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Abstract

Evolutionary game theory mathematically conceptualizes and analyzes biological

interactions where one’s fitness not only depends on one’s own traits, but also on the

traits of others. Typically, the individuals are not overtly rational and do not select,

but rather inherit their traits. Cancer can be framed as such an evolutionary game,

as it is composed of cells of heterogeneous types undergoing frequency-dependent

selection. In this article, we first summarize existing works where evolutionary

game theory has been employed in modeling cancer and improving its treatment.

Some of these game-theoretic models suggest how one could anticipate and steer

cancer’s eco-evolutionary dynamics into states more desirable for the patient via

evolutionary therapies. Such therapies offer great promise for increasing patient

survival and decreasing drug toxicity, as demonstrated by some recent studies and
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clinical trials. We discuss clinical relevance of the existing game-theoretic models of

cancer and its treatment, and opportunities for future applications. Moreover, we

discuss the developments in cancer biology that are needed to better utilize the full

potential of game-theoretic models. Ultimately, we demonstrate that viewing tu-

mors with an evolutionary game theory approach has medically useful implications

that can inform and create a lockstep between empirical findings and mathematical

modeling. We suggest that cancer progression is an evolutionary game and needs

to be viewed as such.

Keywords: Evolutionary game theory, eco-evolutionary dynamics, Stackelberg

evolutionary games, competitive release, resistance, genetics

1. Introduction & Motivation

Cancer is a disease of unregulated proliferation, caused by abnormal function of

genes responsible for regulating cell division. The genesis of cancer has strong ties

to the human life history [6, 67, 90, 91, 174] and its progression is driven by natural

selection, characterized by cancer cells exhibiting the following three conditions [55]:

1. The presence of heritable variation: Heritable traits vary among different cancer

cells, ultimately as a result of genetic mutation.

2. A struggle for existence: There are limits to growth due to competition for limited

space and resources.

3. The influence of heritable variation on the struggle for existence: Generally, the

likelihood of cell survival depends on its own traits, and the traits of the others.

Cells with traits that confer higher chances of survival and proliferation will in

time increase in frequency (frequency-dependent selection) [90, 91].

This Darwinian view of cancer is in line with the premises of evolutionary game theory

(EGT), which assumes that evolution tests heritable traits in an ongoing competition

for survival [36, 97, 123, 124]. EGT is a branch of mathematics that has helped to

conceptualize and understand the behavior of real-world biological systems, including
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several counter-intuitive biological phenomena [88, 89, 124, 157, 177, 195] and is being

increasingly recognized as an important tool for mathematical oncologists [18, 149].

EGT deals with situations where organisms using different strategies and/or pos-

sessing different traits interact with each other. Unlike in classical game theory [135,

184, 185], these organisms do not need to be overtly rational, i.e., their strategies (often

referred to as “types”) are inherited rather than rationally chosen [35, 97] (although a

rational population-level interpretation of the dynamics is also possible [105]). Some

strategies might confer higher fitness and the individuals using these strategies will in

a long run dominate the population. Thus, if we see cancer as a Darwinian process,

it can be described as an evolutionary game, where cancer cells are the players, their

heritable traits correspond to the strategies, and the payoffs are represented in terms of

survival and proliferation (fitness) [36, 125]. This is a dynamic game, as one can ana-

lyze how frequencies of different strategies and numbers of individuals corresponding to

these different strategies change in time. We refer to those changes as evolutionary and

ecological dynamics, respectively. Both together are called eco-evolutionary dynamics.

Compared to other fields of applied mathematics, EGT of cancer is a relatively novel

field, just few decades old [119, 176]. Tomlinson (1997) was first to explicitly frame

cancer as an evolutionary game and since then at least 60 publications on cancer have

called their research game-theoretic. This body of literature has grown into diverse and

different groupings. Given that cancer is an evolutionary process, it has been suggested

that also cancer treatment could benefit from insights from evolutionary theory, giving

rise to Evolutionary or Darwinian medicine [74, 76, 80]. The increasing interest in

this field is reflected in the recent update of medical curricula to include evolutionary

reasoning [136]. Clearly, application of EGT can only improve cancer treatment if

there is something gained from these evolutionary insights. Standard of Care (SoC) in

treating cancer typically applies therapy at the Maximum Tolerable Dose (MTD), to

remove tumor cells as fast as possible. While for some aggressive cancers, such as, for

example, advanced Non-Small Cell Lung Cancer, no better treatment than MTD has

been found so far [20, 9, 19], it has been also observed that unless the patient cures, the

3

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 8, 2021. ; https://doi.org/10.1101/2020.12.02.20241703doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.02.20241703
http://creativecommons.org/licenses/by-nd/4.0/


MTD strategy promotes evolution of treatment-induced resistance which often leads

to treatment failure [73, 200, 159].

The fact that even personalized therapies tailored to the cancer’s genetic signa-

ture, and to the individual’s genetic disposition fail can be attributed to the extensive

adaptive potential of the human genome. As MTD can only eradicate therapy-sensitive

tumor cells, it may lead to the benefit of therapy-resistant cells [79, 142]. Subsequently,

growth-limiting constraints due to competition may temporarily vanish and increase

the per capita growth rate of the resistant types (competitive release [47, 65, 159, 198]).

In turn, some experiments show that when treatment is stalled (drug holiday), resis-

tant types are typically at a disadvantage (cost of resistance [163]; although this is not

universal [109]). This evidence suggests that MTD might be evolutionary unwise if it

promotes treatment-induced resistance in cancer cells. Additionally, there is evidence

for selection for evolvability in tumor cells, e.g., hyper-mutators [41]. Recent works

showed that a game-theoretic approach may help to provide an alternative to MTD,

based on anticipating and steering the cancer eco-evolutionary dynamics in response

to the treatment [85, 160].

The aims of this paper are the following: (i) to discuss the achievements of the

existing works on game theory of cancer and (ii) to show the future potential of game

theory to understand cancer mechanisms, inspire novel research, and design better

treatment protocols.

In the remainder of this paper, we will firstly introduce models where the interac-

tion among cells is explicitly framed as an evolutionary game, with either no or fixed

treatment (Section 2). Subsequently, we will review cancer models where the physician

as a rational player optimizing their own objective(s) enters the evolutionary game

(Section 3). Thirdly, we will focus on the clinical aspects of EGT therapy models (Sec-

tion 4). We will close this paper with a discussion on limitations and future steps in

game theory of cancer and its treatment (Section 5).
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1.1. Mathematical background

Cancer is a Darwinian disease, in which cancer cells play an evolutionary game

between each other within the dynamic environment of the tumor that also includes

diverse normal cells (stroma) [21, 81, 176]. The cells may have different types, varying

in their (possibly evolving) level of resistance to a particular treatment or treatment

combination [74, 81, 120, 159]. Here we do not specify whether these types are just

phenotypically or also genetically different - that is why we confine ourselves to the

term “types”, as opposed to “clones” used in some literature. For some cancers, such

as metastatic Castrate-Resistant Prostate Cancer (mCRPC) and Estrogen Receptor

Positive (ER+) breast cancer, cancer types differing in their resistance levels with

respect to a particular treatment have been identified both in vitro and in vivo [64, 70,

80, 201]. For less researched cancers, such types have not been established yet and it

may be that resistance varies per cancer cell, as a resistance trait evolves in response

to treatment.

Therefore, in the most general game-theoretic model of cancer, the resistance of a

particular cancer cell type to a particular treatment is a continuous evolving heritable

trait. Then, individual cancer cells are identified by their value of this trait, which is

subject to natural selection. Here we will adopt the Darwinian dynamics approach to

describe such a situation, expanding the original model of Vincent and Brown (2005)

into more dimensions [180].

A vector x(t) = (x1(t), . . . , xn(t))T defines population densities (population size

per space) of cancer cells of types T = {1, . . . , n} at time t. The fitness of cancer

cells of type i ∈ T may depend on the densities and traits of all cancer cell types.

