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2 

Summary 33 

Polygenic risk scores (PRS) aim to quantify the contribution of multiple genetic loci to an 34 

individual’s likelihood of a complex trait or disease. However, existing PRS estimate genetic 35 

liability using common genetic variants, excluding the impact of rare variants. We identified rare, 36 

large-effect variants in individuals with outlier gene expression from the GTEx project and then 37 

assessed their impact on PRS predictions in the UK Biobank (UKB). We observed large 38 

deviations from the PRS-predicted phenotypes for carriers of multiple outlier rare variants; for 39 

example, individuals classified as “low-risk” but in the top 1% of outlier rare variant burden had a 40 

6-fold higher rate of severe obesity. We replicated these findings using data from the NHLBI 41 

Trans-Omics for Precision Medicine (TOPMed) biobank and the Million Veteran Program, and 42 

demonstrated that PRS across multiple traits will significantly benefit from the inclusion of rare 43 

genetic variants. 44 

 45 

Key words 46 
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3 

Introduction 48 

 49 

A major goal of complex disease genetics is predicting an individual’s disease risk. Recent 50 

efforts have aimed at summarizing genome-wide risk for multiple traits and diseases using 51 

polygenic risk scores (PRS)1–6, which are derived by summing genome-wide common genetic 52 

variants associated with a given phenotype. PRS have demonstrated stratification of genetic 53 

disease risk, but there remains substantial unexplained variability in these predictions. One 54 

potential explanation for this variability is the presence of rare variants with large phenotypic 55 

effects that are unaccounted for in PRS models2. 56 

 57 

However, despite known contributions of rare genetic variants to complex traits and diseases7,8, 58 

rare variants are difficult to robustly characterize and integrate into PRS predictions due to their 59 

abundance in the genome, poor interpretability and sample size constraints. To in-part alleviate 60 

this challenge, it has previously been shown that individuals with outlier gene expression have 61 

an increased burden of rare variants proximal to the outlier gene9–12, and that this subset of rare 62 

variants tend to have larger effects on traits and diseases13,14. 63 

 64 

Given the known large effects of rare variants linked to expression outliers - and that these 65 

variants are not currently included in existing PRS - we sought to test whether this subset of 66 

rare variants can aid in explaining instances where an individual’s phenotype deviates from their 67 

phenotype as predicted by their PRS. We present an approach that summarizes the phenotypic 68 

effects in UKB15 of an increasing burden of rare variants associated with outlier gene expression 69 

discovered in GTEx. We focus primarily on body mass index (BMI) and obesity given the 70 

growing public health emergency of severe obesity in the US and around the world16, the 71 

availability of high-quality publicly-available PRS for BMI, known polygenicity, and sample size 72 

considerations. 73 
 74 
Results 75 

 76 

Identification of rare, large-effect expression variants 77 

 78 

To identify rare variants linked to gene expression outliers that could also be tested for their 79 

effects on complex traits, we intersected the set of single nucleotide variants with gnomAD17 80 

minor allele frequency (MAF) > 0 and < 1% identified in GTEx v7 with high-quality imputed 81 
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variants in the UKB (Fig. 1A). From a starting set of 6,134,805 unique rare variants, we 82 

identified 1,307,023 (21.3%) variants also within the UKB (Fig. 1B). From this intersecting set, 83 

we compared the set of variants found in GTEx outlier to non-outlier individuals to isolate the 84 

subset of rare variants present in gene expression outlier individuals only. This process was 85 

conducted in two ways; “top-outlier” where only rare variants from the most extreme outlier 86 

individual(s) (maximum of two individuals per gene - most under-expressed and most over-87 

expressed individuals, abs(Z)>2), and “all outliers” where all rare variants from individuals with 88 

abs(Z)>2 were included (Methods; Sup. Table 1). Rare variants found in both outlier and non-89 

outlier individuals were subsequently removed. Variants were then linked to a specific gene if 90 

they fell within the gene body or +/- 10 Kb (N genes: “top-outlier” = 3,732; “all-outliers” = 91 

15,095). We consider the “top-outlier” as a high-confidence set, given that these variants are 92 

found in the most extreme expression outliers. The “all-outlier” method allows us to expand the 93 

range of variants, guided by the properties of the “top-outlier” variant set. We further defined a 94 

corresponding set of non-outlier/control variants, matched on both the gnomAD MAF and 95 

