented as follows, 180 

𝐿 = 𝑠𝑆(1 − 𝑤𝑆)𝑀𝑆 + 𝑠𝐻(1 − 𝑤𝐻)𝑀𝐻 + 𝑠𝑊(1 − 𝑤𝑊)𝑀𝑊 + 𝑠𝑃(1 − 𝑤𝑃)𝑀𝑃. (12) 181 

 182 

Second, we aim to identify the NPIs that reduce the social disruption 𝐿 as much as possible under the 183 

condition that the COVID-19 epidemic does not exceed that of the actual NPIs implemented in NYC. 184 

Specifically, we consider three measures of the COVID-19 epidemic: the number of all infections, the 185 

number of severe infections, and the number of deceased cases as of 31 December 2020, respectively.  186 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 3, 2020. ; https://doi.org/10.1101/2020.12.01.20242347doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.01.20242347
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

It is challenging to quantify the relative importance of the activities at different locations in a very 187 

detailed manner. In this study, we make the following intuitive assumptions about relative importance: 188 

workplaces have the highest importance, 𝑠𝑊 = 1; public facilities has the second highest importance, 189 

𝑠𝑃 = 0.5; households and schools have the lowest importance, 𝑠𝐻 = 𝑠𝑆 = 0.2. Here, we set low 190 

importance for school thanks to the availability of online schooling. We also consider the simplified 191 

scenario in which the relative importance of all locations is identical. Therefore, in total, we consider 192 

three distinct measures of the COVID-19 epidemic and two assumptions about the relative importance of 193 

locations, so in total, we consider six scenarios, as illustrated by Table 4.  194 

 195 

For intuitive interpretation and simple implementation, we discretize the continuous value of the decay 196 

factors into 11 discrete values with equal intervals, 0, 0.1, 0.2, …, 0.9, 1.0. We set the minimal decay 197 

factor of the contacts at the public facilities to 0.1 as it is unrealistic to shut down all public facilities. In 198 

addition, we assume that 𝑤𝐻 = 1, because there is little we can do for the contacts within households. In 199 

this way, the total number of solutions is restricted to 11 × 11 × 10 × 1 = 1210 for each of the six 200 

scenarios, and an exhaustive search can be used to identify the best NPIs for a certain scenario. 201 

 202 

  203 
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Results  204 

Fit the Model from Data 205 

Figure 3 presents the comparison of the simulation results of the proposed A-SEIRD model and the 206 

number of confirmed cases in NYC (27). Note that the simulation of the A-SEIRD model obtains the 207 

onset of COVID-19. The actual confirmation of COVID-19 infection usually has a six-days-delay (38). 208 

Thus, we incorporated the six-days-delay in presenting the simulation results in Figure 3. In general, the 209 

simulation results (blue curve) capture the trend of the confirmed case data (black bars). The simulated 210 

curve is higher than the confirmed curve, which is common given the wide existence of undiagnosed 211 

cases (39). The implementations of the control measures are represented by the red lines, and the four-212 

phases reopening policies are represented by the brown bars. The effects of control measures became 213 

obvious with a lag of several weeks, due to the incubation period of the disease. Additionally, the 214 

reopening slowed down the decreasing trend. 215 

 216 

 217 

Figure. 3: Comparison of our simulation results with the official confirmed case report.  218 

(A) The number of new mild and severe infections. (B) The number of new severe infections. (C) The 219 

number of new deceased cases. The blue curve and black bars represent the simulated results and the 220 

confirmed cases, respectively. The red vertical lines and brown bars indicate the control measures and 221 

four reopening phases put in place in NYC. 222 

 223 

Quantify the Effectiveness of NPIs 224 

We present the simulated epidemic sizes with the five common NPIs in Figure 4. Without any control, we 225 

would expect a peak of asymptomatic and mild infections in early April. The peak of severe infections 226 

occurs two-week later due to disease progression. In such a case, 70% (IQR 60-77) of NYC residents 227 

would be infected by the end of 2020. The peak of deceased cases is around early May. Comparing the 228 

case with actual NPIs and theoretical no intervention scenario, we observe a 72% (IQR 53-95) decline in 229 
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the total number of infections and a 76% (IQR 58-96) decline in the number of deceased cases. The 230 

effects of each NPIs vary across age categories. More specifically, school closure is effective: the total 231 

infections and deceased cases are nearly the same as the results of those without any control (theoretical 232 

no intervention). School closure slightly reduces (4% (IQR 3-7)) the number of infections among young 233 

people (< 25 years), who are not the most vulnerable. On the other hand, the social distancing for the 234 

entire population effectively reduces 47% (IQR 33-84) of infections and 51% (IQR 39-86) deceased 235 

cases. In addition, social distancing for the elderly could reduce 47% (IQR 46-56) of total infections and 236 