Consequently, the ecological dynamics of cancer cells of type i are given by

dxi(t)

dt
= xi(t) ·Hi(U(t),x(t),m(t)). (1)

Here, U(t) = (uij(t)) is a resistance matrix, where uij(t) ∈ [0, 1] indicates the resis-

tance level of cancer cells of type i, in response to treatment j. Moreover, m(t) =

(m1(t), . . . ,mp(t))
T is the vector of doses for each therapy option from the treatment
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set Θ. Without loss of generality, we can assume that mj(t) ∈ [0, 1] for all j ∈ Θ,

where mj(t) = 1 and mj(t) = 0 correspond to the MTD and no dose of treatment

j at time t, respectively. In this formulation, we see that the per capita growth rate

Hi(U(t),x(t),m(t)) of type i may give rise to density and frequency-dependent dy-

namics, as it depends on x(t) explicitly.

Vincent and Brown (2005) developed the concept of a fitness generating function

as a way to describe the fitness of many species (or types) by making use of a single

mathematical expression [180]. A function G(v,U(t),x(t),m(t)) is said to be a fitness

generating function (G-function) of the population dynamics (1) if

G (v(t),U(t),x(t),m(t))|v(t)=(ui1(t),...,uip(t))
= Hi(U(t),x(t),m(t)), (2)

where v is a virtual vector variable. Replacing vj in the G-function with uij for each

j ∈ Θ yields the fitness of an individual cell of type i in a population defined by the

same G-function. Using the G-function, we can rewrite equation (1) as:

dxi(t)

dt
= xi(t) · G (v(t),U(t),x(t),m(t))|v(t)=(ui1(t),...,uip(t))

. (3)

Cancer types with a higher per capita growth rate will persist in the population. There-

fore, the dynamics of the evolution of resistance uij of the cancer cell of type i in

response to a treatment j (evolutionary dynamics) is given as follows:

duij(t)

dt
= kij

∂Hi (U(t),x(t),m(t))

∂uij(t)
, (4)

which can be rewritten using the G-function as:

duij(t)

dt
= kij

∂G (v(t),U(t),x(t),m(t))

∂vj(t)

∣∣∣
v(t)=(ui1(t),...,uip(t))

. (5)

Here, kij is a speed parameter, which is a measure of heritability and additive genetic

variance, in line with Fisher’s fundamental theorem of natural selection [66]. This speed

parameter may be influenced by many other factors, like mutation rates, population

size, population structure and the underlying genetics of inheritance. For example, in

adaptive dynamics, kij is linearly increasing with population size and stochastic with
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respect to other parameters (canonical equation of adaptive dynamics [58, 83, 92, 126]).

For the sake of simplicity, when modeling (5), it is often assumed that kij is the same

constant for all i and j, while one could easily imagine that kij varies in time and may

be a (likely nonlinear) function of xi(t). In the remainder of this paper, we will not

write out the time-dependence explicitly, thus we shall use U, x and m instead of U(t),

x(t) and m(t), respectively. Equations (3) and (5) constitute the Darwinian dynamics,

describing the ecological and evolutionary dynamics of cancer cells, respectively.

If the ecological dynamics (3) converge to a stable equilibrium x∗ ≥ 0, we call

x∗ an ecological equilibrium. Each combination of resistance and treatment strategies

(U,m) may have an associated vector of stable population sizes x∗, with x∗i ≥ 0 ∀i ∈

{1, 2, . . . , n}. A generic U may have one or more values of x∗, or no equilibrium

associated with it, depending on the G-function. Moreover, even if we assume that the

ecological equilibrium exists for any choice of U and m, it may be that only a subset

of possible values of U and m will correspond to positive equilibrium population sizes.

Depending upon the model, its parameters and the strategies U and m, there will

likely be an upper limit to the number of types that can co-exist at positive population

sizes [87].

Solved together for m fixed at particular values, equations (3) and (5) often de-

termine an equilibrium solution for x(m) and U(m), which we will denote by x∗(m)

and U∗(m), respectively. The non-zero equilibrium values of x∗i (m) and their associ-

ated strategies
(
u∗i1(m), . . . , u∗ip(m)

)
form a ‘coalition’ of strategies. If, for a particular

choice of m, these strategies resist invasion by other mutant strategies, they are called

Evolutionarily Stable Strategies (ESSs) with respect to treatment m [97]. A necessary

condition for an ESS is that the G-function maximizes G with respect to v at the cor-

responding x∗. Further stability properties of the ESS exist (e.g., convergence stability

or neighborhood invasion stability [10, 11]).

In Section 2, we will consider existing models of cancer without treatment and

those that consider a predefined fixed treatment. Such treatments may administer a

constant dose treatment m(t) or, for example, pause treatment when the total tumor
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population is below a certain predefined threshold, and re-administering it again once

the population of tumor cells recover to its initial size. In Section 3, we will consider

situation where the physician enters the ’game against cancer’ as a rational player, i.e.

a player optimizing certain objective(s) with respect to their treatment strategies.

2. Game theory of cancer without treatment or with a predefined treatment

regimen

In the literature on EGT models of cancer with no or predefined treatment m,

the authors either focus on finding the ESS resistance strategy U∗ at the ecological

equilibrium x∗, or they analyze transient dynamics towards (x∗,U∗) for particular

(predefined) choices of m, to see what choices of m are better than others in terms of

some prespecified metrics, such as progression-free or overall survival.

Firstly, we will present a paper that describes a model in the form of equations

(3) and (5), followed by models that somewhat simplify the two equations by using a

fitness and a competition matrix, respectively, and spatial models.

2.1. Models with eco-evolutionary dynamics described by equations (3) and (5)

In their commentary on treating of pediatric sarcoma, Reed et al (2020) introduce

a model using pediatric sarcoma’s G-function

G = r
(

(1− v1)(1− v2)(1− v3)−
x

K

)
− µ1(v1)− µ2(v2)− µ3(v3), . (6)

Here vi denotes the treatment-induced resistance to treatment i, r is the intrinsic

growth rate of the tumor cells, and µi(vi) = mi

ki+bivi
is the treatment-induced death rate

for treatment i. In µi(vi), mi is the base treatment-induced death rate of the tumor

cells, ki denotes innate resistance, and bi gives the benefit gained by accumulating

resistance towards drug i. Reed et al adopt the framework given by (5) and (3) with

a G-function defined by (6) to analyze possible strategies to combat the pediatric

sarcoma, motivated by the theory of extinction from ecology, recently discussed in the

oncology literature as well [82, 75].
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Motivated by numerical simulations on different treatment regimens, the authors

suggest that when a cure for pediatric sarcoma is an achievable outcome, the first

strike (standard of care) therapy should be either augmented, or closely followed with

diverse second strike therapies. They hypothesize that application of the “first-strike”

and “second-strike” therapies may improve the standard of care, which relies on fixed

combination of chemotherapies.

In contrast, when it is believed that a cure is unachievable, they propose the adap-

tive therapy protocol proposed by Zhang et al (2017) for metastatic castrate-resistant

prostate cancer, which we will discuss in Section 2.5 [200].

2.2. Replicator dynamics with fitness matrix

The simplest and often very intuitive game-theoretic cancer models are those where

the fitness of cancer cells is given by a fitness matrix. These models typically assume

that the cancer cells engage in pairwise interactions and as a result of these interactions,

the cells may reproduce, generating offspring of the same type as the parental cell (

although other interpretations are also possible [105, 109]).

Let us denote by aij the expected number of offspring generated by a cancer cell of

type i interacting with a cell of type j. Alternatively, if aij ∈ [0, 1], it can define the

probability of a cell of type i producing an offspring of its own type when interacting

with a cell of type j. If we have n types of cancer cells and we know aij for all

i, j ∈ {1, . . . , n}, we can construct an n× n fitness matrix A = (aij). The population

(ecological) dynamics of cells of different types as proportions, q, instead of densities,

x, are commonly described by replicator dynamics [25, 26, 105, 109, 111, 167, 168, 188]

where qi = xi∑n
i=1 xi

is defined by

dqi
dt

= qi
(
(A q)i − qT A q

)
. (7)

Here, the per capita growth rate of cancer cells of type i is given by their expected

payoff (fitness) (A q)i minus the mean fitness of the entire population qT A q. This
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fitness is frequency-dependent [46, 108] and captures non-cell-autonomous effects that

are central to the ecology of cancer [121, 109, 62].

