1 The impact of non-pharmaceutical interventions on the prevention

2 and control of COVID-19 in New York City

- 3 Jiannan Yang¹, Qingpeng Zhang¹, Zhidong Cao^{2,3,4}, Jianxi Gao⁵, Dirk Pfeiffer⁶, Lu Zhong⁷, Daniel Dajun
- 4 Zeng^{2,3,4}
- 5
- 6 1. School of Data Science, City University of Hong Kong, Hong Kong, China.
- 7 2. The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation,
- 8 Chinese Academy of Sciences, Beijing, China.
- 9 3. School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.
- 10 4. Shenzhen Artificial Intelligence and Data Science Institute (Longhua), Shenzhen, China.
- 11 5. Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, USA.
- 12 6. Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong,
- 13 China.
- 7. Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute,
 Troy, NY, USA.
- 16
- 17 Correspondence to: Qingpeng Zhang (<u>qingpeng.zhang@cityu.edu.hk</u>), Daniel Dajun Zeng
- 18 (<u>dajun.zeng@ia.ac.cn</u>)
- 19

20 Abstract

21 The emergence of coronavirus disease 2019 (COVID-19) has infected more than 37 million people

- 22 worldwide. The control responses varied across countries with different outcomes in terms of epidemic
- 23 size and social disruption. In this study, we presented an age-specific susceptible-exposed-infected-
- 24 recovery-death model that considers the unique characteristics of COVID-19 to examine the effectiveness
- of various non-pharmaceutical interventions (NPIs) in New York City (NYC). Numerical experiments
- from our model show that the control policies implemented in NYC reduced the number of infections by
- 27 72% (IQR 53-95), and the number of deceased cases by 76% (IQR 58-96) by the end of 2020,
- respectively. Among all the NPIs, social distancing for the entire population and the protection for the
- 29 elderly in the public facilities is the most effective control measure in reducing severe infections and
- 30 deceased cases. School closure policy may not work as effectively as one might expect in terms of
- reducing the number of deceased cases. Our simulation results provide novel insights into the city-
- 32 specific implementation of NPIs with minimal social disruption considering the locations and population
- 33 characteristics.

34 Keywords

35 SARS–CoV-2, mathematical model, non-pharmaceutical interventions

36 Introduction

37 The outbreak of coronavirus disease 2019 (COVID-19) has become a global pandemic with unanticipated consequences to the global community. As of 13 October 2020, severe acute syndrome coronavirus 2 38 (SARS-CoV-2), the cause of COVID-19, has infected more than 37 million people and resulted in more 39 than 1 million deaths (1). A variety of non-pharmaceutical interventions (NPIs) were introduced to reduce 40 41 the transmission by lowering contact intensity at different locations (2), such as school closure, workplace 42 shutdown, and the closure of bars, churches, and other public facilities, which has been shown to be successful in China (3), South Korea (4), and other countries (5). The NPIs, such as city-wide school 43 closures, were implemented as part of its State of Emergency plan (6) in New York City (NYC) that has 44 been identified as a major epicenter with over 258,000 cases and 23,915 confirmed deaths (7). However, 45 46 the effectiveness of these NPIs remains unclear, promoting a critical need to evaluate them and to derive more effective NPIs with the consideration of social disruption. 47

- 49 Increasing evidence shows that the demographic structure and age-specific contacts at different locations
- 50 play an essential role in the COVID-19 epidemic, as well as the effectiveness of varying NPIs (8-12). For
- 51 instance, school closure is useful in controlling the infections among the young people (13, 14), who tend

52 to have mild or moderate symptoms and usually can recover without treatment. On the other hand, severe

and deceased cases are often among the elderly and those with comorbidities (15). According to the data

from the CDC of the US, 79.2% of death in the US are the population whose age is over 64. (16) Existing

55 studies (17, 18) addressed this problem by dividing the population into several age groups and defining

the social contacts at different locations. However, utilizing these unique epidemiological characteristics

57 to reduce the total number of infections and the severe and deceased cases and the social disruption is

58 under-researched.

59

60 In this article, we develop a novel age-specific susceptible-exposed-infected-recovery-death (A-SEIRD)

61 model (19, 20) to examine the effect of a set of common NPIs on reducing the total number of infections

62 and the severe and deceased cases. More importantly, we obtain the NPIs that can contain the epidemic

63 with minimal social disruption by quantitatively examining all possible NPIs. The latest epidemiological

64 parameters (21, 22) of COVID-19 were adopted by the A-SEIRD model.

