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Abstract

Background: Pooling is a popular strategy for increasing SARS-CoV-
2 testing throughput. A common pooling scheme is Dorfman pooling: test
N individuals simultaneously. If the first test is positive — retest each
individual.

Methods: Using a probabilistic model, we analyze the false-negative
rate (.i.e. the probability of a negative result for an infected individual)
of Dorfman pooling . Our model is conservative in that it ignores sample
dilution effects, which can only worsen pooling performance.

Results: We show that one can expect a 60-80% increase in false-
negative rates under Dorfman pooling, for reasonable parameter values.
On average, when separate testing misses, e.g., ten infected individuals —
Dorfman pooling misses more than sixteen.

Discussion: In most pooling schemes, identifying an infected indi-
vidual requires positive results in multiple tests and hence substantially
increases false-negative rates. It is an inherent shortcoming of pooling
schemes and should be kept in mind by policy makers.

1 Introduction

RT-PCR testing is a key component in breaking transmission chains and mit-
igating the COVID-19 pandemic. As such, the need for large-scale testing has
resulted in development of pooling schemes of RT-PCR tests [1, 3, 4, 6, 7]. One
such popular scheme is Dorfman pooling [1, 2]: Select N individuals and per-
form a single RT-PCR test on their combined (“pooled”) samples. If the pooled
test yields a positive result — test each individual separately. The throughput
efficiency of Dorfman pooling has been demonstrated empirically [1]. However,
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when test error rates are taken into consideration, a sharp increase in false-
negative rates can be expected.

It is important to distinguish three types of false-negative events when per-
forming pooling. For convenience, we follow a single infected individual, hence-
forth referred to as ”Donald”. A single test’s false-negative is the event of a
negative result upon testing Donald separately, i.e., in a RT-PCR test without
pooling. The probability of such an event is denoted Pfn. A pooled false-negative
occurs when a pooled test containing Donald’s sample (and other samples) yields
a negative result, i.e., the pooling fails to detect at least one positive result .
Lastly, a scheme false-negative results occurs when an entire pooling scheme
fails to identify Donald as infected. Our goal is to calculate Dorfman’s scheme
false-negative rate. Or: what is the probability of Dorfman pooling not identi-
fying Donald as infected?

2 Methods

2.1 Probabilistic Assumptions

We assume two pathways for a positive pooled test result: Viral RNA from an
infected individual is correctly amplified; or, some testing error occurs, which
causes an erroneous amplification. We ignore cross-reactivity with other Coro-
naviruses, which is negligible [10]. We assume a homogeneous and disconnected
population (each individual is infected independently and with equal probabil-
ity). For simplicity, we do not take into account sample dilution, since it can
only further increase false-negative rates [1].

2.2 A simplistic approximation

For Dorfman’s scheme to yield a false-negative result, Donald has to test nega-
tive in either the single or the pooled test. If the infection prevalence is low, it
is likely that Donald is the only infected individual in the pool. In this case, the
false-negative probability of a pooled test equals the single test false-negative
rate. See Section 2.3 for a precise calculation. The probability that Donald
tests positive in both single and pooled test is then (1−Pfn)2. Hence, the entire
scheme’s false-negative rate is approximately the complement — 1− (1−Pfn)2.

2.3 Calculation of Dorfman’s scheme false-negative rate

Denote the prevalence of infection in the (tested) population q. As before, Pfn

denotes the single RT-PCR test’s false-negative rate. We also denote Pfp the
probability of introducing contaminated RNA in the pooling process (which may
cause a false-positive). By our assumptions, a pool containing Donald’s sample
and N − 1 other samples will yield a negative result if all of the following occur:

• No contaminant RNA is introduced into the pooled samples. A false-
positive does not occur, with probability 1 − Pfp.
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• The amplification process fails for Donald’s sample. A false-negative oc-
curs, with probability Pfn.

• The amplification process fails for the other N − 1 samples. For a single
sample, the probability of being amplified is the prevalence of SARS-CoV-
2 in the tested population q, multiplied by the true-positive rate. But the
true-positive rate is the complement of Pfn, namely 1 − Pfn, hence the
probability of amplification is q(1 − Pfn). For N − 1 such samples, the
probability of not being amplified is (1 − q(1 − Pfn))N−1.