The replicator dynamics represent a special case of (3) and (5) as it considers

population (ecological) dynamics only in terms of proportions and does not consider

the evolutionary dynamics of different types of cancer cells. The latter point implies

that it fits within the framework set by equation (3) with the G-function defined by

(A q)i − qT A q, where trait U simply does not evolve. The dynamics of frequencies

qi with i = 1, . . . , n are restricted to the n-dimensional simplex, i.e.,
∑

i qi = 1 which

means that the 0 ≤ qi ≤ 1 are proportions. Accordingly, an average fitness above 1

cannot yield an increase in total density and, therefore, the effects of density-dependent

selection are not modelled. Instead, solely frequency-dependent selection is considered.

As shown by Zeeman (1980), any ESS of matrix A is an attractor (stable equilib-

rium) of the replicator dynamics (7) [197]. If such an ESS in tumors exists, reaching it

using available therapies could provide a means for achieving long-term stabilization of

tumors and a significant increase in progression-free and overall survival [109, 188, 53].

However, it is important to be aware of the timescales involved. In the most general

case, even on very long timescales fixed points like ESS might not be reached [46, 107],

for example due to the evolutionary constraints of population size [84].

One of the first models that defines the competitive interactions of cancer cells via

a fitness matrix following Equation (7), was called ‘Go-vs-Grow game’ and introduced

by Basanta et al. [24] and promptly extended to include glycolysis [26]. Here, the in-

teraction between three cell cancer types of invasive (Go), autonomous growth (Grow)

and glycolytic (GLY) types was introduced and it was analyzed for how different pa-

rameters in the fitness matrix A influence the game characteristics and ESSs [26]. The

main outcomes of this analysis are that an invasive cancer type is more likely to evolve

after occurrence of the glycolytic type, and that the therapies increasing the fitness cost

of switching to anaerobic glycolysis might decrease the probability of the emergence

of more invasive cancer type. The follow-up work includes stromal cells interacting

with different types of cancer cells and their role in promoting cancer invasiveness [25].
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Dingli et al. (2009) showed that targeting the interactions between the tumor and the

stromal cells, so that the latter outcompete the former ones, can be a more promis-

ing approach, compared to targeting the cancer cells directly [61]. Other examples of

cancer games with the fitness defined by a matrix are the cooperative ones, following

the paper of Axelrod et al. (2006) summarizing evidence of cooperation among cancer

cells [21].

2.3. Estimating parameters of the fitness matrix

Although the above works modelled the interactions among cancer cells of different

types and their environment as a fitness matrix, the parameters of these matrices

were not directly measured or in vivo or in vitro. To remedy this, Kaznatcheev et al.

(2019) introduced a technique to directly estimate parameters of the fitness matrix of

replicator dynamics [109] from data measured in vitro. They studied interactions of

different cancer cell types in co-cultures of non-small cell lung cancer (NSCLC) cells

[109]. The cancer cell types included those sensitive (parental) and resistant to the

anaplastic lymphoma kinase inhibitor alectinib. With two cell types, the replicator

dynamics describing the change in frequencies of the parental, p, and resistant, 1− p,

cancer cell types in the population, becomes:

dp

dt
= p(1− p) ((a12 − a22) (1− p)− (a21 − a11)p) (8)

with a fitness matrix A = (aij) .

Since certain changes in the coefficients of the matrix A imply changes of math-

ematical properties of Equation (8), such as existence of ESS, four different dynamic

regimes are possible. Kaznatcheev et al. (2019) estimated the entries of the fitness

matrix A from the growth data of a series of specifically-designed in vitro experiments

across four different environmental conditions corresponding to the presence or absence

of targeted therapy and the presence and absence of cancer-associated fibroblasts. They

show that the games played by the population in vitro produce two qualitative different

dynamics regimes, i.e., that the dynamics (8) qualitatively switch the type of game
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being played by the population in vitro from a game they term a ‘Deadlock game’ to

a game they term a ‘Leader game’, based on the presence of absence of drug and/or

fibroblasts.

While therapy optimization was not the goal of this study (in fact, therapy even-

tually failed for all considered cases), Kaznatcheev et al.’s provide the game assay as

a method to estimate the enties in the fitness matrix from in vitro data . This allows

to anticipate treatment-induced eco-evolutionary responses of cancer cells even before

the treatment is applied in order to steer eco-evolutionary dynamics of cancer cells

during the course of the treatment [109, 159]. Subsequent work focused on quantifying

competitive release in NSCLC [65] and extended the original game to a game with

3 types of cancer cells [32]. A similar method was used to observe host-parasite-like

interactions between cancer cell types due to paracrine behaviors [138].

2.4. Replicator dynamics with non-linear fitness functions

Although the system studied by Kaznatcheev et al. (2019) is well estimated by

replicator dynamics with fitness given by the linear function (Aq)i, their method can

also be used to estimate parameters in non-linear fitness functions, i.e. a generalization

of of (7)
dqi
dt

= qi
(
fi(q)−

∑
j∈{1,...,n}

qjfj(q)
)

(9)

where the fitness functions fi are not necessarily linear.

This case of non-linear fitness functions has generated extensive theoretical work

in the case of public goods where cells can be producers (cooperators) or free-ride on

shared resources produced by the others (defectors) [16]. The most relevant cases for

cancer are the production of growth factors like VEGF [12, 154], the production of

hostile environments like acidity due to the Warburg effect [43, 13, 14], or the coupling

of both [111]. Archetti et al (2015) empirically estimated parameters of this nonlinear

public good game for neuroendocrine pancreatic cancer cells that produce insulin-like

growth factor II which supports proliferation and evasion of apoptosis, [17].
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For the situation when the public good of VEGF production is coupled with the

public good of of tumour acidity, Kaznatcheev et al (2017) targeting the most common

cancer cell type through MTD may lead to a worse long-term outcome for the patient

than targeting less common types [111].

2.5. Lotka-Volterra models

As the replicator dynamics (9) include frequency dynamics only and cannot cap-

ture the changes of cancer cell population, alternative modeling frameworks have been

adopted to capture both ecological and evolutionary dynamics of cancer cells. These in-

clude expanding replicator dynamics by additional population dynamics elements, such

as through fictious free-space strategies [104, 187], but also different models capturing

population dynamics directly [119, 180]. A relatively large body of literature models

interactions between cancer cells of different types and/or interactions between cancer

cells and the environment through the Lotka-Volterra competition equations and their

extensions [29, 52, 72, 200]. The LV equations were proposed separately by Lotka and

Volterra to describe competition in one set of models and predator-prey dynamics in

another one [116, 183]. Here we restrict ourselves to the competition models.

While initially the LV dynamics described interactions between two species only,

they can also be expanded to model interactions of cancer cells of n types. Moreover,

it is possible to convert the replicator dynamics for n types into the LV model with

n − 1 types and vice versa, by converting the fitness matrix A into the competition

matrix of the LV model and maintaining the same stable equilbria (attractors). The

proof of this ESS equivalence can be found e.g. in [97] and [35]. The attractors of

the LV dynamics correspond to the attractors of the replicator dynamics (7) and may

correspond to the ESSs of the matrix A, as discussed before. For instance, The ESSs

of You et al’s replicator dynamics model of mCRPC in [193] are the same as the ESSs

of the LV model in [200]. The LV model describes ecological dynamics (3), while the

evolutionary dynamics are trivial as the resistance trait does not evolve and therefore

corresponds to (5) with the right-hand side of each equation equal to 0.
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Stable polymorphic equilibria may exist within tumors [22, 49]. If the dynamics

of the tumor can be described via equation (7) or other dynamics leading to ESSs,

then these polymorphic equilibria will correspond to an ESSs [181]. Furthermore,

polymorphic stability in heterogeneous tumor cell populations has been shown to exist

explicitly for some cancers [17, 70].

