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 2 

Abstract  1 

Epstein-Barr virus (EBV) is one of the most common viruses latently infecting 2 
humans. Little is known about the impact of human genetic variation on the 3 
large inter-individual differences observed in response to EBV infection. To 4 
search for a potential imprint of host genomic variation on the EBV sequence, 5 
we jointly analyzed paired viral and human genomic data from 268 HIV-6 
coinfected individuals with CD4+ T cell count <200/mm3 and elevated EBV 7 
viremia. We hypothesized that the reactivated virus circulating in these patients 8 
could carry sequence variants acquired during primary EBV infection, thereby 9 
providing a snapshot of early adaptation to the pressure exerted on EBV by the 10 
individual immune response. We searched for associations between host and 11 
pathogen genetic variants, taking into account human and EBV population 12 
structure. Our analyses revealed significant associations between human and 13 
EBV sequence variation. Three polymorphic regions in the human genome were 14 
found to be associated with EBV variation: one at the amino acid level 15 
(BRLF1:p.Lys316Glu); and two at the gene level (burden testing of rare variants 16 
in BALF5 and BBRF1). Our findings confirm that jointly analyzing host and 17 
pathogen genomes can identify sites of genomic interactions, which could help 18 
dissect pathogenic mechanisms and suggest new therapeutic avenues.  19 
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Introduction 1 

Human genetic variation plays a key role in determining individual responses after exposure 2 
to infectious agents. Even though susceptibility or resistance to a microbial challenge is the 3 
final result of dynamic interactions between host, pathogen, and environment, human genetic 4 
polymorphisms have been shown to have an important, directly quantifiable impact on the 5 
outcome of various infections [1,2]. 6 

Genome-wide association studies (GWAS) have proven powerful to identify genetic regions 7 
implicated in a wide range of complex traits in both health and disease [3]. In the field of 8 
infectious diseases, several clinical and laboratory phenotypes have been investigated, 9 
including, for example disease susceptibility [4,5], clinical outcomes [6], adaptive immunity 10 
[7,8,9] or drug response [10]. In chronically infected patients, however, the pathogen genome 11 
itself provides a promising complementary target to investigate the impact of host genomic 12 
diversity on infection. While one part of the variation observed in pathogen DNA or RNA 13 
sequence is present at the transmission event, another fraction is acquired during the course 14 
of an infection, resulting at least partially from selective pressure exerted by the host response 15 
on the infectious agent. The phenomenon of within-host evolution has been extensively 16 
investigated for both viruses [11,12,13] and bacteria [14,11]. Pathogen genomic variation can 17 
thus be considered an intermediate phenotype that is detectable as a footprint of within-host 18 
evolution. This can serve as a basis for a joint association analyses of host and pathogen 19 
genome variation, which we called genome-to-genome (G2G) analysis [15], a more powerful 20 
approach than using a clinical outcome alone. A global description of the adaptive forces 21 
acting on a pathogen genome during natural infection holds the potential to identify novel 22 
therapeutic and diagnostic targets and could inform vaccine design efforts [16]. 23 

A G2G analysis for the quickly evolving human immunodeficiency virus (HIV) identified strong 24 
associations of single nucleotide polymorphisms (SNPs) in the HLA class I region with multiple 25 
amino acid variants across the viral genome [15]. More recent work showed an impact of 26 
variation in the HLA class II and interferon lambda 4 (IFNL4) loci on hepatitis C virus (HCV) 27 
sequence diversity [17,18,19]. While the rate of evolutionary change in RNA viruses is higher 28 
than in DNA viruses [20], the latter also present considerable amounts of inter- and intra-host 29 
variation. Among herpesviruses, it has been shown that human cytomegalovirus (HCMV) has 30 
higher genomic variability than other DNA viruses [21]. Recent genome sequencing efforts 31 
demonstrated that the same holds true for Epstein-Barr virus (EBV) [22,23].  32 

EBV is a widespread human pathogen that causes infectious mononucleosis in about 10% of 33 
individuals during primary infection. EBV infection occurs most often early in life, with about 34 
30% of children being seropositive by age 5, 50% by age 10 and up to 80% by age 18 [24].  35 
This human infecting herpesvirus has also been associated with post-transplant 36 
lymphoproliferative disease [25] and could play a role in some autoimmune diseases [26,27]. 37 
In addition, EBV has oncogenic properties and is implicated in the pathogenesis of multiple 38 
cancer types, predominantly Burkitt's lymphoma, Hodgkin's and non-Hodgkin’s lymphoma, 39 
nasopharyngeal carcinoma and gastric carcinoma [28,29]. More than 5% of the 2 million 40 
infection-associated new cancer cases in 2008 could be attributed to EBV [30]; it was also 41 
estimated to have caused 1.8% of cancer deaths in 2010, i.e. more than 140,000 cases [31]. 42 