CADD18 scores of outlier variants (Methods). 96 

 97 

We observed that individuals were often carriers for multiple outlier rare variants. Considering a 98 

sample cohort of individuals from UKB (N = 120,944) (Methods; Sup. Fig. 1), each individual 99 

had an average of 23 (“top-outlier”) and 304 (“all-outlier”) outlier variants. To evaluate if these 100 

variants cumulatively were biased in effect direction (i.e. risk or protective) for a highly polygenic 101 

trait, we assessed UKB BMI GWAS effect directions and observed no significant differences. On 102 

average, individuals carried 11 potential protective rare variants and 12 potential risk variants 103 

using the “top-outlier” approach. 104 

  105 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.02.20242990doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.02.20242990
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

 106 
Figure 1. Linking rare variants associated with gene expression outliers in GTEx to large-scale 107 
genetic cohorts. A. Overview of methodology: rare variants (gnomAD MAF<1%) were identified in 108 
expression outlier samples across 48 GTEx tissues, discarding any variants also observed in non-outliers; 109 
variants from non-outlier samples were selected per gene, matched on gnomAD MAF (<1%) and CADD 110 
score (+/- 5), to create a control set; variants were linked to UKB samples, combined with UKB samples’ 111 
BMI PRS, ancestry PCs, age, sex, and phenotype data. B. Number of rare GTEx variants recovered in 112 
UKB imputed set. C. Example gene locus (FOXO3) containing a common variant genome-wide significant 113 
hit for BMI illustrates large GWAS effect size of outlier-associated variants: (left) showing distribution of -114 
log10(P-values) for UKB BMI GWAS for all outlier (blue halo) and non-outlier (gray halo) variants linked to 115 
the gene; (right) associated effect sizes, stratified by UKB allele count. Outlier variants have among the 116 
largest effects in gene locus but do not reach genome-wide significance. Points are colored by LD (1000 117 
Genomes phase 3, European samples) relative to lead variant (top P-value) (purple diamond) in gene 118 
locus.  119 
 120 
 121 
 122 
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Large-effect, rare expression variants impact BMI and obesity in UK Biobank 123 

 124 

To evaluate if rare expression outlier-associated variants had greater effect sizes than matched 125 

non-outlier variants (used as a control set), we focused on BMI and obesity GWAS from the 126 

UKB. We observed that a subset of outlier variants had relatively larger GWAS effects; for 127 

example, an outlier variant linked to the gene FOXO3 has an effect size rank of 1/3059 in a 1 128 

Mb locus (centered on the top genome-wide significant variant) (Fig. 1C), and among the top 129 

0.07% of effect sizes overall, across all variants measured across the UKB for BMI.  130 

 131 

To systematically assess whether these outlier variants had higher effect sizes than non-outlier 132 

variants, we performed a permutation test (N permutations = 10,000) using outlier ("top-outlier"; 133 

n variants = 8,272) and matched non-outlier variants (n variants = 29,659) that fall within 10kb of 134 

any PRS variant to assess how often randomly-drawn outlier variants had larger effect sizes 135 

than non-outlier variants. For BMI GWAS, we observed a mean odds ratio of 1.02 when 136 

comparing outlier vs. non-outlier variants, and a mean odds ratio of 1 when comparing non-137 

outlier variants to themselves (Wilcoxon test, P < 1×10-16). For obesity GWAS (ICD-10 E66), we 138 

observed an increased mean odds ratio of 1.1 (Wilcoxon test, P < 1×10-16) (Fig. 2A). When 139 

increasing the outlier expression Z-score threshold, we observed progressively larger odds 140 

ratios (mean odds ratio (BMI GWAS): abs(Z)>4 = 1.28; abs(Z)>6 = 1.58), but not when 141 

comparing non-outlier variants only (mean odds ratio (BMI GWAS): abs(Z)>4 = 1; abs(Z)>6 = 1) 142 

(Wilcoxon test, P < 1×10-16 for both comparisons) (Fig. 2B). We replicated the permutation test 143 

findings using a subset of the same rare variants that are also available in the Million Veteran 144 