66 Methods

67 Adjusted Contact Matrix and Transmission Rate

- 68 The contact patterns vary across locations. Previous studies (17, 18) divide the contact intensity into four
- 69 locations within a city: households, workplaces, schools, and public facilities represented as C^{H} , C^{W} , C^{S} ,
- and C^P individually. Note here the original contact matrix C is estimated by survey data achieved in 2008
- 71 (17). To get the updated contact matrix, we adjust the original contact matrix C by the latest population
- 72 structure that refers to the age distribution which is assumed to be static during the simulation period for
- the same city. We divide the total population of a city into 17 age groups including 16 groups with a 5-
- year band between birth and 80-year-old, and the 17th group representing aged >80. The adjusted contact
- intensity (M_{ij}) of age group j made by age group i is obtained by taking the product of C_{ij} and the ratio of
- the current population sizes of age group $i(p_i)$ and age group $j(p_i)$ as follows:

$$M_{ij} = C_{ij} \times \frac{P_i}{p_i},\tag{1}$$

78 The overall social mixing pattern is defined as the weighted sum of the adjusted contact matrix across the79 four locations,

 $M = w^{H} M^{H} + w^{W} M^{W} + w^{S} M^{S} + w^{P} M^{P},$ (2)

81 where w^H , w^W , w^S , w^P are the location-specific decay factors compared to the normal situation ($w^H = w^W = w^S = w^P = 1$) and the effects of different NPIs are reflected by the reduction of these decay 83 factors. The contact matrixes of the four locations under the normal situation are shown in Figure 1. 84

86 Figure. 1: Age-specific and location-specific contact intensities under normal situation for NYC.

(A), (B), (C), and (D) denote the contact intensity among all the 17 age groups, respectively. The grid in
each panel represents the mean number of contact per day. The colour change denotes the value change:

89 more blue, more contacts.

90

85

91 The transmission rate β varies with NPIs shown on the overall adjusted social mixing pattern M.

92 Following Prem et al. (17) we projected the adjusted contact matrix with the basic reproduction number to

93 the transmission rate as follows:

$$det(M - \lambda I) = 0, \tag{3}$$

94 95

$$\beta = \frac{R_0}{\max(\lambda) \times d_I},\tag{4}$$

96 where R_0 is the basic reproduction number and d_1 is the average length of the infectious period.

97

98 The A-SEIRD Model

99 The proposed A-SEIRD model is based on the classic SEIR model (19, 20). In the classic SEIR model,

100 the population is divided into four groups according to the infection status: susceptible (S), exposed (E),

infected (*I*), and recovery (*E*). Based on the evidence of the asymptomatic infections of COVID-19 (23,

102 24), we add three new statuses for the infected individuals: asymptomatically infected (I^{as}) , mildly

103 infected (I^m) and severely infected (I^s) . Susceptible individuals may become exposed after contacting

104 infected ones. Exposed individuals may become either mildly infected or asymptomatically infected. We

assume that the deceased cases come from both mild and severe infections, and all asymptomatically

106 infected individuals will recover. The model structure is presented in Figure 2.

107

108

109 Figure. 2: The proposed age-specific SEIRD model.

110

111 Considering the huge drop in human movement between cities (25), we assume that NYC is a closed

system throughout the course of the epidemic (from 1 Jan 2020 to 31 Dec 2020) and initially there are

113 1,000 infected individuals for simplicity. The initially infected individuals are distributed in different age

groups with the same proportion (0.016%). The epidemic parameters are age-dependent, such as the elder

individuals have a higher severe rate and death rate than the youth (22).

116 For a given age group *i*, the epidemic transitions can be described by

117
$$\frac{dS_i}{dt} = -\sum_{j=1}^n \beta M_{ij} \frac{I_j^m}{N_j} S_i - \sum_{j=1}^n \alpha \beta M_{ij} \frac{I_j^{as}}{N_j} S_i,$$
(5)

118
$$\frac{dE_i}{dt} = \sum_{j=1}^{n} \beta M_{ij} \frac{l_j^m}{N_j} S_i + \sum_{j=1}^{n} \alpha \beta M_{ij} \frac{l_j^{as}}{N_j} S_i - \sigma_i E_i,$$
(6)

$$\frac{dI_i^{as}}{dt} = \rho_i \cdot \sigma_i E_i - \gamma_i^{as} I_i^{as},\tag{7}$$

120
$$\frac{dI_i^m}{dt} = (1 - \rho_i)\sigma_i E_i - \gamma_i^m (1 - \mu_i - \kappa_i^m) I_i^m - \mu_i I_i^m - \kappa_i^m I_i^m,$$
(8)

121
$$\frac{dI_i^s}{dt} = \mu_i I_i^m - \gamma_i^s \cdot (1 - \kappa_i^s) I_i^s - \kappa_i^s I_i^s, \tag{9}$$

122
$$\frac{dR_i}{dt} = \gamma_i^{as} I_i^{as} + \gamma_i^m (1 - \mu_i - \kappa_i^m) I_i^m + \gamma_i^s \cdot (1 - \kappa_i^s) I_i^s, \qquad (10)$$