Likely, the most influential LV competition model of cancer dynamics is that of

Zhang et al. (2017) [200]. This model has been derived from the replicator dynam-

ics in [193], while preserving their ESSs. Subsequently, the model was expanded so

that it allowed for modeling abiraterone acetate treatment (further referred to as “abi-

raterone”), assuming that this treatment, applied together with androgen deprivation,

decreased the carrying capacity of cancer cells producing testosterone. Moreover, under

androgen deprivation, the carrying capacity of cancer cells dependent on testosterone

was made a linear function of the density of the testosterone producing cancer cells.

As such, the originally noncooperative game between the three cancer cell types in-

cludes also cooperative elements. The LV formulation has the advantage of including

population dynamics providing a more realistic modeling framework. This is because

treatment aims at decreasing tumor burden while keeping the proportion of treatment-

resistant cancer cells low. Replicator dynamics models typically capture only the latter,

unless they include birth-death processes. The LV competition model described in [200]

formed the basis of the adaptive treatment protocol used in a successful clinical trial

(NCT02415621) where patients received abiraterone at MTD until their initial PSA

levels dropped to half and resumed only when the PSA returned to its initial value.

In this way, patients had individual treatment regimens with varying length of cycles

with and without treatment.

Zhang et al. simulated SoC with MTD of abiraterone combined with ADT, using

clinically motivated parameters, to show how SoC strongly selects for the testosterone-

independent cancer cell type, due to competitive release [47, 198]. This means that

resistant cancer cells eventually outcompete other cells. As an alternative to the SoC,

Zhang et al. proposed the above described adaptive therapy, whose underlying as-
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sumption is that in the absence of treatment resistant cells are less fit than sensitive

cells (standard assumption on the fitness costs of resistance in ecology [1, 166]). This

assumption can however be relaxed, as shown in [182]. Both the simulated adaptive

therapy and the clinical trial treatment regiment applied arbiraterone together with

ADT until the tumor volume dropped below half of its initial value, as indicated by the

blood serum level of PSA. From that moment on, abiraterone was discontinued, until

the tumor volume recovered to its initial level. Then the cycle was repeated. This has

two anticipated effects:

1. Cancer cells are not dominated by the drug-resistant cell type.

2. The cumulative drug dose is lower.

An interesting finding is that a lower initial proportion of sensitive cells leads to

longer periods of time until the PSA reaches its initial level. Adaptive therapy also

results in a gradual increase of the resistant cells from cycle to cycle, but this happens

much slower than with the SoC.

In summary, Zhang et al. (2017) demonstrated that this adaptive therapy regimen

provides equivalent or longer time to progression (TTP) than SoC therapy under any

initial conditions [200]. With their simple but effective, the adaptive therapy is not

optimized; instead, the conditions to pause and restore the abiraterone treatment are

rules of thumb related to the current tumor volume. The corresponding clinical trial has

shown that patients’ TTP increased remarkably with this regimen. Recent updates of

this clinical trial (NCT02415621) are consistent with the initial findings [200, 201]. The

adaptive therapy trial prolonged TTP with less than half of the cumulative drug dose

and appears to be successful for all patients that were initially responsive. Currently,

the patients’ life expectancies have almost tripled. Conversely, most patients receiving

the SoC have progressed.

Cunningham et al. (2018) optimized the abiraterone therapy from [200] with respect

to different criteria, such as minimizing the variance of the total tumor burden [51].

This will be discussed in more detail in Section 3.
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Meanwhile, West et al. (2019) investigated a multi-drug approach for mCRPC

[190]. Clearly, this further extends the treatment options. For simplicity, they limited

themselves to a two-drug approach where the secondary drug is supposed to suppress

the sub-population which is resistant to the primary drug. Accordingly, they considered

the treatment with docetaxel (chemotherapy) and abiraterone, considering also a cell

type which is resistant to both docetaxel and abiraterone. They conducted simulations

parametrized on patients that progressed in the mentioned clinical trial in Zhang et

al. (NCT02415621) and reached the conclusion that the administration of docetaxel

together with abiraterone would have significantly increased TTP. Based on the success

of the this trial, more trials on adaptive therapies are being opened (e.g., in melanoma

- NCT03543969, in thyroid cancer - NCT03630120, and also a second trial including

Zhang in mCRPC - NCT03511196).

There are other examples of game-theoretic models guiding clinical trials. For

example, West et al. (2019) consider a trial on stage 2/3 estrogen receptor-positive

breast cancer and treatment with an aromatase inhibitor and a PD-L1 checkpoint

inhibitor combination, which attempts to lower a preoperative endocrine prognostic

index (PEPI) that correlates with relapse-free survival [189]. They adopted a game

with a 4× 4 fitness matrix, which was then embedded in an ecological model of tumor

population-growth dynamics. The resulting model predicts evolutionary and ecological

dynamics that track changes in the PEPI score. By testing out different possible

treatment regimens, they proposed a therapy plan with a one-month kick start with

the immune checkpoint inhibitor followed by five months of continuous combination

therapy as the most effective therapy choice. Current practice either uses the drugs in

combination or just uses the aromatase inhibitor.

LV models can be exploited to include also other cells interacting with the cancer

cells, such as T-cells (as predators), as shown for example in [29, 145]. Alternatively,

one may be interested in the role of non-immune cells, such as cancer-associated fi-

broblasts [191, 109] that may inhibit or facilitate the fitness of all or just some types of

cancer cells. The parameters of LV models can also be inferred directly from in vitro
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experiments following a procedure similar to the game assay [138].

2.6. Spatial game-theoretic models and related work

There is evidence that spatial interactions among cancer cells and/or interactions

of cancer cells with their environment influence intra-tumor heterogeneity, the spatial

properties of tumors, and patient prognose [120].

In space, tumors can be viewed as complex evolving structures, consisting of can-

cer cells, normal cells, blood vasculature, inter-cellular spaces, and various nutrients,

such as oxygen and glucose [77, 125]. Cancer cells, often of distinct types, compete for

space and nutrients, and engage in direct interactions. They both contribute towards

and are affected by their microenvironments, within which they consume available

resources, proliferate and survive [63]. Within these neighborhoods, there are eco-

evolutionary feedbacks where limiting resources impact the total abundance of cancer

cells, and interactions between tumor cells influence the frequency of cell types. More-

over, spatially-explicit data, e.g., biopsies, histological samples and magnetic resonance

imaging (MRI) imaging, become more and more available [158, 186] and pathologists

often measure and score spatial distributions of cancer cell types, vasculature, immune

cells, and other tumor properties [202, 143]. Also, cancer biologists increasingly recog-

nize the ubiquity of spatial heterogeneity within tumors [30, 120, 165].

For these reasons, spatially-explicit models increased in popularity.

However, one has to be careful in inferring and interpreting game parameters from

measurements in spatially explicit systems [105, 106].

Spatially-explicit EGT cancer models can take the form of diffusion processes

framed as partial differential equations [175] or models can be agent-based [45, 117, 118].

In some special cases, it is possible to use analytic techniques to transform and solve

spatially-explicit EGT models in the same way as the inviscid models we described

above [110, 133, 106].

In graph-based models, the cancer cells may be represented on vertices of a network,

such as Voronoi graphs [15], motivated by the claim that real biological tissues appear
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closest to those [50, 114]. Alternatively, individual cells may occupy a space on a spatial

grid described as squares or hexagons [144, 170]. Agent-based models can also consider

continuous space where the cancer cells are represented by continuously varying spatial

coordinates in one, two or three dimensions, often extending the replicator dynamics

(7) into spatially explicit scenarios [24, 71, 193, 194]. In this case, the interactions

between the different cell types are typically more or less local and depend on how

cells interact with each other, how much they can move, how local their perception of

the density of the cells around them is, and/or how far from a focal cell the offspring

can be placed.