The EBV genome is approximately 170 Kbp long and encodes at least 80 proteins, not all of 43 
which have been definitively identified or characterized. After primary infection, the EBV 44 
genome persists in B cells as multicopy episomes that replicate once per cell cycle. In this 45 
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latent mode, only a small subset of viral genes is expressed. Latent EBV can then reactivate 1 
to a lytic cycle, which involves higher gene expression and genome amplification for packaging 2 
into new infectious viral particles [32]. 3 

A small number of host genomic analyses of EBV infection have been recently published, 4 
demonstrating that human genetic diversity plays a role in disease outcome. A study in 270 5 
EBV isolates from southern China identified two non-synonymous EBV variants within the 6 
BALF2 gene that were strongly associated with the risk of nasopharyngeal carcinoma [33]. 7 
Another group investigated the co-evolution of worldwide EBV strains [34] and found extensive 8 
linkage disequilibrium (LD) throughout EBV genomes. Furthermore, they observed that genes 9 
in strong LD were enriched in immunogenic genes, suggesting adaptive immune selection and 10 
epistasis. In a pediatric study of 58 Endemic Burkitt lymphoma cases and 40 healthy controls, 11 
an EBV genome GWAS identified 6 associated variants in the genes EBNA1, EBNA2, BcLF1, 12 
and BARF1 [35]. Finally, the narrow-sense heritability of the humoral immune response 13 
against EBV was estimated to be 0.28 [9,36].  14 

Here, we present the first global analysis of paired human and EBV genomes. We studied full 15 
EBV genomes together with their respective host genomic variation in a cohort of 268 16 
immunocompromised, HIV-coinfected patients. We chose untreated HIV-coinfected patients 17 
because EBV reactivation leading to viremia is more prevalent in immunosuppressed 18 
individuals than in an average population. Our analysis reveals three novel host genomic loci 19 
that are associated with variation in EBV amino acids or genes.  20 

Materials and Methods 21 

Study participants, sample preparation 22 

The Swiss HIV Cohort Study (SHCS) is a nationwide, prospective cohort study of HIV-infected 23 
patients that enrolled >20,000 individuals since its establishment in 1988 and prospectively 24 
followed them at 6-month intervals [37]. For this project, SHCS participants were identified 25 
based on written consent for human genetic testing and availability of a peripheral blood 26 
mononuclear cell (PBMC) sample at time of advanced immunosuppression (i.e., with CD4+ T 27 
cell count below 200/mm3) in the absence of antiretroviral treatment.  28 

We obtained demographic and clinical information from the SHCS database. These included 29 
sex, age, longitudinal HIV viral load results (number of RNA copies per ml of plasma), 30 
longitudinal CD4+ T cell counts (number of cells per mm3 of blood), and history of opportunistic 31 
infections. 32 
The SHCS has been approved by the Ethics Committees of all participating institutions 33 
(Ethikkommission Nordwest- und Zentralschweiz, EKNZ; Kantonale Ethikkommission Bern; 34 
Ethikkommission Ostschweiz, EKOS; Ethikkommission Zürich; Commission cantonale 35 
d'éthique de la recherche sur l'être humain, Genève, CCER; Commission cantonale d'éthique 36 
de la recherche sur l’être humain, Vaud, CER-VD; Comitato etico cantonale Ticino). Each 37 
study participant provided written informed consent for genetic testing, and all research was 38 
performed in accordance with relevant guidelines and regulations.	 39 
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EBV genome quantification, enrichment and sequencing 1 

DNA was extracted from PBMCs using the MagNA Pure 96 DNA and the Viral NA Small 2 
Volume Kit (Roche, Basel, Switzerland). Cellular EBV load was then determined using 3 
quantitative real-time PCR. Samples that yielded > 100 viral copies / ul were selected for EBV 4 
genome sequencing. 5 

We used the previously described enrichment procedure to increase the relative abundance 6 
of EBV compared to host DNA [38]. Shortly, baits covering the EBV type 1 and 2 reference 7 
genomes were used to selectively capture viral DNA according to the SureSelect Illumina 8 
paired-end sequencing library protocol. Samples were then multiplexed and sequenced on an 9 
Illumina NextSeq sequencer [38]. 10 