Program (MVP) BMI GWAS (N variants: outlier = 4,955; non-outlier = 18,145), and observed 145 

similar results (mean odds ratio: outlier vs. non-outlier = 1.05; non-outlier only = 1; P < 1×10-16) 146 

(Fig. 2C). We further directly compared effect sizes between outlier and control variants and 147 

observed significantly increased effect sizes for outlier variants that increased with outlier Z-148 

score thresholds (Fig. 2D; Ansari test, P < 1×10-16 for all comparisons).  149 

 150 

We next assessed whether outlier variant effects were concordant with predictions of effect 151 

direction from common variant associations. We compared GWAS effect direction between cis-152 

eQTLs and outlier variants for the same loci matched on slope (as an example, positive cis-153 

eQTL slope and over-expression outliers both leading to increased GWAS risk) (Methods). We 154 

stratified results by cis-eQTL variant GWAS p-value and outlier-associated variant Z-score, 155 

observing that variants identified in more-severe (by Z-score) expression outliers have overall 156 
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better concordance in GWAS effect direction with cis-eQTL variants, across genes. For 157 

example, at a cis-eQTL variant GWAS P-value cutoff <= 1×10-6, we observed 50, 96, and 100% 158 

concordance for variants passing absolute Z-score thresholds of 2, 3, and 4, respectively (Sup. 159 

Fig. 2).  160 

 161 

Independent outlier gene count (IOGC) score stratifies BMI  162 

 163 

To identify the impact of multiple outlier variants in an existing high-quality, publicly-available 164 

BMI PRS, we used data from Khera et al. (2019)1. We first obtained gnomAD AF for PRS 165 

variants, and observed that these PRS alleles have a mean gnomAD AF = 0.49 (SD = 0.29) 166 

(Fig. 2E). Plotting GWAS effect sizes by UKB allele count for an example locus (gene FOXO3) 167 

further illustrates that PRS variants tend to be common variants with small effects (Fig. 2F). We 168 

calculated PRS for each individual in our UKB validation cohort (N = 120,944) and observed the 169 

expected gradients in mean BMI and weight increasing by PRS deciles (Sup. Fig. 3). We then 170 

used a linear regression model to assess change in BMI given an individual’s PRS, sex, age, 171 

first ten components of genetic ancestry, genotyping array, and a score that quantifies the total 172 

outlier-variant burden per individual, computed by subtracting total protective from total risk 173 

outlier-variants collapsed to gene-level (Methods; Sup. Fig. 4). We refer to this score as the 174 

independent outlier gene count (IOGC) score henceforth. We observed significant coefficient 175 

estimates for 10/15 features in the model, including IOGC score (linear regression r = 0.015, P = 176 

7×10-7) (Sup. Fig. 5). We computed the rate of concordance in GWAS effect (i.e. risk/protective) 177 

and outlier direction for outlier variants linked genes across UKB individuals, observing a rate of 178 

concordance of 86.7% for individuals with >=2 outlier variants linked to each gene. This rate of 179 

concordance is remarkably stable when increasing the outlier variant threshold per gene 180 

(82.2%, 81.8%, 83.2%, for >= 3, 4, and 5 outlier variants, respectively). 181 

 182 

We sought to clarify whether IOGC variants identified from outlier individuals in GTEx were 183 

driving downstream effects on BMI in excess of what is observed by selecting random subsets 184 

of non-outlier rare variants. We investigated this by first selecting random subsets of the 185 

matched non-outlier variants (matching the number of outlier variants across permutations, N 186 

variants = 8,272; N permutations = 10,000), observing that the IOGC beta estimate when using 187 

outlier variants exceeds that which would be expected based on random subsets of non-outlier 188 

variants (mean IOGC non-outlier = 0.0075; empirical P = 0.0012) (Sup. Fig. 6A), validating the 189 

findings of the permutation test described in the previous section. Furthermore, when outliers 190 
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where observed across more than one tissue, we observed a mean change in BMI of 0.015 191 

kg/m2 per unit change in IOGC score (linear regression, P = 7×10-7), whereas increasing this 192 

threshold to >= 10 tissues results in a greater than 5-fold increase in mean change in BMI to 193 

0.08 kg/m2 per unit change in IOGC score (linear regression, P = 0.04) (Fig. 2G). Using a 194 

permutation test of matched non-outlier variants (N permutations = 10,000), we again observed 195 

that outlier effects exceed that which would be expected using random subsets of rare variants 196 