47% (IQR 46-48) deceased cases in the elderly groups (> 64 years), but not so much for other age groups. 237 

 238 

Figure. 4: The effects of different NPIs on cumulative cases and new cases per day among age 239 

groups. 240 

The effects of different NPIs on the cumulative incidence and the number of new cases per day for all are 241 

presented in A and B, respectively. The shaded areas around the coloured lines in panel A represent the 242 
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IQR. The effects of different NPIs on the number of new cases per day for three age groups: the young 243 

groups who aged <25 years (C, D, and E), the middle-aged groups who aged 25 to 64 years (F, G, and 244 

H), the elderly groups who aged > 64 years (I, J, and K).  245 

 246 

We also examined the effectiveness of the adaptive policy, which naturally forms an oscillation curve as 247 

shown in Figure 5. The grey blocks represent the periods with stringent strategies (“full lockdown”). We 248 

adopt two variants of the adaptive policy from Ferguson et al. (37), “100-severe” (with 100 new severe 249 

infections per day as the threshold to trigger the control), and “150-severe” (with 150 as the threshold). 250 

Results show that both adaptive policies can reduce the total number of infections and the number of 251 

severe infections well. However, the triggered time period of the control is too long, and the interval is 252 

only around six days. In practice, such frequent switches between different policies are not realistic. 253 

 254 

 255 

Figure. 5: Effects of the two adaptive policies.  256 

(A) “150-severe” adaptive policy. (B) “100-severe” adaptive policy. The blue, orange, and green lines 257 

denote the number of new cases per day at all age groups considering the number of asymptomatic, mild, 258 

severe infections and deceased cases, respectively. The grey blocks represent the periods with suppression 259 

strategies (“full lockdown”). 260 

 261 

Identify the Best NPIs 262 

We derive the best NPIs by exhaustively examining all the possible 1210 solutions for each of the six 263 

scenarios introduced in Methods. All scenarios lead to similar NPIs: to reduce the contact intensity at 264 

public facilities (social distancing for the entire population) while largely maintaining the function of 265 

schools and workplaces. This indicates that, although school closure is associated with lower social 266 
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disruption, the model still prefers to sacrifice the contact at public facilities because it is associated with 267 

higher risk by mixing various age groups in the city. 268 

 269 

Table 4. Effective NPIs for each of the six scenarios. 270 

Scenario Social function score weights Status Results 

TOI 𝑠𝑆 = 𝑠𝐻 = 𝑠𝑊 = 𝑠𝑃 = 1 𝐼𝑎𝑠 + 𝐼𝑚 + 𝐼𝑠 𝑀 = 𝑀𝐻 + 0.8𝑀𝑊 + 𝑀𝑆 + 0.1𝑀𝑃 

SOI 𝑠𝑆 = 𝑠𝐻 = 𝑠𝑊 = 𝑠𝑃 = 1 𝐼𝑠 𝑀 = 𝑀𝐻 + 0.8𝑀𝑊 + 𝑀𝑆 + 0.1𝑀𝑃 

DOI 𝑠𝑆 = 𝑠𝐻 = 𝑠𝑊 = 𝑠𝑃 = 1 𝐷 𝑀 = 𝑀𝐻 + 0.7𝑀𝑊 + 𝑀𝑆 + 0.1𝑀𝑃 

TOA 𝑠𝑆 = 𝑠𝐻 = 0.2, 𝑠𝑃 = 0.5, 𝑠𝑊 = 1 𝐼𝑎𝑠 + 𝐼𝑚 + 𝐼𝑠 𝑀 = 𝑀𝐻 + 0.8𝑀𝑊 + 𝑀𝑆 + 0.1𝑀𝑃 

SOA 𝑠𝑆 = 𝑠𝐻 = 0.2, 𝑠𝑃 = 0.5, 𝑠𝑊 = 1 𝐼𝑠 𝑀 = 𝑀𝐻 + 0.8𝑀𝑊 + 0.9𝑀𝑆 + 0.1𝑀𝑃 

DOA 𝑠𝑆 = 𝑠𝐻 = 0.2, 𝑠𝑃 = 0.5, 𝑠𝑊 = 1 𝐷 𝑀 = 𝑀𝐻 + 0.8𝑀𝑊 + 𝑀𝑆 + 0.1𝑀𝑃 

TOI, SOI, DOI stands for identity relative importance of the activities at different locations under three 271 

measures of the COVID-19 epidemic: the number of all infections, severe infections, and deceased cases 272 

individually. TOA, SOA, DOA stands for intuitive assumptions of the relative importance of the contacts 273 

at different locations under three measures of the COVID-19 epidemic: the number of all infections, 274 

severe infections, and deceased cases individually. 275 

  276 
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Discussion  277 

Since most COVID-19 infections appear to have mild or moderate symptoms that can heal themselves 278 

and there are many asymptomatic cases (15), it is critical to reduce the number of severely infected and 279 

deceased cases rather than only flattening the total epidemic curve. In this study, we expanded the age-280 

specific SEIR model to develop a new A-SEIRD model that considers the asymptomatic infections of 281 