EBV sequence analyses 11 

We chose a reference-based approach to call variants in the pathogen data. Since EBNA-2 12 
and EBNA-3s are highly variable between EBV-1 and EBV-2 strains, we suspected that reads 13 
sequenced from these genes would map only to their corresponding type. In an attempt to 14 
attenuate the reference-bias this could cause, we constructed two references, one with the 15 
whole genome of the EBV-1 strain B95-8 (accession NC_007605) and EBNA-2 and EBNA-3s 16 
sequences from EBV-2 strain AG876 (accession NC_009334) and another one with the whole 17 
genome of AG876 with the EBNA-2 and EBNA-3s sequences of B95-8. 18 

The read libraries were processed through Trimmomatic [39] to remove remnant PCR tags, 19 
TagDust [40] to eliminate low complexity reads and CD-HIT [41] to filter out duplicate reads. 20 
The remaining sequence reads were aligned to the constructs described in the previous 21 
paragraph. Following GATK best practices [42,43], we mapped the read libraries using BWA 22 
mem [44]. We cleaned the regions around InDels using GATK v3.8’s IndelRealigner [45]. As 23 
a last pre-processing step, we applied bwa-postalt.js, a BWA script that adjusts mapping 24 
quality score in function of alignments on ALT haplotypes.  25 

Because patients can be infected by multiple EBV strains [46], we used BWA’s ALT-aware 26 
ability. In short, reads mapping to an ALT contig were always marked as supplementary 27 
alignment, regardless of mapping quality, unless they did not map to the primary assembly. 28 
This makes it easy to find unambiguously mapped reads, which we used as markers to 29 
quantify type 1 and type 2 EBV reads in all samples. 30 

 31 
where #T1 and #T2 are the unambiguous read counts against type 1 and 2 haplotypes, 32 
respectively, L1 and L2 are the length of type 1 and 2 haplotypes, respectively, and r1 and r2 33 
are the type 1 and 2 ratios, respectively. The score r is the relative abundance between type 34 
1 and type 2. 35 
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 6 

Definition of EBV amino acid variants 1 

Since no gold standard variant set exists for EBV nor any closely related viral species, variant 2 
calling was performed using three different variant callers (GATK haplotypecaller, SNVer [47] 3 
and VarScan2 [48]) and by selecting as bona fide variant set the intersection of the three. The 4 
identified EBV variants were annotated using snpEff [49]. Nucleotide variants were 5 
transformed into binary amino acid matrices using in-house python scripts. The whole pipeline 6 
is written in Snakemake [50] and Python [51]. 7 

This approach was benchmarked using synthetic libraries generated from B95-8 and AG876 8 
using ART Illumina and RNFtools, at a range of coverage between 10X and 250X and 5 9 
different admixture conditions, 100% B95-8 or AG876, 75% - 25 % and 50%-50%. Assessing 10 
the true number of variants between EBV-1 and EBV-2 strains is not trivial because of the 11 
high variability in EBNA-2 and EBNA-3s regions. Therefore, we rated the variant callers and 12 
the consensus of the three mentioned callers on self-consistency. The performances of the 13 
runs were measured using the ratio of the variant counts to the size of the union of all variants 14 
called by a specific tested tool. 15 

By using EBV type 2 as a reference, we focused on two types of variation in EBV strains: 1) 16 
single amino acid variants; and 2) burden of very rare amino acid variants (present in only 1 17 
sample) in each viral gene (Figure 1). We call these datasets EBV amino acids and EBV 18 
genes, respectively. Both datasets contain binary values, with a value of 1 standing for "variant 19 
present" and 0 for "no variant present". Positions with a coverage of less than 6x were set to 20 
“missing” and samples with more than 80% missing positions were excluded entirely. The 21 
positions covered by less than 6 reads were considered missing and imputed using the 22 
imputePCA function implemented in the missMDA R-package [52]. In total, we obtained 4392 23 
amino acid variants and 83 gene variants. However, to limit the risk of model overfitting and 24 
because of low statistical power due to sample size we only included in the downstream 25 
association analyses the 575 EBV amino acids with an amino acid frequency of more than 26 
10% and 52 EBV genes.  27 