(Sup. Fig. 6B). 197 

 198 

We further investigated whether the severity of outlier gene expression integrated into the IOGC 199 

score affected change in BMI. We observed that at increasingly more-stringent Z-score 200 

thresholds, mean change in BMI also increased (Fig. 2H) (abs(Z) 2-3, linear regression r = 201 

0.008 (P < 1×10-6); abs(Z) 3-4, linear regression r = 0.009 (P = 2×10-6); abs(Z) 4-5, linear 202 

regression r = 0.014 (P = 9×10-4). Comparing variants identified in outlier genes with Z-score 203 

between abs(Z) 2-3 with abs(Z) 4-5, we observe a 75% increase in mean change in BMI per 204 

unit change in IOGC score.  205 

 206 

  207 
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Figure 2. Characterizing outlier and non-outlier variants using large-scale GWAS. A. Distribution of 209 
odds ratios from permutation testing (N permutations = 10,000) to assess relative effect size comparing 210 
outlier- and non-outlier variants per gene in UKB GWAS for BMI (top) and obesity (bottom). Across each 211 
permutation, the absolute effect size for a randomly-chosen outlier sample and matched non-outlier 212 
sample was obtained for each gene and summed in a contingency matrix to quantify the number of genes 213 
where the outlier variant had an absolute effect size greater than the non-outlier variant (blue shading). 214 
This process was repeated for randomly selected non-outlier variants only (gray). P-values were obtained 215 
using a Wilcoxon rank sum test. Subset to genes linked to PRS variants. B. Distribution of odds ratios 216 
from permutation testing (N permutations = 10,000) (permutation testing method as detailed in (A.)), 217 
across progressively more-stringent GTEx outlier Z-scores. Odds ratio increases as a function of outlier 218 
Z-score. C. Distribution of odds ratios from permutation testing (N permutations = 10,000) (permutation 219 
testing method as detailed in (A.)), using the Million Veteran Program (MVP) GWAS for BMI. D. 220 
Dispersion of mean effect sizes per gene for outlier (blue) and non-outlier variants (gray) across genes 221 
with variants overlapping a publicly-available PRS for BMI, stratified by GTEx outlier Z-score. P-values 222 
were obtained using an Ansari Test. E. Distribution of gnomAD allele frequency for outlier-associated 223 
(blue), and non-outlier (grey) variants, and variants included in a publicly-available PRS for body mass 224 
index (red). Outlier- and non-outlier-associated variants are rarer than variants included in the PRS. F. 225 
Example gene locus (FOXO3) containing a genome-wide significant hit in UKB BMI GWAS (GWAS ID 226 
21001) (purple diamond). Effect sizes for each variant in locus are displayed on the y-axis and UKB allele 227 
count for each variant is displayed on x-axis. Points are colored by LD (1000 Genomes phase 3, 228 
European cohort). Outlier-associated variants are highlighted in blue, non-outlier-associated variants are 229 
highlighted in gray, PRS variants are highlighted in red. Outlier-associated variants have largest effect 230 
sizes in locus. PRS variants tend to be common with small effect size. G. Coefficient estimate for IOGC 231 
score increases when subsetting to outlier-associated variants where variants are identified in outliers in 232 
an increasing number of GTEx tissues. X-axis indicates tissue threshold (i.e. tissue count>=N). H. Mean 233 
change in BMI per unit change in IOGC score at difference Z-score cutoffs. Variants identified in more-234 
severe outliers (by abs(Z-score)) have larger effects on BMI. 235 
 236 

Extreme IOGC scores lead to substantial deviation from PRS for BMI and obesity 237 

 238 

From the analyses presented above, rare variants linked to outlier gene expression in GTEx had 239 

larger effects on BMI and rates of obesity, independent of PRS, and this effect is modulated by 240 

properties of outlier effects (i.e. multi-tissue outliers, outlier Z-score severity). We next sought to 241 

understand the magnitude of deviation from cohort-average BMI and obesity associated with 242 

outlier rare variant burden. For this analysis we used outlier-associated variants identified using 243 
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the all-outlier method (Methods) - this increases the range of IOGC scores we can interrogate 244 