For example, You et al. (2017) modelled the interaction of mCRPC cells under

androgen-deprivation therapy (ADT) as an evolutionary game with three types of can-

cer cells (cells requiring testosterone, cells producing testosterone as public good, and

cells independent of testosterone), with the fitness matrix defining cells’ probabilities

of proliferating when interacting with other cells [193]. Both ESSs and properties of

an agent-based continuous-space variant of this game with a birth-death process were

analyzed, and their transient dynamics and eco-evolutionary equilibria were compared.

The authors observed that only when interactions between cancer cells of the spatial

model were global the resulting evolutionary equilibria corresponded to the ESSs of

the original nonspatial game.

3. Game theory of cancer treatment

In case the treatment is a priori decided (such as in case of continuous MTD or

metronomic treatment, or also with adaptive treatment with its rules decided before-

hand), the physician is not a true player in the game, as they do not really optimize

any objective. This was the case in the models introduced in Section 2.

Here, we consider the case where the physician becomes a true player in the game.

When viewing cancer as an evolutionary game between the physician and the cancer

cells, a natural question arises: Can we drive cancer into a stable state, corresponding

to either a cure or a chronic disease, which is not too harmful for the patient and can
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be maintained at a stable tumor burden? This concept of stability corresponds to the

Evolutionarily Stable Strategies introduced in Section 2. Alternatively, if cure or stable

tumor burden cannot be achieved, a relevant question is whether we can maximally

delay undesirable states (e.g., too high tumor burden or too high level of resistance),

by more dynamical treatment protocols than currently used as SoC. To this aim, we

introduce an objective function to be optimized by the physician, Q (U(·),x(·),m(·)) ,

which varies with m(·) def
= [m(t)]t∈[0,T ] , U(·) def

= [U(t)]t∈[0,T ] , x(·) def
= [x(t)]t∈[0,T ]. with

no loss of generality, we can refer to this function as the Quality of Life (QoL) function

of the patient. The physician’s goal is then to find the optimal m∗ which optimizes

such an objective, i.e., find

m∗(·) = arg max
m(·)

Q (U(·),x(·),m(·)) , (10)

where Q has been decided by the physician and patient a priori. In such a situation,

cancer cells are playing an evolutionary game with each other and their eco-evolutionary

dynamics can still be described by equations (3) and (5). However, they become

followers in a Stackelberg (i.e., leader-follower) game, with the physician as a rational

leader [159]. Since the followers are evolutionary players, we call this type of games

Stackelberg evolutionary games (SEGs), in accordance with recent research on this topic

[151, 153]. It is noteworthy that the physician, as the only rational player in this SEG,

can anticipate and steer the eco-evolutionary response of the cancer cells defined by (3)–

(5), while the cancer cells can only adapt to the actions already taken by the physician.

The theory of Stackelberg games was originally devised in economics to conceptualize

interactions with an imbalance in control or power, e.g., the competition between a

market leader and follower [94]. Its extension into SEGs can conceptualize not only

cancer treatment, but also other problems involving a rational player interacting with

an evolutionary system, e.g., pest management, fisheries management, or the control

of infectious diseases [37, 38, 93, 153].

Here, we divide existing literature into two categories:

1. SEGs with cancer cells in eco-evolutionary equilibria: Here it is assumed that
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an equilibrium x∗ and ESS U∗ is reached for any given choice of m. Under this

condition, we look for a constant m that maximizes Q(U∗(m),x∗(m),m).

2. SEGs where the cancer cells are assumed to be in their transient phase, with

their eco-evolutionary dynamics driven by equations (3)–(5).

When it comes to the objective of the leader, we identify two important categories of

literature:

1. SEGs where the leader aims at steering the cancer cells into their eco-evolutionary

equilibria, assuming application of a constant dose once such an equilibrium is

achieved. Here it is explicitly given up on the idea of curing and the strategy

becomes “treat to contain”, similarly to what happens with chronic diseases.

2. SEGs with different objectives for the leader, such as minimization of the tumor

burden, minimization of its variance, or maximization of the time to progression.

In table 1 we summarize these options and indicate the sections where each is discussed.

Table 1: Instances of Stackelberg evolutionary games (SEGs) of cancer treatment considered in this

review

Physician

steering to (x∗,U∗) another objective

Cancer dynamics
transient

at (x∗,U∗)

Section 3.1

-

Section 3.2

Section 3.3

3.1. Physician steering cancer into an ESS

Most cancer biologists and many modelers see cancer as only a transient dynamic

with little focus on the idea of reaching an equilibrium (U∗,x∗) of its eco-evolutionary

dynamics, and even fewer within an explicit game-theoretic setting. However, there

is evidence that eco-evolutionary dynamics in cancer cells do have attractors whether
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reached or not [64, 80]. These works reported that if these equilibria are reached, cancer

can be contained with a constant dose of treatment, lower than the MTD. [119] and [42]

implied that reaching the ESSs of the cancer dynamics may be a successful strategy

to keep the patient with a metastatic cancer alive. Cunningham et al. focused on

steering mCRPC into its eco-evolutionary equilibria, for the model from [200], where

one or several competition coefficients were increased to values above 1 [53]. This

was based on a study, demonstrating that the competition coefficients among different

cancer cells of different types are often above 1 [70]. Cunningham et al. first adopted

a numerical optimal control approach, with a forward-backward sweep method to steer

mCRPC to a sustainable eco-evolutionary attractor. While they showed, with perfect

knowledge, that reaching such an attractor is feasible for most patients, they focused

also on rules of thumb to reach these attractors, without complicated optimization

of the treatment protocols [53]. They demonstrated that dose titration, i.e., gradual

increase of treatment dose is very likely to lead to the cancer’s ESS.

3.2. Physician optimizing objectives other than reaching the ESS, while cancer cells are

in their transient phase

Martin et al. (1992) were probably the first authors who applied optimal control

in cancer treatment, with focus on various objectives for the physician [119]. They

considered the population of drug-sensitive and drug-resistant cancer cells, where the

goal was to slow the growth of drug-resistant cells, which also served to maximize

patient survival time. Three types of tumor growth models were investigated: Gom-

pertz, logistic, and exponential. For each model, they adopted an analytical optimal

control approach to find feedback controls that specify the optimal tumor mass as a

function of the size of the resistant sub-population [27, 31, 146]. With exponential and

logistic tumor growth, the tumor burden during therapy had little impact on survival

times. With Gompertzian tumor growth, therapies maintaining a large tumor burden

doubled or even tripled patient survival time. A revolutionary finding of this paper

was that maintaining a high tumor burden is optimal for Gompertz tumor growth and
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close to optimal for exponential and logistic tumor growth. Hence, it is not necessary

to know the precise growth characteristics of a tumor to schedule anticancer drugs.

Their results also implied that trying to contain the tumor may be the best strategy

for keeping patients alive. A growing literature on optimal control to optimize cancer

treatment has emerged as a follow-up to this work [5, 112, 134, 179].

Orlando et al. modeled the case of cancer cells trading off resistance between two

different drugs with the physician solving an optimal control problem with the objective

of minimizing the tumor burden [140]. They show that a relatively static treatment

using both drugs at equal levels is optimal when cancer cells benefit from specializing

in response to a single drug rather than a generalist resistance strategy, while a more

dynamic treatment with the concentration of drugs varying over time is more effective

when this multitasking is rewarding to the cancer cells [140].

Carrère focused on in vitro tumors, consisting of cells that were sensitive or resis-

tant to a certain drug. The setting was similar to [119], but with parameters validated

by an in vitro study [42]. They adopted optimal control theory and showed analytically

that to reduce the tumor volume while preserving its heterogeneity, one needs to apply

lower than the MTD of drugs. Warman et al. (2018) focused on a fitness matrix model

of the vicious cycle of metastatic prostate cancer cells co-opting bone remodeling [187].