 28 

 29 
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 1 
 2 

Figure 1: Illustration of EBV sequence variation. 3 

A) The EBV genome is about 170 Kbp long and contains 83 genes, for a total of 4392 amino 4 
acid residues. As an example, we focus on the BNRF1 gene and on two amino acid changes: 5 
Glu→Ala and Ser→Leu. We know for each sample the genomic variants across the whole 6 
genome, as illustrated with the colored nucleotides. Using the nucleotide information and a 7 
reference genome we can compute the amino acid changes. 8 

B) We compare each individual (ID) to reference data and encode an amino acid as 1 if that 9 
individual has a non-synonymous change, and a 0 if not. This process returns us a matrix 10 
containing binary values, with individuals as row, and amino acids as columns. In our example, 11 
individual 2 has an amino acid change Glu→Ala and individual 3 an amino acid change 12 
Ser→Leu. 13 

C) To transform the data into outcomes for the G2G analysis we can use the amino acid matrix 14 
as it is (EBV amino acids dataset) or remove all amino acid columns that appear in more than 15 
1 individual and then pool amino acids per gene (1 = variant present, EBV genes dataset). 16 

Human genotyping and imputation 17 

A subset of 84 participants had been genotyped in the context of previous studies on several 18 
platforms. For the remaining 196 samples, human genomic DNA was isolated from PBMCs 19 
with the QIAsymphony DSP DNA Kit (Qiagen, Hilden, Germany), and genotyped using 20 
Illumina OmniExpress (v1.1) BeadChip arrays.  21 
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 8 

Genotype imputation was performed on the Sanger imputation server independently for all 1 
genotyping platforms, using EAGLE2 [53] for pre-phasing and PBWT [54] with the 1000 2 
Genomes Phase 3 reference panel [55]. Low-quality imputed variants were excluded based 3 
on imputation INFO score (< 0.8). All datasets were merged, only keeping markers that were 4 
genotyped or imputed for all genotyping platforms. SNPs were excluded on the basis of per-5 
individual missingness (> 3%), genotype missingness (> 1%), marked deviation from Hardy-6 
Weinberg equilibrium (p < 1x10-6) and minor allele frequency < 5% (Table 1). All quality control 7 
procedures were performed using PLINK 2.0 [56]. 8 

Association analyses 9 

We used the mixed model association implementation for binary and continuous outcomes in 10 
GCTA (v1.92) [57,58] to search for potential associations between human SNPs and EBV 11 
variants. The model can be expressed with the following equation: 12 

 13 
where the outcome y is a binary vector indicating whether an EBV variant is present (1) or not 14 
(0); X is a matrix that contains all covariates, ɑ represents all fixed effects of all covariates 15 
(including an intercept term), g is the SNP genotype vector with coded additive allele dosages 16 
0, 1 or 2, β is the (fixed) effect of the SNP to be tested for association, η is the polygenic 17 
(random) effect and ε the error term. This mixed model was estimated for each EBV variant 18 
(k) and SNP (l), and integrated over all L SNPs and K EBV variants. To estimate η, the host 19 
genetic relationship matrix (GRM) was calculated from QC preprocessed genotype data using 20 
GCTA [57].  21 

The use of a mixed effects association model allows to account for population stratification of 22 
the host genome. To control for population stratification among EBV genomes, we included 23 
the first six principal components (PCs) of EBV genetic variation to the covariate matrix X [59]. 24 
Other covariates were sex, age and EBV type. PCs were calculated from EBV amino acid 25 
variants using the convexLogisticPCA function from the R package logisticPCA [60] in R [61]. 26 
As data preparation for PC computation, we removed variants with less than 5% or more than 27 
95% frequency. Missing amino acid values were imputed with the imputePCA function from 28 
the R package missMDA [52]. 29 

Significance was assessed using the usual genome-wide significance threshold in European 30 
populations of 5x10-8 and dividing it by the effective number of GWASs performed [62]. We 31 
used FINEMAP [63] to determine the most likely causal SNP(s) in a 2-Mb-wide window around 32 
each significant SNP. FINEMAP requires GWAS summary statistics and LD estimations as 33 
input. To estimate LD between SNPs, we used LDstore [64]. We performed eQTL lookups for 34 
host SNPs in eQTLGen [65], EUGENE [66] and GTEx [67].  35 

Unless otherwise specified, all data preparation and analyses were performed using R [61]. 36 

Code availability 37 

EBV data preparation: https://gitlab.com/ezlab/vir_var_calling  38 
G2G Analysis: https://github.com/sinarueeger/G2G-EBV-manuscript 39 
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 9 