(range: top-outlier = -19:20; all-outliers = -67:69).  245 

 246 

We calculated the mean rate of change in BMI across different percentiles of IOGC score using 247 

a linear regression model, adjusting for PRS, age, sex, first ten principal components of 248 

ancestry, and genotyping array. Each increment in IOGC score percentile bin is associated with 249 

a mean rate of change in BMI of 0.05 kg/m2 (linear regression, P < 1×10-16); comparing bottom 250 

and top 0.05% percentiles, this results in a difference in mean BMI of 0.74 kg/m2 (Fig. 3A). In 251 

the regression model, we tested for an interaction between PRS and IOGC score and observed 252 

no significant effect. 253 

  254 

Rates of obesity (BMI >= 30 kg/m2) and severe obesity (BMI >= 40 kg/m2) for individuals in the 255 

extreme 0.5% IOGC score percentiles deviate from the average rates of the full cohort overall: 256 

obesity: 0.5 percentile = 20.8%; 99.5 percentile = 26.6%; average overall: 24.5% (logistic 257 

regression, P = 5.3×10-14); severe obesity: 0.5 percentile = 1%; 99.5 percentile = 3.5%; average 258 

overall: 1.9% (logistic regression, P = 0.001) (Fig. 3B). We also tested for risk of being 259 

underweight (BMI<18.5 kg/m2) and found an inverse relationship (i.e. lower IOGC score 260 

percentile increases risk of being underweight) (logistic regression, P = 0.003).  261 

 262 

Individuals in extreme IOGC score percentiles further differed in their age of onset of obesity 263 

and high blood pressure diagnosis (where high blood pressure is used as a proxy for 264 

hypertension). For diagnosis of obesity, individuals in IOGC score percentile <=1%, mean age 265 

of onset obesity = 59.41, whereas individuals in IOGC score percentile >=99%, mean age of 266 

onset = 56.95, a difference of in age of onset of 2.46 years (Wilcoxon test, P = 0.03). For high 267 

blood pressure diagnosis, individuals in IOGC score percentile <=1%, mean age of onset = 268 

53.04, whereas individuals in IOGC score percentile >=99%, mean age of onset = 50.44, a 269 

difference of 2.6 years (Wilcoxon test, P = 0.004) (Fig. 3C). 270 

 271 

We also observed that effects of outlier rare variants can manifest from childhood. We identified 272 

a subset of individuals in the UKB validation cohort (N=55,126) who provided self-reported 273 

information on being “plumper” or “thinner” than average at age 10 (UKB data field #1687). We 274 

tested the association of IOGC score with childhood body size using a logistic regression model 275 

(where the response was coded as 0=”thinner”, 1=”plumper”). The model was adjusted for PRS, 276 

age, sex, and first ten principal components of ancestry. For each unit change in IOGC score, 277 
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we observed an increase in the odds of having a “plumper” comparative body size at 10 of 278 

1.001 (logistic regression, P = 3×10-09).  279 

 280 

We next sought to understand the potential magnitude of deviation in PRS-predicted rate of 281 

severe obesity (BMI >= 40 kg/m2) associated with extreme IOGC score. We first stratified 282 

individuals by PRS: “low-risk” (PRS decile 1); “high-risk” (PRS decile 10), and further subset by 283 

increasingly stringent percentiles of IOGC score (Table 1). We computed empirical P-values 284 

using a permutation test (N permutations = 10,000) to understand how likely the rates of severe 285 

obesity are observed across random subsets of individuals from within the same PRS groups. 286 

From this analysis we observed, for example, that “low-risk” individuals (PRS decile 1) in the 287 

99th percentile of IOGC score have a rate of severe obesity approaching the average rate for 288 

PRS decile 10 (4.55%, P = 0.0009), a greater than 6-fold increase in the PRS-predicted rate of 289 

severe obesity. 290 

 291 

Table 1. Rates of severe obesity as a function of PRS and IOGC 292 

IOGC 
percentile 

 

<=0.25% <=0.5% <=1% <=10% PRS only >=90% >=99% >=99.5% >=99.75% 

PRS bin 1 
“low-risk” 

0% 
(n: 45) 

NS 

0% 
(n: 84) 

NS 

0% 
(n: 171) 

NS 

0.66% 
(n: 1,351) 