The authors introduced fractionated follow up therapy – chemotherapy where dosage

is administered initially in one solid block followed by alternating smaller doses and

holidays – and shiwed that it is better than either a continuous application or a peri-

odic one. Gluzman et al. optimize treatment in a public goods model of interactions

between glycolytic and acidic cells, introduced by Kaznatcheev et al. (2017) [85]. The

total drug usage and time to recovery were optimized, by solving the corresponding

Hamilton–Jacobi–Bellman (HJB) equation, similar to [53]. They conclude that the

optimal treatment policies can significantly decrease the total amount of drugs pre-

scribed, while also increasing the fraction of initial tumor states from which recovery

is possible. This paper supports the claim that lower doses of treatment will be more

effective for containing tumors than MTD.
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Cunningham et al. optimize abiterone treatment from [200] using boxed-constrained

optimization. They consider various objectives for the physician and show that min-

imization of the tumor volume variance, thus keeping the tumor burden as stable as

possible, may be the best objective for keeping the patients from progressing while not

applying too much drug [51].

Itik et al. introduce a model describing competition between normal cells and tumor

cells. The model also includes the effects of the immune system [101]. They propose a

linear time varying approximation technique to construct an optimal control strategy

for the nonlinear system which is valid not only within small perturbations around

the equilibrium point, but also for global dynamics of the system. The objective is to

eliminate the tumor cells while minimizing the amount of drug. It should be noted,

that as evolution of resistance is not included in the model, it is likely more relevant

for treatment of early stage cancers, as opposed to advanced and metastatic cancers.

3.3. Physician optimizing various objectives, while cancer cells dynamics are at ESS

Once the ecological equilibrium x∗ and the ESS resistance strategies U∗ are reached,

a constant dose m∗ can keep the cancer dynamics contained [151, 152, 160]. Finding

such equilibria for cancer eco-evolutionary dynamics and m∗ for maximizing the pa-

tient’s quality of life are the main goals of [151] and [153]. For monomorphic cancer cell

populations, [152] showed that less treatment leads to a higher quality of life (Fig. 1).

It is to be noted that their approach considered only a monomorphic population of

cancer cells, with resistance as a scalar trait. However, the fact that MTD leads to an

outcome which is not better and usually much worse than the Nash equilibrium, which

is in turn not better and usually much worse than the Stackelberg equilibrium, can be

generalized to the situation with vector-valued traits.

4. Clinical relevance

Application of EGT principles in therapy, in order to anticipate and steer cancer

eco-evolutionary response, is a powerful tool, but relies on our ability to estimate tumor
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Figure 1: The solid line represents the best response of cancer cells to any possible treatment level

m ∈ [0, 1], the dotted line the best response of the physician to any possible resistance level u ∈ [0, 1].

In the green area the population of cancer cells goes extinct, while in the red area it grows above the

survival threshold of the patient and as such, it is incompatible with life. The yellow area represents

the situation in-between, with different levels of quality of life. Three different equilibria of the game

are presented. MTD corresponds to the case where the physician plays a fixed Maximum Tolerated

Dose strategy; NASH corresponds to adjusting the dose according to the resistance rate of cancer

cells, until a Nash equilibrium is reached; STACKELBERG corresponds to anticipating the followers’

resistance strategy. Adapted from [152].

size and composition prior to treatment. The intra-tumoral evolutionary process leads

to sub-clonal diversification and generates the genetic and phenotypic intra-tumor het-

erogeneity, which determines the tumor composition and therefore the evolutionary

state. In order to optimize the model parameters, determined by the tumor compo-

sition, monitoring of the tumor’s behavior during therapy is required. At best, this

encompasses continuous surveillance of the total number of tumor cells and their cell

type composition. In clinic, the personalized therapeutic strategy then needs to be

optimized after every measurement, i.e., after each clinical visit. Kaznatcheev et al.
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[109] recently showed how to assess the game played by different cell types of non-small

cell lung cancer cells in vitro. The game changed in response to different treatment

regimens. Due to the in vitro set-up, the experiments could be monitored with relative

ease by performing time-lapse microscopy. However, in a clinical setting the key con-

straint is the low amount of information available about intra-tumoral evolution and

the speed of evolution during treatment. It is still challenging to identify, quantify and

monitor the evolving strategy distribution in heterogeneous tumors. A sufficient tech-

nology for this is yet unavailable, however, several techniques can be proposed which

we discuss in the following paragraphs.

Firstly, tissue biopsies of the primary tumor and of metastases can be sampled to

reveal genetic and phenotypic differences between cancer cell types. Genetic differences

are revealed by genome sequencing, while phenotypic heterogeneity is typically assessed

with histology techniques and proteomics [30]. Nevertheless, to monitor the cancer

cells’ response to treatment, tissues need to be isolated at the time of initial diagnosis

as well as successively sampled throughout treatment. In the clinics, such repeated

biopsies are not easily acceptable, due to their invasive nature and expense. Such

is the case in taking biopsies of disseminated bone disease in mCRCP patients [69].

Furthermore, often only a fraction of the tumor is isolated, which does not represent

the complete genomic and phenotypic landscape, and the detection of small lesions and

deriving biopsies from them is a major challenge [100, 141].

Secondly, an alternative approach is based on liquid biopsies. They consist of several

sources of tumor material including circulating tumor DNA (ctDNA) and circulating

tumor cells (CTC). The ctDNA is a DNA released by malignant cancer cells, with

diagnostic genetic and epigenetic alterations. Several studies have shown that exome-

wide analysis of ctDNA may contribute to monitoring the evolution of acquired drug

resistance and track the outgrowth of resistant cell types [40, 131, 132, 139]. To be

able to use the genotypic information obtained from ctDNA, we need to know the rela-

tionship between mutations and their phenotypic impact, i.e., the genotype-phenotype

map [4, 137]. Predicting what genotypes will eventually evolve to drive phenotypic
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resistance remains a significant challenge [60].

From CTCs, besides genotypic information, phenotypic information about the strat-

egy distribution can directly be obtained for use in the EGT models. CTCs represent

intact, viable non-hematological cells with malignant features. The resistant CTC pop-

ulations may be phenotypically distinct from their precursors in physical size, shape

and surface marker expression. For instance, Tsao et al. [178] detected tumor pro-

gression and proliferation of resistant melanoma cell types by observing surface marker

up-regulation from CTCs. They saw how a widening of the signal distribution detected

by spectroscopy, reflected a more heterogeneous CTC population [178]. In mCRPC,

Zhang et al. [200, 201] detect testosterone producing cells by the presence of CTCs

expressing CYP17A1, which is a key enzyme for androgen synthesis. Androgen re-

ceptors (AR) can also be detected and monitored in real time from mCRPC CTCs.

The AR splice variant 7 was proved to be predictive of resistance to anti-AR treat-

ment, such as ADT therapy and treatment with both abiraterone and enzalutamide

[8, 127, 128, 161, 173]. Additionally, CTCs can be assayed for human epidermal growth

factor receptor 2 (HER2+) in breast cancer, which contributes to treatment resistance

[48, 148]. This technique may also be applied to display the strategy distribution in

other cancer types, when specific up-regulation or down-regulation of specific surface

markers in resistant cell types occurs.

Taking liquid biopsies and isolating CTCs, has advantages over conventional tissue

biopsies since they are less invasive to the patient. Additionally, it may reflect the

heterogeneity of the tumor more appropriately and it allows continuously monitoring

of a patient’s tumor composition [115]. Nevertheless, the liquid biopsies provide nei-

ther spatial information nor information on the composition of individual metastatic

lesions, since the primary tumor and its metastases are not measured individually.