Results 1 

Study participants and human genetic data 2 

PBMC samples from 778 SHCS participants were screened for the presence of cellular EBV 3 
DNA using RT-PCR. A total of 290 of them were identified as viremic for EBV (>2000 copies). 4 
We obtained good quality human genotyping and EBV sequencing data for 268 of them, which 5 
were included in the association analyses. The study cohort comprised 206 male and 62 6 
female individuals, between the ages of 20 and 78 (median 40) (Table 1 and Supplementary 7 
Figure S1).  8 

We applied standard GWAS quality control (QC) procedures that yielded information for 9 
4’291’179 SNPs (Table 1 and Supplementary Figure S2, which shows the distribution of the 10 
minor allele frequency spectrum after QC).  11 

EBV genomic diversity and variant calling 12 

Genome coverage was very uneven between the samples. Mean depth varied from less than 13 
6x for 14 samples, up to more than 500x in 5 others. We also observed fluctuation in coverage 14 
above 6x, which we used to exclude 12 samples in which less than 20% of the EBV genome 15 
was sufficiently covered (Supplementary Figure S7a). In addition, the coverage in the first 16 
sequencing batch was not uniform. 17 

We estimated the clonality of EBV strain in each sample by taking advantage of the high 18 
divergence between EBNAs T1 and T2 haplotypes. Among the 282 sequenced samples, 19 
57.1% were predominantly (9:1) infected by T1 EBV, while 5.7% were mostly infected by T2 20 
EBV (Supplementary Figure S6). The remaining 37.2% were infected by multiple strains or by 21 
recombinant viruses. This approach does not allow to stratify further than the EBNA types. 22 

The variant calling pipeline was adapted to output variants by minimizing the impact of the 23 
admixture ratio and of the low coverage observed in the SHCS samples. Variants were called 24 
against EBV-2, as EBV-2 was able to call more variants than EBV-1 (Supplementary Figure 25 
S7d). The benchmark experiments against AG876 (EBV-2) yielded a total of 961 different 26 
variants. The most conservative was SNVer (783 variants), while the most sensitive was 27 
BCFtools (930 variants). The variant callers can be prone to artifacts [68], which was 28 
specifically observed in SNVer (Supplementary Figure S7c) in these datasets. To reduce the 29 
probability of calling artifacts, we chose to use the bona fide intersection of GATK HC, SNVer 30 
and VarScan2. This approach is likely to be impacted by low coverage. The recall is stable at 31 
around 95% at 25X coverage upwards and reasonable (10%) at 20X (Supplementary Figure 32 
S7c). Hence, low coverage has an impact, specifically, half potential variants called, on only 33 
15% of the SHCS sample. However, this approach is very conservative, since it outputs only 34 
88%, 85% and 79% of the variants called by SNVer, GATK HC and VarScan2, respectively.  35 

On average, around 800 amino acid variants were called for each sample, with slight 36 
differences correlating with the clonality of the samples and the coverage above 6X 37 
(Supplementary Figure S7d). The variant counts against the AG876 construct (EBV-2) were 38 
generally higher in mixed infections and EBV-1 strains (Supplementary Figure S7d A). The 39 
variant counts were generally lower in the samples included in the first sequencing batch, 40 
which is likely due to the fluctuating coverage. However, overall, the number of variants was 41 
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 10 

found to be comparable across the samples, ranging from 400 to 1500 for the 77% samples 1 
with a 6X coverage above 80% (Supplementary Figure S7d). Under 80% coverage, the variant 2 
counts hardly exceed 500 but rarely drops under 200 either. It is therefore likely that we missed 3 
variants using our approach. The positions covered by less than 6 reads were considered 4 
missing and imputed afterwards using the imputePCA function implemented in the missMDA 5 
R-package. 6 

We analyzed EBV variation using two approaches: single marker analysis of EBV amino acids, 7 
to investigate common viral variation, and burden testing of very rare amino acid variants in 8 
EBV genes (Table 1, Supplementary Figure S3). Applying logistic principal component 9 
analysis of viral genomic structure showed a single main cluster (Supplementary Figure S4).  10 