NS 

0.67% 
(n: 12,094) 

1.01% 
(n: 992) 

NS 

4.55% 
(n: 110) 

P=0.0009 

6.35% 
(n: 63) 

P=0.0006 

6.06% 
(n: 33) 
P=0.02 

PRS bin 10 
“high-risk” 

0% 
(n: 27) 

NS 

1.72% 
(n: 58) 

NS 

2.65% 
(n: 113) 

NS 

4.08% 
(n: 1152) 

NS 

4.99% 
(n: 12,043) 

5.28% 
(n: 1137) 

NS 

7.63% 
(n: 118) 

NS 

10.35% 
(n: 58) 

NS 

16.67% 
(n: 30) 
P=0.02 

* P-values are calculated empirically across 10,000 permutations 293 
 294 

We performed regression modelling within the “low-risk” and “high-risk” PRS groups described 295 

above, and observed similar linear regression coefficients per change in IOGC score percentile 296 

bin (linear regression; PRS bin 1: r = 0.06 (P = 3×10-5); PRS bin 10: r = 0.11 (P = 7×10-7) (Fig. 297 

3D). We next investigated the composition of outlier variants among individuals with outlier 298 

IOGC scores (specifically, bottom and top 10% of IOGC score distribution). For each individual 299 

in this set, we calculated the IOGC-aware deviation (i.e. below mean for low IOGC individuals, 300 

and above mean for high IOGC individuals) from within-group PRS mean BMI (as Z-score) and 301 

looked for differences in the relative composition of outlier variants in individuals near the mean 302 

(abs(Z-score)>0 and <0.5) and far from mean (abs(Z-score)>=3). We observed that individuals 303 

far from their predicted PRS mean were enriched for missense and splicing outlier variants 304 

(Fisher’s Exact Test; missense: odds ratio = 1.27 (CI 1.14 – 1.40), P = 8×10-6; splicing: odds 305 
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ratio = 1.25 (CI 0.98 – 1.58), P = 0.05) (Sup. Fig. 7). This finding suggests that variant 306 

annotations could be integrated in to future iterations of IOGC to further increase the predictive 307 

power of the score. Furthermore, we computed IOGC scores across genes summarized by their 308 

effect in the PRS (using the maximum effect weight per PRS variant mapped to within each 309 

gene), observing that IOGC score increases as a function of gene PRS effect size (Sup. Fig. 8). 310 

This results demonstrates that IOGC score is increased in genes with known larger effects on 311 

BMI. 312 

 313 

Replication in TOPMed WHI 314 

 315 

We replicated our findings using TOPMed WHI data, subset to individuals with European 316 

ancestry and with genetic and phenotypic data available (N = 6,501). We constructed a linear 317 

regression model including PRS, first ten principal components of ancestry, age, and IOGC 318 

score (sex is not included since TOPMed WHI is an all-female cohort). Variant effect directions 319 

were obtained from UKB GWAS, as above. IOGC score is again a significant predictor of BMI 320 

(mean change in BMI per quantile of IOGC score: linear regression r = 0.13 kg/m2, P = 0.03) 321 

(Fig. 3E). Although explicitly tested in the regression model, we visually compared the PRS of 322 

individuals in the 10th and 90th percentile of IOGC score and observed no significant 323 

differences in PRS for these two groups (Sup. Fig. 9). In the regression model, we again tested 324 

for an interaction between PRS and IOGC score and observed no significant effect.  325 

 326 

Similar to observations in UKB, rates of obesity (BMI >= 30 kg/m2) and severe obesity (BMI >= 327 

40 kg/m2) for individuals in the 10th and 90th percentiles for IOGC score deviated from the 328 

average rates of the full cohort overall: obesity: 10th percentile = 31.03%; 90th percentile = 329 