The pooled false-negative probability for Donald is simply the product of the
terms above. Hence:

P(pool is positive) = 1 − P(pool false-negative)

= 1 − (1 − Pfp)Pfn(1 − q(1 − Pfn))N−1.
(1)

If the pooled test yields a positive result, Donald is tested separately. We
assume such a simple procedure poses no risk of introducing contaminant RNA.
Therefore, the separate test yields a positive result with probability 1 − Pfn.

We calculate the probability that Donald is mistakenly identified as not
infected — the scheme’s false-negative rate — denoted Psfn below. To correctly
identify Donald as infected, both pooled and separate tests have to yield a
positive result. Thus, the scheme’s false-negative rate Psfn is the complement of
the product of the two previous terms:

Psfn : = 1 − P(correctly identify Donald as infected)

= 1 − (1 − Pfn)
[
1 − Pfn(1 − Pfp)(1 − q(1 − Pfn))N−1

]
.

(2)

2.4 Comparison metric

The single test false-negative Pfn and scheme false-negative rate Psfn are com-
pared via:

Erel :=
Psfn − Pfn

Pfn
· 100. (3)

Erel is the percentage increase in the pooling scheme false-negative rate, relative
to the single test false-negative rate.

3 Results

To get a sense of the scheme’s false-negative rate, we first plug in Pfn = 0.2
[5,8–12] for the single test’s false-negative rate in the simplistic approximation of
Section 2.2. We get that Dorfman’s scheme false-negative rate is approximately
1−(1−0.2)2 = 0.36. This figure, compared to the single test’s false-negative rate
Pfn, amounts to Erel = 80%. Such an increase is an inevitable consequence of
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Figure 1: Relative increase in Dorfman pooling false-negative rates Erel. Color
represents the relative percentage increase in the scheme false-negative rates
relative to the single test false-negative rates, Pfn. The disease prevalence, q,
is varied on the x-axis, while the single test false-negative rate is varied on the
y-axis. Note that Pool size, N , was chosen according to q as in [1].

the fact that, for Donald to be identified as infected, he needs to test positively
in two tests.

For the precise calculation, let us set false-negative and false-positive rates
of Pfn = 0.2 [9–11] and Pfp = 0.05 [1, 12] along with a prevalence (among the
tested) of q = 0.01 and a pool size of N = 8 [1]. In this case the scheme’s
false-negative rate is Psfn = 0.34 and — a Erel = 70% increase compared to
Pfn = 0.2, the assumed test’s false-negative rate. Other combinations of values
can be found in Figure 1.

4 Discussion

Although pooling improves testing throughput, we have shown that it can po-
tentially increase false-negative rates. This result remains qualitatively similar
under varying parameter values, in the observed ranges (refs) (Figure 1). The
calculation in the beginning of Section 3, although simplistic in nature, does
capture the crux of the matter: In every step there is some probability of a
false-negative result, and these probabilities accumulate.

Although we have shown the inherent risk of Dorfman pooling, this short-
coming applies to other pooling schemes. Pooling schemes (e.g. [3, 13]), require
some sequence of positive pooled results to correctly identify Donald as infected.
Consider the pooling scheme of [13]: If the first pool yields a positive result, it
is split in two. Then the splitting is repeated until resulting poolss are negative
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or individuals are tested separately. With an initial pool size of 32, Donald will
necessarily have to test positive in pools of size 32, 16, 8, 4 and 2, as well as in
a single test, for the scheme to correctly identify him as infected. Compare this
to the Dorfman scheme that requires a positive test in a pool of size N = 8, and
an additional single positive test to identify Donald as infected. The pooling
scheme of [13] will necessarily yield more false-nagetives than Dorfman pooling
— there are additional places for it to fail.

As mentioned in [1], introducing a positive dependence within a pool de-
creases the false-positive rate. In the extreme case, consider a fully connected
pool, where one infection implies the entire pool is infected. In this case, a cal-
culation analogous to the one conducted above recovers the initial false-negative
rate Pfn. Interestingly, pooling was also noted to have increased through-
put when infection probabilities are dependent between the pooled individu-
als [1], providing another advantage to sampling dependent individuals in pool-
ing schemes.

To conclude, pooling is an important technique which can facilitate test-
ing throughput in a cost-effective manner. Nevertheless, a substantial increase
in pooling schemes’ false-negative rates can be expected. Such an increase in
pooling schemes’ false-negative rates has crucial implications for controlling the
spread of COVID-19.
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