Genome-to-Genome association analysis 11 

We tested for associations between each EBV variant and human SNPs. We studied 575 EBV 12 
amino acids and 52 EBV genes, for a total of 627 GWASs. The effective number of GWASs 13 
performed was 458. As covariates, we included the first six EBV principal components (51.4% 14 
deviance explained), sex, age, type 1 vs 2 of EBV (Supplementary Figure S1). The sample 15 
size ranged between 120 and 268, with a median sample size of 264. Sample size variation 16 
was due to variable missingness in the EBV data. Genomic inflation factors for each of the 17 
627 GWASs ranged between 0.92 and 1.12. 18 

Significant associations (p < 1.09x10-10) were identified between a total of 25 human SNPs 19 
and viral variants mapping to three EBV regions (Table 2): the EBV genes BALF5 (Figure 2a) 20 
and BBRF1 (Figure 2b) and the EBV amino acid BRLF1:p.Lys316Glu (Figure 2c). The minor 21 
allele frequency of all significant host SNPs was between 0.05 and 0.10. The genomic inflation 22 
factors of the three GWASs ranged between 0.95 and 0.96 (Q-Q plots shown in 23 
Supplementary Figure S5).  24 

 25 

 26 

 27 

 28 

 29 

 30 
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 37 
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 1 
A 2 

       3 
B 4 

    5 
C 6 

    7 
Figure 2: Significant associations - A: BALF5, B: BBRF1, C: BRLF1:p.Lys316Glu. 8 

The x-axis represents the chromosomal position and the y-axis displays the -log10(p-value). 9 
Colour alternates between chromosomes. Regions that contain statistically significant SNP 10 
are presented in red (top SNP +/- 400 Kbp). The light grey dashed line represents the GWAS 11 
significance threshold of 5x10-8, the dark grey dashed line the G2G threshold of 1.09x10-10.  12 
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 12 

Strong associations were observed between 17 SNPs in the UNC5D region on chromosome 1 
8 and the occurrence of very rare functional variants in the EBV BALF5 gene (Figures 2a, 3a), 2 
which is involved in viral DNA replication during the late phase of lytic infection. UNC5D is a 3 
poorly characterized gene expressed mainly in neuronal tissues, which encodes a protein that 4 
has been shown to regulate p53-dependent apoptosis in neuroblastoma cells [69]. The top 5 
associated SNP, rs2950922 (OR = 1.31, 95%-CI = 1.21-1.41, P = 4.2x10-12, effect allele G), 6 
is an eQTL for UNC5D in esophageal tissue (GTEx, [67]).  7 

Rare amino acid variation in BBRF1 was found to be associated with a single SNP, 8 
rs62124869 (OR = 1.29, 95%-CI = 1.19-1.39, P = 4.2x10-11, effect allele C), which maps to the 9 
non-coding RNA gene LINC01830 (Long Intergenic Non-Protein Coding RNA 1830) on 10 
chromosome 2 (Figures 2b, 3b).  11 

Finally, 7 SNPs mapping to a non-coding region of chromosome 7 were found to be associated 12 
with the EBV amino acid variant BRLF1:p.Lys316Glu (Figure 2c, 3c). The top SNP, 13 
rs6466720, had a p-value of 6.85x10-11 and an OR of 1.41 (95%-CI = 1.28-1.58, effect allele 14 
G). BRLF1 controls lytic reactivation of EBV from latency and regulates viral transcription. 15 
BRLF1:p.Lys316Glu has not been described previously, but variation at the nearby residue 16 
377 (BRLF1:p.Glu377Ala) has been shown to be prevalent in cases of nasopharyngeal and 17 
gastric carcinomas in Chinese samples [70]. BRLF1:p.Lys316Glu and BRLF1:p.Glu377Ala 18 
are in moderate LD (r2=0.55) in our dataset. 19 

 20 
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 1 
 2 

Figure 3: Locuszoom plots.  3 

Locuszoom plots for the three EBV association signals highlighted in red in Figure 2 (A: 4 
BALF5, B: BBRF1, C: BRLF1:p.Lys316Glu).  5 

Discussion 6 

Because immunosuppression - and in particular T cell deficiency - favors EBV reactivation 7 
from its latent B cell reservoir, EBV viremia is frequently detected in (untreated) HIV-infected 8 
individuals with advanced disease and low CD4+ T cell counts. We hypothesized that the 9 
reactivated virus circulating in these patients could carry sequence variants acquired during 10 
primary EBV infection, thereby providing a snapshot of early adaptation to the pressure 11 
exerted on EBV by the individual immune response. 12 