123
$$\frac{dD_i}{dt} = \kappa_i^m I_i^m + \kappa_i^s I_i^s, \tag{11}$$

124 where $S_i, E_i, I_i^{as}, I_i^m, I_i^s, R_i$, and D_i denote the number of susceptible, latent, asymptomatic infectious, mild infectious, severe infectious, recovery, and deceased individuals at age group i, respectively. N_i is 125 the number of individuals in age group *j*. β is the transmission rate that differs by the contact intensity 126 127 and population structure and α is the proportion of the transmission rate of the asymptomatic infections 128 over that of the mild infections (26). Note that here we assume the severe infections will not spread the 129 virus due to their limited mobility (usually isolated in hospital). M_{ij} denotes the total contact intensity of age group j made by age group i. For individuals in the age group i, $\rho_i = I_i^{as}/(I_i^{as} + I_i^m)$ is the estimated 130 fraction of asymptomatic cases among both asymptomatic and mild infections; $\sigma_i = 1/d_L$ is the daily 131 probability that an exposed individual becomes infectious (either asymptomatic or mild) where d_L is the 132 average latent period; γ_i^{as} , γ_i^{m} , and γ_i^{s} are the daily recovery probability for the asymptomatic, mild, and 133 severe infections, respectively. They are related to specific disease period: $\gamma_i^{as} = 1/d_I$, $\gamma_i^m = 1/d_m$, 134 $\gamma_i^s = 1/d_s$, where d_l , d_m , d_s are the infectious period, mild duration, and severe duration generated from 135 literature, respectively. μ_i is the daily probability of hospitalisation that a mildly infected patient becomes 136 severely infected. $\kappa_i^m = \kappa_i^s = \psi_i/d_d$ is the daily crude mortality rate, where ψ_i is the crude mortality rate 137 and d_d is the period from the symptom onset to death. The crude mortality rate ψ_i is estimated from the 138 139 official confirmed case report (27) which equals the proportion of the number of deceased individuals to 140 the infected individuals within one age group. The parameters used in the model from literature are 141 presented in Table 1 and Table 2.

142

119

143 Table 1. The parameters used in the model from the literature.

Parameters	Value	Reference
------------	-------	-----------

Basic reproduction number R_0	2.0 (1.3-2.6)*	Riou and Althaus (21)
Mean latent (incubation) period d_L	6.0 days	Li et al.(28)
Mean infectious period d_I	4.6 days	Moghadas et al. (29)
The proportion of the transmission rate of the asymptomatic infections over that of the mild infections α	1.0 for all ages	Assumption
The fraction of asymptomatic cases among both asymptomatic and mild infections ρ_i	0.4 for all ages	Nishiura et al. (30)
Mild duration d_m	10 days for all age groups	Wang et al. (31)
Severe duration d_s	16.25 days for all ages	Moghadas et al. (29)
The period from symptom onset to death d_d	10 days for all ages	Yang et al. (32)

144 *Data are median (IQR).

146 Table 2. The age-specific parameters used in the model from the literature.

Description	0-19	19-44	45-65	65-75	75+	Reference
Daily probability of hospitalisation µ	0.0250	0.0320	0.0320	0.6400	0.6400	Moghadas et al. (29) and WHO-China Joint Mission Report (33)
Crude mortality rate ψ	0.0215	0.0782	0.2257	0.4600	0.6085	Estimated from official confirmed case report (27)

¹⁴⁵

148 Non-Pharmaceutical Intervention Scenarios

149 Some study (34) points out that the seeding of the virus likely occurred in the US between 25 December 150 2019 and 15 January 2020, thus we set the starting date of the simulation to be 1 January 2020 for a better 151 fitting, and simulate the epidemic based on the real-time responses by the government. Before the state 152 governor declared a state of emergency in New York State on 7 March, we assume the residents have 153 already had a certain degree of awareness of the COVID-19, and thus the contact intensities at schools, 154 workplaces, and public facilities were reduced by 20%. Between the emergency declaration and the state-155 wide stay-at-home order (7 March to 22 March), the awareness of precaution has been elevated to reduce the contact intensity at workplaces, schools, and public facilities by 50%. After the state-at-home order 156 157 was put in place, the city was at a full lockdown status (6), so we set the decay factor of the contact 158 intensity at schools to 0 and further reduce the contact intensities at workplaces and the public facilities to 159 30% of the normal situation. To model the four reopening phases (35) implemented on 8 June, 22 June, 6 160 July, and 20 July, respectively, we assume the contact intensities at both the workplaces and public 161 facilities increase by 5% at each phase. In addition, we simulate the scenario in which NYC has a larger-162 scale reopen back to the situation before the state-at-home order (50% for all locations except household) 163 on 1 September. The decay factor of contacts in households is set to 1 over the course of the epidemic. 164

165 We investigate five common NPIs: theoretical no intervention, school closure, social distancing for the

entire population, social distancing for the elderly (age > 64 years) (36), and adaptive policy proposed by
Ferguson et al. (37). In the adaptive policy, a stringent control measure (full lockdown) is triggered when

168 certain conditions are met. Here we assume that the condition is the number of daily new severely

169 infected cases is over N. We examined two values of N (100 and 150) for the robustness of results. The

details of the decay factor setting for each NPIs are shown in Table 3. We assume the NPIs were

171 implemented through the whole course of the epidemic simulation.