COVID-19 and evaluated the effectiveness of various NPIs in NYC. We found that not all the NPIs were 282 

effective, and the social distancing at the public facilities are essential for reducing the number of severe 283 

infections and deaths. 284 

 285 

Counterintuitively, we find that nearly all the countries decided to close the schools, while our model 286 

shows that it is not that effective in controlling the epidemic. As shown in Figure 4, school closure would 287 

only slightly reduce the number of total infections compared to the extreme theoretical no intervention 288 

policy. As shown in Figure 1. It is obvious that the contacts in schools concentrated on the young 289 

population (age <25 years) who make up only a small fraction of the vulnerable population. Meanwhile, 290 

the contacts among the young population are also very active in households and public facilities. Thus, 291 

school closure alone may not work as effectively as one would have expected. A recent systematic review 292 

(40) also concluded that there are no data on the relative contribution of school closures to transmission 293 

control and some modelling studies proved that school closure would prevent only 2-4% deceased cases 294 

(37). At the same time, school closure would bring more pressure on the medical system since many 295 

healthcare workers would be distracted to take care of their children. Jude et al.’s modelling analysis 296 

found that 28·8% (95% CI 28·5–29·1) of the health-care workforce need to provide care for children aged 297 

3–12 years (14). A trade-off needs to be taken into consideration while making the school closure 298 

decision. 299 

 300 

Compared with the social distancing only for the elderly, social distancing for the entire population comes 301 

with greater social disruption. Thunström et al. (41) found that the cost of social distancing measures is 302 

$7.21 trillion in the USA utilized epidemiological and economic forecasting. Although the social 303 

distancing for the elderly would not significantly reduce the total number of infections, it can effectively 304 

reduce the number of deceased cases. These results reflect the clinical characteristics of COVID-19: high 305 

transmissibility but a high mortality rate only among the elderly (42, 43). That is why the social 306 

distancing for the elderly policy has already been adopted in many countries (44).  307 

 308 

NPIs lead to social disruptions. We used the proposed A-SEIRD model to identify the NPIs that flatten 309 

the curve with minimal social disruptions. We found that the social distancing at public facilities could 310 
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effectively reduce the number of infections and the number of deaths. As shown in Figure 1, the contacts 311 

of the elderly are concentrated in public facilities and households. Although it is difficult to shut down all 312 

the public facilities, we suggest that the social distancing for the elderly only at the public facilities would 313 

be an effective and practical way to reduce the number of deceased cases without large-scale social 314 

disruption. In practice, the protection of the elderly in public areas has already been adopted, such as 315 

cresting flow to make room for the elderly in the supermarket.  316 

 317 

Apparently, it is not practical to implement the NPIs for a long period, because the social disruption could 318 

lead to enormous economic loss, which may, in turn, cause other public health problems. Here, we 319 

simulated the ongoing process when relaxing at the beginning of July, August, September, and October as 320 

shown in Figure 6. Our model suggests that relaxation after the peak of the outbreak would cause an 321 

instant rebound. At the same time, it can be observed that the later relaxing implemented, the smaller the 322 

rebound size is. Thus, the resumption of work and production shall be carefully taken place. The adaptive 323 

policy, which seems to work in controlling the epidemic size, but leads to unrealistically frequent 324 

switches between lockdown and relaxation, making it difficult to be realized (Figure 5). 325 

 326 

 327 
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Fig. 6: The impacts of policy relaxations in July, August, September, and October.  328 

The lines denote the number of new cases. The colours of the lines represent the results of different 329 

policies: the simulation of actual NPIs (relax in September) (red), relax in July (blue), August (orange), 330 

and October (green). 331 

 332 

In conclusion, our study proposed a comprehensive mathematical model that takes into account both the 333 

age-specific contacts between people, the latest epidemiological parameters of the COVID-19, and the 334 

social disruption. The simulation results provide novel insights into the implementation of NPIs with 335 

minimal social disruption. We call for more research on the trade-off between epidemic control and 336 

economic loss.  337 
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