To search for a potential imprint of host genomic variation on the viral sequence, we jointly 13 
analyzed genomic information obtained from paired EBV and human samples. Viral sequence 14 
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variation can be seen as an intermediate phenotype, closer to potentially causal host 1 
polymorphisms than clinically observable outcomes like viral load or disease phenotypes. As 2 
such, it allows the detection of more subtle associations, less likely to be obscured by 3 
environmental influences. In our G2G analysis, we used variation at EBV amino acid residues 4 
as outcome in multiple parallel GWAS, which allowed us to obtain effect estimations between 5 
each human genetic variant and EBV variation.  6 

We identified two EBV genes and one EBV amino acid as associated with three regions of the 7 
human genome, spanning altogether 25 SNPs. For the GWAS with BALF5 as the outcome, 8 
the associated human genomic region contains eQTLs for the nearby gene UNC5D. This gene 9 
is poorly characterized but has been shown to play a role in the regulation of apoptosis [69]. 10 
The other two EBV genes (BRLF1, BBRF1) provided little indication of what underlying 11 
mechanism might be at play.  12 

Our study is limited by its small sample size and by the complexity of correcting for human 13 
and EBV population stratification. Indeed, if not carefully controlled for, the existence of 14 
population structure in the host and pathogen genome might create spurious associations or 15 
decrease real signals in G2G analyses, resulting in both type I and type II errors. With a mixed 16 
model approach and the inclusion of pathogen principal components as covariates, the 17 
genomic inflation factors of our GWAS ranged between 0.92 and 1.12. This wide range of 18 
genomic inflation factors is likely due to a combination of small sample size and complex 19 
statistical model. To prevent false positives, we adjusted for genomic inflation when extracting 20 
significant SNPs and used a conservative G2G significance threshold of 5x10-8 divided by the 21 
effective number of GWAS performed. Although viral genetic variation is a more precise 22 
phenotype to study than traditional outcomes, it comes at the price of decreased power due 23 
to the high-dimensional outcome. The significance threshold is thus much lower than in a 24 
single GWAS. To limit the number of statistical tests performed, we restricted our analysis to 25 
common gene and amino acid variation.  26 

Our analyses have been performed using historical samples collected from untreated HIV-27 
infected individuals. Considering the natural history of EBV infection in humans and its high 28 
likelihood to be acquired during the first 2 decades of life, we postulate that intra-host 29 
adaptation of EBV happened before HIV infection, i.e. with a normally functioning immune 30 
system. At the time of sample collection, all study participants had advanced 31 
immunosuppression with low CD4+ T cell counts (< 200 cells/mm3 of blood). We therefore 32 
assume an absence of selective pressure on EBV at that time. These assumptions limit 33 
obviously the generalizability of our findings to non-HIV-infected population. Similar studies 34 
performed during primary EBV infection or in other specific population (e.g. bone-marrow 35 
transplant recipients) would help better delineate the global impact of intra-host selection on 36 
EBV sequence variation.  37 

Our study provides a preliminary list of statistical associations between the EBV and the 38 
human genomes. The cataloguing of the sites of host-pathogen genomic conflict is potentially 39 
useful for further functional exploration, as has been demonstrated for HIV and HCV infections. 40 
Our results require replication and validation in different cohorts and settings. Importantly, 41 
larger sample sizes will be needed to increase power and provide more robust estimations.  42 
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Data availability 1 

The datasets generated during and/or analysed during the current study are available in the 2 
following Zenodo repositories: G2G results are in https://doi.org/10.5281/zenodo.4289138, 3 
pathogen data in https://doi.org/10.5281/zenodo.4011995. 4 
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Figure legends 4 

Figure 1: Illustration of EBV sequence variation. 5 

A) The EBV genome is about 170 Kbp long and contains 83 genes, for a total of 4392 amino 6 
acid residues. As an example, we focus on the BNRF1 gene and on two amino acid changes: 7 
Glu→Ala and Ser→Leu. We know for each sample the genomic variants across the whole 8 
genome, as illustrated with the colored nucleotides. Using the nucleotide information and a 9 
reference genome we can compute the amino acid changes. 10 

B) We compare each individual (ID) to reference data and encode an amino acid as 1 if that 11 
individual has a non-synonymous change, and a 0 if not. This process returns us a matrix 12 
containing binary values, with individuals as row, and amino acids as columns. In our example, 13 
individual 2 has an amino acid change Glu→Ala and individual 3 an amino acid change 14 
Ser→Leu. 15 