173 Table 3. Summary of NPIs considered.

NPIs	Description		
Theoretical no intervention	$M = M^H + M^W + M^S + M^P$		
School closure	$M = M^H + M^W + 0 \times M^S + M^P$		
Social distancing for the entire population	$M = M^H + 0.5M^W + 0.5M^S + 0.5M^P$		
The social distancing for the elderly (age > 64 years)	$M = M^{H} + w^{E}M^{W} + w^{E}M^{S} + w^{E}M^{P}$ $w^{E} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \cdots & 0 & 0 & 0.5 \end{bmatrix}$		
Adaptive policy	$M = M^{H} + 0 \times M^{W} + 0 \times M^{S} + 0.1M^{P}$ <i>if</i> N _s > 100 (150) where N _s denotes the number of new severe infections per day		

174

175 Identifying Effective NPIs Considering Social Disruption

The objective of NPIs should not be limited to reducing infections without the consideration of social disruption. First, we measure the social disruption caused by the NPIs at the four locations. Here, the social disruption at a location is measured as $(1 - w)M \times s$, which is the product of the reduced amount of contacts (1 - w)M and the relative importance of these contacts *s*. Thus, the total social disruption *L* caused by the NPIs can be represented as follows,

181
$$L = s^{S}(1 - w^{S})M^{S} + s^{H}(1 - w^{H})M^{H} + s^{W}(1 - w^{W})M^{W} + s^{P}(1 - w^{P})M^{P}.$$
 (12)
182

183 Second, we aim to identify the NPIs that reduce the social disruption L as much as possible under the

184 condition that the COVID-19 epidemic does not exceed that of the actual NPIs implemented in NYC.

185 Specifically, we consider three measures of the COVID-19 epidemic: the number of all infections, the

number of severe infections, and the number of deceased cases as of 31 December 2020, respectively.

187 It is challenging to quantify the relative importance of the activities at different locations in a very

188 detailed manner. In this study, we make the following intuitive assumptions about relative importance:

- 189 workplaces have the highest importance, $s^W = 1$; public facilities has the second highest importance,
- 190 $s^P = 0.5$; households and schools have the lowest importance, $s^H = s^S = 0.2$. Here, we set low
- 191 importance for school thanks to the availability of online schooling. We also consider the simplified
- scenario in which the relative importance of all locations is identical. Therefore, in total, we consider
- 193 three distinct measures of the COVID-19 epidemic and two assumptions about the relative importance of
- locations, so in total, we consider six scenarios, as illustrated by Table 4.
- 195

196 For intuitive interpretation and simple implementation, we discretize the continuous value of the decay

- 197 factors into 11 discrete values with equal intervals, 0, 0.1, 0.2, ..., 0.9, 1.0. We set the minimal decay
- 198 factor of the contacts at the public facilities to 0.1 as it is unrealistic to shut down all public facilities. In
- addition, we assume that $w^H = 1$, because there is little we can do for the contacts within households. In
- 200 this way, the total number of solutions is restricted to $11 \times 11 \times 10 \times 1 = 1210$ for each of the six
- scenarios, and an exhaustive search can be used to identify the best NPIs for a certain scenario.

202

204 **Results**

205 Fit the Model from Data

206 Figure 3 presents the comparison of the simulation results of the proposed A-SEIRD model and the 207 number of confirmed cases in NYC (27). Note that the simulation of the A-SEIRD model obtains the 208 onset of COVID-19. The actual confirmation of COVID-19 infection usually has a six-days-delay (38). 209 Thus, we incorporated the six-days-delay in presenting the simulation results in Figure 3. In general, the 210 simulation results (blue curve) capture the trend of the confirmed case data (black bars). The simulated 211 curve is higher than the confirmed curve, which is common given the wide existence of undiagnosed 212 cases (39). The implementations of the control measures are represented by the red lines, and the four-213 phases reopening policies are represented by the brown bars. The effects of control measures became obvious with a lag of several weeks, due to the incubation period of the disease. Additionally, the 214 215 reopening slowed down the decreasing trend.

216

number of new deceased cases. The blue curve and black bars represent the simulated results and the
confirmed cases, respectively. The red vertical lines and brown bars indicate the control measures and
four reopening phases put in place in NYC.