35.30%; average overall: 33.49% (Sup. Fig. 10); severe obesity: 10th percentile = 3.67%; 90th 330 

percentile = 5.43%; average overall: 4.59% (Fig. 3E).  331 

 332 

Subsetting by multi-tissue outlier-associated variants (N tissues >= 10), we again observed a 333 

significant effect of IOGC score independent from PRS, age and genetic ancestry (mean 334 

change in BMI per quantile of IOGC score: linear regression r = 0.20 kg/m2, P = 0.01). Further 335 

highlighting the independence of IOGC score from PRS, risk of obesity and severe obesity 336 

among individuals within PRS decile 10 (“high-risk”) can vary substantially from average for 337 

individuals in the 10th and 90th percentile of IOGC score (Fig. 3F). 338 
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 339 
Figure 3. Increasing burden of outlier variants is associated with significant deviation in PRS-340 
predicted body mass index and obesity. A. Mean BMI at different percentiles of IOGC score and linear 341 
regression fit. Dashed line indicates overall cohort mean. B. Rate of obesity and severe obesity for 342 
individuals with extreme IOGC scores (0.5% and 99.5% percentiles). Logistic regression results: obesity: 343 
1.003 (P = 1.20×10-14); severe obesity: 1.004 (P = 0.0009). Dashed line indicates overall cohort mean. C. 344 
Age of onset of obesity and high blood pressure diagnosis for individuals with extreme IOGC scores. 345 
Obesity diagnosis: percentile <=1%: mean age of onset obesity = 59.41; percentile >=99%: mean age of 346 
onset 56.95 (P = 0.03), mean difference of 2.46 years; high blood pressure diagnosis: percentile <=1%: 347 
mean age of onset high blood pressure = 53.04; percentile >=99%: 50.44 (P = 0.004), mean difference of 348 
2.6 years. D. Mean BMI at different percentiles of IOGC score, computed separately in PRS bins 1 and 349 
10. Dashed line indicates the mean rate within each PRS group. E. Mean BMI (left) and incidence of 350 
severe obesity (right) at different percentiles of IOGC score, including linear regression fit, in TOPMed 351 
WHI. Dashed line indicates overall cohort mean. F. Mean incidence of obesity (top) and severe obesity 352 
(bottom) for TOPMed WHI PRS decile 10 cohort, using outlier variants with multi-tissue outlier count 353 
>=10. Dashed line indicates overall cohort mean for PRS decile. 354 
 355 
 356 
 357 
 358 
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Rare variants impact PRS prediction across multiple traits and diseases 359 
 360 

The main focus of our study was on BMI and associated rates of obesity, but the same 361 

approach can be applied to many other traits and diseases. For example, using a publicly-362 

available PRS for type-2 diabetes (T2D, Methods), we observed a deviation from PRS-363 

predicted mean incidence of diabetes associated with an increasing burden of outlier variants 364 

(IOGC r = 1.01, P = 0.03, logistic regression) (Fig. 4A). Looking at age of T2D onset in a cohort 365 

defined as “high-risk” by PRS (PRS Z-score > 1), we observe a difference in mean age of onset 366 

of 4.04 years (Wilcoxon test, P = 0.02), comparing individuals in the 10th and 90th percentiles of 367 

IOGC score among this PRS high-risk group (Fig. 4B). 368 

 369 

To quantify differences in effect sizes of outlier-associated variants across diverse traits and 370 

disease, we repeated the same permutation test described earlier (Methods), utilizing all 371 

outlier- and non-outlier variants identified using the “top-outlier” method across 2,419 traits and 372 

diseases released in UKB Phase 1 GWAS (N permutations = 1,000). We observed a mean 373 

odds ratio of 1.05 (SD = 0.06) across all disease and traits when comparing outlier vs. non-374 

outlier variants, and a mean odds ratio of 1 (SD = 0.002) for non-outlier variants only (Wilcoxon 375 

test, P < 2×10-16) (Fig. 4C). Increasing the outlier Z-score threshold, we observed an increasing 376 

trend for observing outlier variants with top effect sizes (mean odds (SD): abs(Z-score)>4 = 1.10 377 

(0.14); abs(Z-score)>6 = 1.17 (0.25) (Wilcoxon test, P < 1×10-16 both comparisons). No 378 

difference was observed in odds ratios when comparing non-outlier variants only. 379 

 380 

Across different GWAS meta-categories (cancer, illnesses, physical traits, cause of death), we 381 

observed the same overall trend for observing outlier variants with top GWAS effect sizes, 382 

increasing with Z-score threshold (P < 2×10-16 for all outlier vs. non-outlier comparisons) (Fig. 383 