Accordingly, liquid biopsies may contain a mixture of tumor cells originating from

multiple independent lesions. Analyses of primary and disseminated tumor cells show

large differences in genetic variation [162], and CTCs are unlikely to represent the

full spectrum of mutations and differences in protein expression in tumor lesions since
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CTC biopsies might only show the ’tip of the iceberg’ [199]. While it is better to have

this aggregated information as a proxy for the cancer’s evolutionary dynamics than

no information at all. The information found this way can be used to measure the

evolutionary states of different metastatic lesions if multiple metastatic lesions located

at different sites shed CTCs homogeneously or if the variation in the composition of

these lesions is low. This is e.g., shown in BRAF status concordance in primary and

metastatic melanoma [33, 34] and colorectal carcinoma and KRAS mutation status in

colorectal adenocarcinoma [56]. Alternatively, one needs to identify the tissue of origin

of CTCs by using expression profiling of organ-specific metastatic features. Studies

have shown that certain methylation patterns are tissue specific which may serve to

determine the source of tumor cells or ctDNA [113, 164].

Thirdly, another approach is blood sampling to measure blood serum markers.

These are biomarkers produced by specific tumor cell types. In studies by Zhang et

al. [200, 201], prostate cancer volume is determined by assessing PSA levels in the

blood, while in the latter research testosterone blood levels under androgen depriva-

tion are measured. The testosterone levels are used as a proxy for the amount of

testosterone-producing cancer cells. Nevertheless, whether each tumor cell produces

the same amount of PSA might depend on the sensitivity of the tumor cells to andro-

gen stimulation for the expression of PSA. Some cell types have been shown to lose

sensitivity to androgen and produce even more PSA than androgen sensitive cell types

[57, 102]. This feature that differs between prostate cancer cell types might provide

ways to measure androgen-independent and dependent types of cancer cells. How-

ever, this is again aggregated information combining all metastatic lesions. A study in

melanoma showed a higher expression of BRAF(V600E) oncoprotein in vemurafenib-

resistant tumor cells compared to sensitive cells. This difference might be used for

parameterizing EGT models of melanoma [169]. For other cancer types investigated in

adaptive therapy studies, there is a lack of reliable biomarker presented yet.

Fourthly, modern imaging techniques are another emerging approach for gaining

tumor and intra-tumoral metrics. Imaging can provide a holistic view of the entire
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tumor and since it is non-invasive, it is suitable for repeated monitoring. Magnetic

resonance imaging (MRI) and computed tomography (CT) can be used to track spatial

and temporal patterns of heterogeneity. For example, these techniques may reveal

tumor habitats such as necrosis, hypoxia and vascular permeability. Such habitats

may select for different cells with varying levels of responsiveness to therapy [171, 172].

Radiomics provide images of tumor habitats which seek correlations between cell

phenotypes and their visual appearance. Quantitative imaging features can include

shape, edge to volume ratio, texture or tissue environment. Such features can be

built into predictive models relating image features to tumor cell types [3, 78]. It has

already been demonstrated in studies of patients with glioblastoma multiforme that

differences in cancer cell protein expression within a tumor correlates with regions of

varying contrast-enhancement from MRI images [59, 96]. However, before quantitative

imaging features can be used for clinical monitoring of cancer cell strategies, it needs to

be ensured that specific imaging features can be linked to the underlying composition

of cell types that differ in their response to treatment.

Positron Emission Tomography (PET), which can be performed along with CT or

MRI scans, provides additional anatomic and spatial information. PET scans can show

differential amounts and patterns of uptake of radiotracers by cells within a tumor. This

might provide the ability to label and quantify the resistant as well as the sensitive cells.

For example, the variability of tumor glycolytic metabolism within the same lesion can

be assessed with the use of 2-flouro-2-deoxy-D-glucose F 18 ([18F]-FDG) PET imaging

[28]. Uptake patterns influence patients outcome and thus provide insights into the

prevalence of resistant cancer cells within the tumor. Additionally, PET imaging using

fluorodihydrotestosterone F 18 ([18F]-FDHT) permits to labelling and detection of

androgen receptors [196]. Accordingly, a combination of [18F]-FDG and [18F]-FDHT

PET imaging can identify AR positive and negative lesions, and therefore the ability

to discriminate sensitive and resistant prostate cancer cell types [68]. A radiotracer

to label prostate specific membrane antibody (PSMA), a cell surface protein with

high expression in prostate cancer cells, is also available for PET imaging. PSMA
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is expressed on nearly all prostate cancer cells, and therefore accessible to labelling

[122]. Furthermore, it is under research whether the radiotracer N-succinimidyl-4-

[18F]fluorobenzoate ([18F]-SFB) is suitable for labeling HER2 overexpressing cells in

breast cancer [192].

Modern imaging techniques might hold more promise than tissue and liquid biop-

sies. This is because it can reveal relevant information about both the location of

the lesions and the tumor cell types within these lesions, to reveal both tumor eco-

evolutionary dynamics and spatial characteristics. Furthermore, it is non-invasive and

overcomes sampling errors of biopsies. In particular, we propose PET imaging because

it can provide insight in both total tumor mass and the tumor’s cell type composition.

Therefore, the discovery of radiotracers, which are able to classify different tumor cell

types, is of uppermost clinical importance. Nevertheless, current modern imaging stud-

ies mostly focus on how tumor metrics and not cell type composition can be used as a

prognostic marker for overall survival, malignancy or therapy response. For example,

Aerts et al. [2] used radiomic data from CT images of patients with early-stage NSCLC

and use a response phenotype that can predict a patient’s sensitivity towards Gefitinib

therapy. In order to parameterize the EGT models, all different tumor cell types in a

tumor need to be identified and monitored.

It might be worthwhile to use newly developed techniques such as organoids [150]

and xenografts [39] to measure cell type compositions and protein expression to monitor

tumor evolution, and improve our understanding of the eco-evolutionary dynamics.

Early preclinical in vivo studies of adaptive therapy included ovarian cancer cell line

xenografts treated with carboplatin, and MDA-MB-231/luc triple-negative and MCF7

ER+ breast cancer cell lines treated with paclitaxel. In all cases adaptive therapy could

stabilize tumor volume, though the underlying sub-populations were not explicitly

measured [64, 80]. In both of these studies, once initial tumor volume control was

achieved, it could be maintained with constant or even progressively smaller drug

doses, suggestive of stable eco-evolutionary equilibria.

Once patient specific data of tumor cell types is available and monitored, it can
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be used to parameterize and optimize the EGT models to guide adaptive therapy

protocols [95]. Subsequent measurements to inform patient specific parameters would

then greatly improve modeling and predictions regarding tumor characteristics [200,

201]. After every measurement, the optimal next step in the adaptive therapeutic

protocol could be calculated and used to stabilize the tumor burden, or might even

be steered to create a pathway towards cure. To compare different mathematical

models and seek the optimal cancer treatment, an optimal control theory approach may

suffice [7, 44, 51, 54, 129, 130, 155]. Additionally, model predictive control (MPC) can

use real-time monitored data to update the optimal cancer treatment. MPC involves

model based control techniques which can update the model and the optimal treatment

schedule with each new clinical measure [130].

Critically, a model for tumor treatment can only be as effective as its associated

empirical methods allow, i.e., in order to parameterize and validate it. Data may be

retrospective (histologies, radiographies, biopsies etc.) as well as derived from mouse or

cell culture studies. For mapping genotypic or phenotypic data to treatment strategies,

traditional statistical approaches can be used, but opportunities for machine learning

/ artificial intelligence are evident [103]. Furthermore, the in vitro and in vivo compe-

tition assay has been shown to be well suited to feed EGT models. Such experiments

have already shown that the success of cancer lineages depends on its frequency and

the frequency of all other lineages with other strategies [23, 98, 99]. General models,

when augmented by case studies, will permit EGT to inform clinical practice [86].

5. Discussion

We have reviewed the application of EGT in modeling tumor progression with

and without treatment. When considering treatment models, we made a distinction

between those with a priori defined treatment or a null (0 dose) treatment vs. those

where the physician enters the game and actively adjusts treatment strategies during

the course of the treatment in response to the metrics of the cancer’s eco-evolutionary

state.
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We considered evolutionary approaches to treatment and anticipated increased life

expectancy from evolutionary therapy as compared to the traditional therapy, when

resistant types are either pre-existing or evolve in response to therapy.