223

217

224 Quantify the Effectiveness of NPIs

We present the simulated epidemic sizes with the five common NPIs in Figure 4. Without any control, we would expect a peak of asymptomatic and mild infections in early April. The peak of severe infections occurs two-week later due to disease progression. In such a case, 70% (IQR 60-77) of NYC residents would be infected by the end of 2020. The peak of deceased cases is around early May. Comparing the

case with actual NPIs and theoretical no intervention scenario, we observe a 72% (IQR 53-95) decline in

- the total number of infections and a 76% (IQR 58-96) decline in the number of deceased cases. The
- effects of each NPIs vary across age categories. More specifically, school closure is effective: the total
- infections and deceased cases are nearly the same as the results of those without any control (theoretical
- no intervention). School closure slightly reduces (4% (IQR 3-7)) the number of infections among young
- people (< 25 years), who are not the most vulnerable. On the other hand, the social distancing for the
- entire population effectively reduces 47% (IQR 33-84) of infections and 51% (IQR 39-86) deceased
- cases. In addition, social distancing for the elderly could reduce 47% (IQR 46-56) of total infections and
- 47% (IQR 46-48) deceased cases in the elderly groups (> 64 years), but not so much for other age groups.

Figure. 4: The effects of different NPIs on cumulative cases and new cases per day among age

240 groups.

241 The effects of different NPIs on the cumulative incidence and the number of new cases per day for all are

presented in A and B, respectively. The shaded areas around the coloured lines in panel A represent the

IQR. The effects of different NPIs on the number of new cases per day for three age groups: the young
groups who aged <25 years (C, D, and E), the middle-aged groups who aged 25 to 64 years (F, G, and

- **245 H**), the elderly groups who aged > 64 years (**I**, **J**, and **K**).
- 246

We also examined the effectiveness of the adaptive policy, which naturally forms an oscillation curve as shown in Figure 5. The grey blocks represent the periods with stringent strategies ("full lockdown"). We adopt two variants of the adaptive policy from Ferguson et al. (37), "100-severe" (with 100 new severe infections per day as the threshold to trigger the control), and "150-severe" (with 150 as the threshold). Results show that both adaptive policies can reduce the total number of infections and the number of severe infections well. However, the triggered time period of the control is too long, and the interval is only around six days. In practice, such frequent switches between different policies are not realistic.

255

256 Figure. 5: Effects of the two adaptive policies.

(A) "150-severe" adaptive policy. (B) "100-severe" adaptive policy. The blue, orange, and green lines
denote the number of new cases per day at all age groups considering the number of asymptomatic, mild,
severe infections and deceased cases, respectively. The grey blocks represent the periods with suppression
strategies ("full lockdown").

261

262 Identify the Best NPIs

263 We derive the best NPIs by exhaustively examining all the possible 1210 solutions for each of the six

scenarios introduced in Methods. All scenarios lead to similar NPIs: to reduce the contact intensity at

- 265 public facilities (social distancing for the entire population) while largely maintaining the function of
- schools and workplaces. This indicates that, although school closure is associated with lower social

- disruption, the model still prefers to sacrifice the contact at public facilities because it is associated with
- higher risk by mixing various age groups in the city.
- 269

Scenario	Social function score weights	Status	Results
TOI	$s^S = s^H = s^W = s^P = 1$	$I^{as} + I^m + I^s$	$M = M^H + 0.8M^W + M^S + 0.1M^P$
SOI	$s^S = s^H = s^W = s^P = 1$	Is	$M = M^H + 0.8M^W + M^S + 0.1M^P$
DOI	$s^S = s^H = s^W = s^P = 1$	D	$M = M^H + 0.7M^W + M^S + 0.1M^P$
TOA	$s^{S} = s^{H} = 0.2, s^{P} = 0.5, s^{W} = 1$	$I^{as} + I^m + I^s$	$M = M^H + 0.8M^W + M^S + 0.1M^P$
SOA	$s^{S} = s^{H} = 0.2, s^{P} = 0.5, s^{W} = 1$	Is	$M = M^H + 0.8M^W + 0.9M^S + 0.1M^P$
DOA	$s^{S} = s^{H} = 0.2, s^{P} = 0.5, s^{W} = 1$	D	$M = M^H + 0.8M^W + M^S + 0.1M^P$

270 Table 4. Effective NPIs for each of the six scenarios.

TOI, SOI, DOI stands for identity relative importance of the activities at different locations under three
measures of the COVID-19 epidemic: the number of all infections, severe infections, and deceased cases

273 individually. TOA, SOA, DOA stands for intuitive assumptions of the relative importance of the contacts

at different locations under three measures of the COVID-19 epidemic: the number of all infections,

severe infections, and deceased cases individually.