C) To transform the data into outcomes for the G2G analysis we can use the amino acid matrix 16 
as it is (EBV amino acids dataset) or remove all amino acid columns that appear in more than 17 
1 individual and then pool amino acids per gene (1 = variant present, EBV genes dataset). 18 

 19 

Figure 2: Significant associations - A: BALF5, B: BBRF1, C: BRLF1:p.Lys316Glu. 20 

The x-axis represents the chromosomal position and the y-axis displays the -log10(p-value). 21 
Colour alternates between chromosomes. Regions that contain statistically significant SNP 22 
are presented in red (top SNP +/- 400 Kbp). The light grey dashed line represents the GWAS 23 
significance threshold of 5x10-8, the dark grey dashed line the G2G threshold of 1.09x10-10.  24 
 25 

Figure 3: Locuszoom plots.  26 

Locuszoom plots for the three EBV association signals highlighted in red in Figure 2 (A: 27 
BALF5, B: BBRF1, C: BRLF1:p.Lys316Glu).  28 

 29 
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 4 

 5 

 6 

Tables 7 

 8 

Table 1: Summary of pathogen variants, host SNPs and covariates for 268 individuals. For 9 
each covariate, we indicate the number of individuals measured, and distribution (mean, 10 
median, standard deviation, minimum, maximum for quantitative, frequency for sex). For 11 
aggregated EBV genes the frequency is shown, for host SNPs the MAF distribution is 12 
presented.   13 

dataset variable counts mean median sd min max 

Pathogen genome (83 Rare 

EBV gene variation) Variant frequency  0.067 0.049 0.057 0 0.37 

Pathogen genome (575 

EBV amino acids) Variant frequency  0.26 0.24 0.12 0.093 0.5 

Covariates Sex 

male: 206, 

female: 62      
Covariates AGE  42.02 40.79 10.98 20.25 77.52 

Covariates PC1  -8.95 -7.12 32.53 

-

69.95 76.11 

Covariates PC2  7.39 8.4 30.41 

-

63.83 61.8 

Covariates PC3  4.45 3.19 21.41 

-

46.44 51.11 

Covariates PC4  -3.91 -6.69 20.72 

-

36.49 52.11 

Covariates PC5  -5.09 -8.39 18.76 -51.7 56.02 

Covariates PC6  -3.16 -3.21 18.65 

-

55.69 35.68 

Covariates EBV type  0.54 0.95 0.67 -1 1 
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 1 

 1 
* SNP with locus-wide lowest P-value 2 
** Odds ratio (exp(b) for logistic mixed effects model) in SHCS 3 
*** Gene and tissue of eqtl association (P-value of association), from GTEX: 4 
UNC5D in Esophagus_Muscularis (P=1.15243e-13), UNC5D in Esophagus_Gastroesophageal_Junction (P=2.61983e-05) 5 
 6 

Table 2: Summary of G2G analysis results. Top SNP and/or fine-mapped SNP per locus represented with: EBV dataset, EBV outcome, 7 
chromosome, SNP identifier, odds ratio, p-value, whether this SNP is a top SNP or a fine-mapped SNP, the causal probability from FINEMAP, 8 
effect allele, effect allele frequency, sample size, corresponding gene, variant consequence, associated eQTL gene, associated eQTL associated 9 
eQTL gene and p-value in GTEx (from https://gtexportal.org/home/) [67]. See Supplementary Table S1 for detailed information about all 25 10 
variants and Supplementary Table S2 for fine-mapping results. 11 

Locus 

EBV 

dataset EBV outcome SNP Chr OR** p 

Finemapped 

SNP 

Finemapped 

probability 

Effect 

allele EAF n gene Consequence type 

2 

gene 

(binary, 

variants 

< 1 

sample) BALF5 rs2950922* 8 1.30739 4.2E-12 TRUE 0.13317 G 0.10821 268 UNC5D*** intron_variant 

              

3 

gene 

(binary, 

variants 

< 1 

sample) BBRF1 rs62124869* 2 1.29103 4.3E-11 TRUE 0.71847 C 0.0541 268 LINC01830 non_coding_transcript_variant 

1 

amino 

acid 

(binary) BRLF1:p.Lys316Glu rs7808072* 7 1.41346 6.8E-11 FALSE  T 0.06762 244   

1 

amino 

acid 

(binary) BRLF1:p.Lys316Glu rs6466720 7 1.42464 7.7E-11 TRUE 0.04783 G 0.06967 244   
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