The biggest obstacle to applying EGT treatment methods to clinics remains the

difficulty of estimating the tumor composition which currently can be done only for

some types of cancers. Therapy for such cancers is particularly suited for our approach.

They have discrete cell types and can therefore be understood via simpler EGT models.

We reviewed some approaches for estimating the tumor composition in Section 4.

There is a clear gap between the complexity of the models that we introduced by

(3) and (5), with a resistance matrix U, and existing models, where either scalar or

vector-valued traits are considered. We could find no research where one actually con-

siders the resistance level of each known cancer type to each possible treatment. In

all research we reviewed, resistance was either a single evolving trait of a monomor-

phic cancer population, a strategy within a polymorphic cancer population with one

treatment, or multiple strategies of a polymorphic population with multiple treatments,

where the resistance to these treatments does not evolve according to (5) but represents

discrete and fixed strategies. The effects of these modeling assumptions (monomorphic

or polymorphic population) and how they impact the superiority of adaptive therapy

over continuous therapy with MTD have been recently investigated by Pressley et al

(2021), where time to progression for monomorphic and polymorphic models was com-

pared between adaptive therapy and MTD [147]. The most general form of the cancer

model, given by (3) and (5), has recently been used by Reed et al. (2020) to model pe-

diatric sarcomas, where tumor growth is suppressed by multiple drugs, towards which

resistance is evolving (eg. vinorelbine, dactinomycin, cyclophosphamide).

Most commonly used replicator dynamics and LV equations describe only one of

the equations (5) and (3). There is a rich theory for both, presumably as these models

are simpler than the most general ones.

Some topics are not addressed in this paper that may become relevant for the future

of game theory for cancer and its treatment. For example, we did not specify whether
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the cancer cells’ types correspond to genetic or non-genetic traits (e.g., epigenetics;

[156]). Generally, we believe that this does not influence the conceptualization of

the game-theoretic models. Furthermore, whether strategies are genetic, epigenetic or

phenotipically plastic will, at times, influence evolutionary speed. It may be that the

tumor micro-environment can influence the epigenetics of a cell and thereby change its

type, while this would not be the case if the type is genetically determined. Future

models may need to pay close attention to the role of the micro-environment on the

capacity for cancer cells to switch strategies. This switching may also happen in cancer

stem cells (CSCs) and have consequences for tumor heterogeneity and the composition

of cancer cell types. This might be interesting to study in the context of EGT modeling

and cancer therapy.

Many common cancer types are shown to be propagated by small populations of

CSCs. Genetic and epigenetic alterations can lead to CSCs emerging from non-stem

cells endowed with stem cell properties. Therefore, stem cell identity may not be strictly

a property of that cell, but may also depend on extrinsic cues provided by the adjacent

cells and microenvironment. If stemness is not an intrinsic property, the malignant

cells will regenerate new cancer stem cells, even if those with stem-like properties have

been eliminated. Accordingly, the stem state of a cell is a dual phenotype. Therefore,

in modeling CSCs a choice must be made on whether stemness is an intrinsic property

or whether cell type switching takes place or not. Analysis of the evolution of stemness

can help identify whether these different types of stemness evolve according to different

selective pressures, such as tissue maintenance and repair. This phenomenon also poses

the question as to how non-genetically encoded plasticity will affect EGT modeling.

Close communication and collaboration between theoretical and empirical scien-

tists will be of the utmost importance in advancing evolutionary therapies based on

evolutionary game theory.
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durvalumab after chemoradiotherapy in stage iii nsclc. New England Journal of

Medicine, 379(24):2342–2350. PMID: 30280658.

[10] Apaloo, J. (1997). Revisiting strategic models of evolution: The concept of neigh-

borhood invader strategies. Theoretical Population Biology, 52(1):71–77.

[11] Apaloo, J., Brown, J. S., and Vincent, T. L. (2009). Evolutionary game theory:

ESS, convergence stability, and NIS. Evolutionary Ecology Research, 11(4):489–515.

[12] Archetti, M. (2013). Evolutionary game theory of growth factor production: im-

plications for tumour heterogeneity and resistance to therapies. British Journal of

Cancer, 109(4):1056–1062.

[13] Archetti, M. (2014). Evolutionary dynamics of the Warburg effect: glycolysis

as a collective action problem among cancer cells. Journal of Theoretical Biology,

341:1–8.

[14] Archetti, M. (2015). Heterogeneity and proliferation of invasive cancer subclones

in game theory models of the Warburg effect. Cell Proliferation, 48(2):259–269.

[15] Archetti, M. (2016). Cooperation among cancer cells as public goods games on

Voronoi networks. Journal of Theoretical Biology, 396:191–203.

[16] Archetti, M. (2018). How to analyze models of nonlinear public goods. Games,

9(2):17.

35

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 8, 2021. ; https://doi.org/10.1101/2020.12.02.20241703doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.02.20241703
http://creativecommons.org/licenses/by-nd/4.0/


[17] Archetti, M., Ferraro, D. A., and Christofori, G. (2015). Heterogeneity for IGF-

II production maintained by public goods dynamics in neuroendocrine pancreatic

cancer. Proceedings of the National Academy of Sciences, 112(6):1833–1838.

[18] Archetti, M. and Pienta, K. J. (2019). Cooperation among cancer cells: applying

game theory to cancer. Nature Reviews Cancer, 19(2):110–117.

[19] Aupérin, A., Le Péchoux, C., Rolland, E., Curran, W. J., Furuse, K., Four-

nel, P., Belderbos, J., Clamon, G., Ulutin, H. C., Paulus, R., Yamanaka, T., Bo-

zonnat, M.-C., Uitterhoeve, A., Wang, X., Stewart, L., Arriagada, R., Burdett,

S., and Pignon, J.-P. (2010). Meta-analysis of concomitant versus sequential ra-

diochemotherapy in locally advanced non–small-cell lung cancer. Journal of Clinical

Oncology, 28(13):2181–2190. PMID: 20351327.
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Gillies, R. J. (2016). Neutralization of Tumor Acidity Improves Antitumor Responses

to Immunotherapy. Cancer Research, 76(6):1381–1390.

[146] Pontryagin, L. S., Boltianski, V. G., Gamkrelidze, R. V., Mishchenko, E. F., and

Brown, D. E. (1964). The mathematical theory of optimal processes. A Pergamon

Press book.

[147] Pressley, M., Salvioli, M., Lewis, D. B., Richards, C. L., Brown, J. S., and

Stankova, K. (2021). Speed of evolutionary dynamics of drug resistance in cancer

51

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 8, 2021. ; https://doi.org/10.1101/2020.12.02.20241703doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.02.20241703
http://creativecommons.org/licenses/by-nd/4.0/


cells impacts superiority of adaptive therapy over maximum tolerable dose. Under

review.

[148] Punnoose, E. A., Atwal, S. K., Spoerke, J. M., Savage, H., Pandita, A., Yeh,

R., Pirzkall, A., Fine, B. M., Amler, L. C., Chen, D. S., et al. (2010). Molecular

biomarker analyses using circulating tumor cells. PLOS One, 5(9):e12517.

[149] Rockne, R. C., Hawkins-Daarud, A., Swanson, K. R., Sluka, J. P., Glazier, J. A.,

Macklin, P., Hormuth II, D. A., Jarrett, A. M., Lima, E. A., Oden, J. T., et al.

(2019). The 2019 mathematical oncology roadmap. Physical biology, 16(4):041005.

[150] Sachs, N., de Ligt, J., Kopper, O., Gogola, E., Bounova, G., Weeber, F., Balgo-

bind, A. V., Wind, K., Gracanin, A., Begthel, H., et al. (2018). A living biobank of

breast cancer organoids captures disease heterogeneity. Cell, 172(1-2):373–386.

[151] Salvioli, M. (2020). Game theory for improving medical decisions and managing

biological systems. PhD thesis, Politecnico di Milano, Milano, Italy.

[152] Salvioli, M., Brown, J. S., Dubbeldam, J. L. A., and Staňková, K. (2020). Evo-
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