277 Discussion

Since most COVID-19 infections appear to have mild or moderate symptoms that can heal themselves and there are many asymptomatic cases (15), it is critical to reduce the number of severely infected and deceased cases rather than only flattening the total epidemic curve. In this study, we expanded the agespecific SEIR model to develop a new A-SEIRD model that considers the asymptomatic infections of COVID-19 and evaluated the effectiveness of various NPIs in NYC. We found that not all the NPIs were effective, and the social distancing at the public facilities are essential for reducing the number of severe infections and deaths.

285

286 Counterintuitively, we find that nearly all the countries decided to close the schools, while our model 287 shows that it is not that effective in controlling the epidemic. As shown in Figure 4, school closure would 288 only slightly reduce the number of total infections compared to the extreme theoretical no intervention 289 policy. As shown in Figure 1. It is obvious that the contacts in schools concentrated on the young 290 population (age <25 years) who make up only a small fraction of the vulnerable population. Meanwhile, 291 the contacts among the young population are also very active in households and public facilities. Thus, 292 school closure alone may not work as effectively as one would have expected. A recent systematic review 293 (40) also concluded that there are no data on the relative contribution of school closures to transmission 294 control and some modelling studies proved that school closure would prevent only 2-4% deceased cases 295 (37). At the same time, school closure would bring more pressure on the medical system since many healthcare workers would be distracted to take care of their children. Jude et al.'s modelling analysis 296 297 found that 28.8% (95% CI 28.5–29.1) of the health-care workforce need to provide care for children aged 298 3-12 years (14). A trade-off needs to be taken into consideration while making the school closure 299 decision.

300

Compared with the social distancing only for the elderly, social distancing for the entire population comes with greater social disruption. Thunström et al. (41) found that the cost of social distancing measures is \$7.21 trillion in the USA utilized epidemiological and economic forecasting. Although the social distancing for the elderly would not significantly reduce the total number of infections, it can effectively reduce the number of deceased cases. These results reflect the clinical characteristics of COVID-19: high transmissibility but a high mortality rate only among the elderly (42, 43). That is why the social distancing for the elderly policy has already been adopted in many countries (44).

NPIs lead to social disruptions. We used the proposed A-SEIRD model to identify the NPIs that flattenthe curve with minimal social disruptions. We found that the social distancing at public facilities could

effectively reduce the number of infections and the number of deaths. As shown in Figure 1, the contacts

- of the elderly are concentrated in public facilities and households. Although it is difficult to shut down all
- the public facilities, we suggest that the social distancing for the elderly only at the public facilities would
- be an effective and practical way to reduce the number of deceased cases without large-scale social
- disruption. In practice, the protection of the elderly in public areas has already been adopted, such as
- cresting flow to make room for the elderly in the supermarket.
- 317
- 318 Apparently, it is not practical to implement the NPIs for a long period, because the social disruption could
- lead to enormous economic loss, which may, in turn, cause other public health problems. Here, we
- simulated the ongoing process when relaxing at the beginning of July, August, September, and October as
- shown in Figure 6. Our model suggests that relaxation after the peak of the outbreak would cause an
- instant rebound. At the same time, it can be observed that the later relaxing implemented, the smaller the
- rebound size is. Thus, the resumption of work and production shall be carefully taken place. The adaptive
- 324 policy, which seems to work in controlling the epidemic size, but leads to unrealistically frequent
- switches between lockdown and relaxation, making it difficult to be realized (Figure 5).
- 326

328 Fig. 6: The impacts of policy relaxations in July, August, September, and October.

- 329 The lines denote the number of new cases. The colours of the lines represent the results of different
- policies: the simulation of actual NPIs (relax in September) (red), relax in July (blue), August (orange),
- and October (green).
- 332
- 333 In conclusion, our study proposed a comprehensive mathematical model that takes into account both the
- age-specific contacts between people, the latest epidemiological parameters of the COVID-19, and the
- social disruption. The simulation results provide novel insights into the implementation of NPIs with
- minimal social disruption. We call for more research on the trade-off between epidemic control and
- economic loss.

338 Code Availability

- 339 The source codes have been made available on Github: <u>https://github.com/JasonJYang/Age-specific-</u>
- 340 <u>SEIRD</u>.

341 Funding

- 342 This work was supported in part by grants from the National Natural Science Foundation of China
- **343** (72042018).

344 **References**

345	1. WHO. Coronavirus disease 2019 (COVID-19): Weekly Epidemiological Update.
346	https://www.who.int/publications/m/item/weekly-epidemiological-update24-november-2020.
347	Accseed November 30, 2020. 2020.
348	2. Anderson RM, Heesterbeek H, Klinkenberg D, Hollingsworth TD. How will country-
349	based mitigation measures influence the course of the COVID-19 epidemic? The Lancet.
350	2020;395(10228):931-4.
351	3. Chen S, Yang J, Yang W, Wang C, Bärnighausen T. COVID-19 control in China during
352	mass population movements at New Year. The Lancet. 2020;395(10226):764-6.
353	4. Shim E, Tariq A, Choi W, Lee Y, Chowell G. Transmission potential and severity of
354	COVID-19 in South Korea. Int J Infect Dis. 2020;93:339-44.
355	5. Cheng VCC, Wong SC, Chen JHK, Yip CCY, Chuang VWM, Tsang OTY, et al.
356	Escalating infection control response to the rapidly evolving epidemiology of the coronavirus
357	disease 2019 (COVID-19) due to SARS-CoV-2 in Hong Kong. Infect Control Hosp Epidemiol.
358	2020;41(5):493-8.
359	6. Cuomo GAM. Governor Cuomo Signs the 'New York State on PAUSE' Executive Order
360	https://www.governor.ny.gov/news/governor-cuomo-signs-new-york-state-pause-executive-
361	order. Accessed August 11, 2020. 2020.
362	7. Health. NYSDo. COVID-19 tracker. <u>https://covid19tracker.health.ny.gov/views/NYS-</u>
363	COVID19-Tracker/NYSDOHCOVID-19Tracker-
364	Map?%3Aembed=yes&%3Atoolbar=no&%3Atabs=n. Accessed November 30, 2020. 2020.
365	8. Prem K, Liu Y, Russell TW, Kucharski AJ, Eggo RM, Davies N, et al. The effect of
366	control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan,
367	China: a modelling study. The Lancet Public Health. 2020.
368	9. Davies NG, Klepac P, Liu Y, Prem K, Jit M, Eggo RM. Age-dependent effects in the
369	transmission and control of COVID-19 epidemics. Preprint at
370	https://www.medrxiv.org/content/10.1101/2020.03.24.20043018v2. medRxiv.
371	2020:2020.03.24.20043018.
372	10. Yin H, Liu Z, Kammen DM. Impacts of Early Interventions on the Age-Specific
373	Incidence of COVID-19 in New York, Los Angeles, Daegu and Nairobi. Preprint at
374	https://www.medrxiv.org/content/10.1101/2020.04.19.20071803v1. medRxiv.
375	2020:2020.04.19.20071803.
376	11. Liu Y, Gu Z, Xia S, Shi B, Zhou X-N, Shi Y, et al. What are the Underlying
377	Transmission Patterns of COVID-19 Outbreak?–An Age-specific Social Contact
378	Characterization. EClinicalMedicine. 2020:100354.

379 12. Santesmasses D, Castro JP, Zenin AA, Shindyapina AV, Gerashchenko MV, Zhang B, et 380 al. COVID-19 is an emergent disease of aging. Preprint at https://www.medrxiv.org/content/10.1101/2020.04.15.20060095v1. medRxiv. 381 382 2020:2020.04.15.20060095. 13. Earn DJ, He D, Loeb MB, Fonseca K, Lee BE, Dushoff J. Effects of school closure on 383 incidence of pandemic influenza in Alberta, Canada. Annals of internal medicine. 384 2012;156(3):173-81. 385 386 14. Bayham J, Fenichel EP. Impact of school closures for COVID-19 on the US health-care workforce and net mortality: a modelling study. The Lancet Public Health. 2020;5(5):e271-e8. 387 15. Epidemiology Working Group for NCIP Epidemic Response CCfDC, Prevention. The 388 epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) 389 in China. Chinese Journal of Epidemiology. 2020;41(02):145-51. 390 CDC-USA. CDC COVID Data Tracker. https://covid.cdc.gov/covid-data-391 16. tracker/#demographics. Accseed November 30, 2020. 2020. 392 17. Prem K, Cook AR, Jit M. Projecting social contact matrices in 152 countries using 393 contact surveys and demographic data. PLoS Comput Biol. 2017;13(9):e1005697. 394 395 18. Fumanelli L, Ajelli M, Manfredi P, Vespignani A, Merler S. Inferring the structure of social contacts from demographic data in the analysis of infectious diseases spread. PLoS 396 397 Comput Biol. 2012;8(9):e1002673. Klepac P, Caswell H. The stage-structured epidemic: linking disease and demography 398 19. with a multi-state matrix approach model. Theoretical Ecology. 2011;4(3):301-19. 399 Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and 400 20. international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. 401 402 The Lancet. 2020. 21. Riou J, Althaus CL. Pattern of early human-to-human transmission of Wuhan 2019 novel 403 404 coronavirus (2019-nCoV), December 2019 to January 2020. Eurosurveillance. 2020;25(4):2000058. 405 Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the 406 22. 407 severity of coronavirus disease 2019: a model-based analysis. The Lancet Infectious Diseases. 408 2020. Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic 409 23. proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise 410 411 ship, Yokohama, Japan, 2020. Eurosurveillance. 2020;25(10):2000180. Day M. Covid-19: four fifths of cases are asymptomatic, China figures indicate. British 412 24. Medical Journal Publishing Group; 2020. 413 Badr HS, Du H, Marshall M, Dong E, Squire MM, Gardner LM. Association between 414 25. mobility patterns and COVID-19 transmission in the USA: a mathematical modelling study. The 415 Lancet Infectious Diseases. 2020. 416 417 26. Liu Y, null n, Funk S, Flasche S. The contribution of pre-symptomatic infection to the transmission dynamics of COVID-2019 [version 1; peer review: 1 approved]. Wellcome Open 418 Research. 2020;5(58). 419 420 27. NYC-Government. COVID-19: Data. https://www1.nyc.gov/site/doh/covid/covid-19-421 data.page. Accessed November 30, 2020. 2020. Li O, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early Transmission Dynamics in 422 28. 423 Wuhan, China, of Novel Coronavirus–Infected Pneumonia. New England Journal of Medicine. 2020;382(13):1199-207. 424

- 425 29. Moghadas SM, Shoukat A, Fitzpatrick MC, Wells CR, Sah P, Pandey A, et al. Projecting
- hospital utilization during the COVID-19 outbreaks in the United States. Proc Natl Acad Sci U S
 A. 2020;117(16):9122-6.
- 428 30. Nishiura H, Kobayashi T, Miyama T, Suzuki A, Jung S, Hayashi K, et al. Estimation of 429 the asymptomatic ratio of novel coronavirus infections (COVID-19). Preprint at
- 429 the asymptomatic ratio of novel coronavirus infections (COVID-19). Freprint at 420 https://www.moderviv.org/content/10.1101/2020.02.02.20020248v2.modBviv
- 430 <u>https://www.medrxiv.org/content/10.1101/2020.02.03.20020248v2</u>. medRxiv.
- 431 2020:2020.02.03.20020248.
- 432 31. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138
- Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China.
 JAMA. 2020;323(11):1061-9.
- 435 32. Yang X, Yu Y, Xu J, Shu H, Liu H, Wu Y, et al. Clinical course and outcomes of
- 436 critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered,
- 437 retrospective, observational study. The Lancet Respiratory Medicine. 2020.
- 438 33. CHINA W. WHO&China. Report of the WHO-China Joint Mission on Coronavirus
 439 Disease 2019 (COVID-19). 2020.
- 440 34. Du Z, Javan E, Nugent C, Cowling BJ, Meyers LA. Using the COVID-19 to influenza
- ratio to estimate early pandemic spread in Wuhan, China and Seattle, US. EClinicalMedicine.2020:100479.
- 443 35. Stevens MGM. "What Are the Phases of New York's Reopening Plan?"
- 444 <u>https://www.nytimes.com/article/new-york-phase-reopening.html</u>. Accessed September 4, 2020.
- The New York Times 2020.
- 446 36. WHO. "WHO | Definition of an older or elderly person".
- 447 <u>https://www.who.int/healthinfo/survey/ageingdefnolder/en/</u>. Accessed September 4, 2020. 2011.
- Ferguson N, Laydon D, Nedjati Gilani G, Imai N, Ainslie K, Baguelin M, et al. Report 9:
 Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare
- 450 demand. 2020.
- 451 38. Bi Q, Wu Y, Mei S, Ye C, Zou X, Zhang Z, et al. Epidemiology and transmission of
- 452 COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective 453 cohort study. The Lancet Infectious Diseases. 2020;20(8):911-9.
- 454 39. Holmdahl I, Buckee C. Wrong but useful—what covid-19 epidemiologic models can and
 455 cannot tell us. New England Journal of Medicine. 2020.
- 456 40. Viner RM, Russell SJ, Croker H, Packer J, Ward J, Stansfield C, et al. School closure and
- 457 management practices during coronavirus outbreaks including COVID-19: a rapid systematic
- review. The Lancet Child & Adolescent Health. 2020;4(5):397-404.
- 459 41. Thunström L, Newbold SC, Finnoff D, Ashworth M, Shogren JF. The Benefits and Costs
- of Using Social Distancing to Flatten the Curve for COVID-19. Journal of Benefit-CostAnalysis. 2020;11(2):179-95.
- 462 42. Novel CPERE. The epidemiological characteristics of an outbreak of 2019 novel
- 463 coronavirus diseases (COVID-19) in China. Zhonghua liu xing bing xue za zhi= Zhonghua
 464 liuxingbingxue zazhi. 2020;41(2):145.
- 465 43. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected
- 466 with 2019 novel coronavirus in Wuhan, China. The lancet. 2020;395(10223):497-506.
- 467 44. BBC. Coronavirus: isolation for over-70s 'within weeks'.
- 468 <u>https://www.bbc.co.uk/news/uk-51895873</u>. Accessed August 8, 2020. 2020.
- 469