4D). For example, for breast cancer (ICD-10: C50, Malignant neoplasms of breast), we 384 

observed odds ratios 1.02, 1.11, 1.25 for abs(Z-score)>2, 4 and 6, respectively. We also 385 

expected some GWAS traits to not be sensitive to SNPs linked to gene outlier effects. We 386 

explored this hypothesis by manually selecting several traits where genetic relationships are 387 

more speculative (i.e. loud music exposure, transport for commuting to job) and observed no 388 

difference in the distribution of odds ratios comparing outlier vs. non-outlier variants and non-389 

outlier variants only (Sup. Fig. 11).   390 
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 391 
Figure 4. Extending the method to diverse traits and diseases. A. Deviation from PRS-predicted 392 
mean incidence of diabetes (%) amongst individuals with extreme IOGC scores, and average score. 393 
Logistic regression: beta = 1.01 (P = 0.03). Dashed line shows the average incidence of diabetes for each 394 
PRS bin. Low-risk = PRS bin 1 of 5 (PRS Z-score < -0.84); High-risk = PRS bin 5 of 5 (PRS Z-score > 395 
0.84). B. Age on onset of diabetes in PRS z-score > 1 cohort: difference in mean age of onset = 4.04 396 
years (Wilcoxon test, P = 0.02). C. Distribution of mean odds ratio per UKB GWAS phenotype across 397 
1,000 permutations for outlier- vs. non-outlier associated variants (blue) and non-outlier vs. non-outlier 398 
variants (gray) (Wilcoxon test, P<2×10-16). D. Distribution of mean odds ratio per UKB GWAS phenotype 399 
(meta-groups: cancer; illnesses; physical; primary cause of death) across 1,000 permutations for outlier- 400 
vs. non-outlier associated variants (blue) and non-outlier vs. non-outlier associated variants. Analysis was 401 
repeated at increasing thresholds of outlier gene expression absolute Z-score (from abs(Z-score)>=2 to 402 
abs(Z-score)>=6).  403 
 404 
Discussion 405 

 406 

Integration of rare variants within polygenic risk predictions is a major challenge. We have 407 

demonstrated that a high burden of rare variants can lead to substantial deviations in PRS-408 

predicted phenotype. Furthermore, by integrating rare variants into genetic risk prediction using 409 

the IOGC score, we demonstrate improvements in predicting risk for multiple traits and 410 
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diseases. Specifically, for BMI we demonstrate that PRS “low-risk” individuals who are in the top 411 

1% of IOGC have a rate of severe obesity (BMI>=40 kg/m2) approaching the average rate for 412 

PRS “high-risk” individuals. By leveraging diverse traits and diseases recorded in the UKB we 413 

further demonstrate applications for diverse polygenic phenotypes.  414 

 415 

Notably, the power of this approach is enabled by first isolating rare, expression outlier-linked 416 

variants in GTEx. Given that this cohort is limited to 546 individuals, it is certain that many large-417 

effect variants impacting expression remain to be identified. Future large-scale RNA-sequencing 418 

studies and catalogues of outlier-associated rare variants will only increase the efficacy of this 419 

approach. Furthermore, we could recover only a subset of outlier-associated rare variants in 420 

UKB, due to limitations in imputation; future WGS in population biobanks will recover more rare, 421 

outlier-associated variants. Future WGS will also expand the frequency spectra that can be 422 

interrogated - carriers of ultra-rare, outlier variants are likely to have even larger effects and 423 

impacts on the IOGC score19–21. Additionally, future work could integrate other data modalities 424 

(e.g. single cell, proteomics outliers). 425 

 426 

Our study offers a baseline of phenotypic effects of rare, large-effect variants and shows 427 

considerable impact in aiding the prediction of individual phenotypes. As with current genetic 428 

risk prediction, we expect that the IOGC score can immediately help to better identify and 429 

stratify high-risk individuals into specific early treatments. Overall, this work has important 430 

immediate implications for the implementation of genetic risk prediction in standard clinical care. 431 

 432 

  433 
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Methods 434 

 435 

GTEx v7 data 436 

Processed WGS variant data was obtained from GTEx v7 (see Resource Availability). Using 437 

the software bedtools22 (--window flag), variants were linked to genes if falling within the gene 438 

body, 10 Kb upstream of transcription start start, or 10 Kb downstream of the transcription end 439 

site. Using the software Vcfanno23, SNP variants were intersected with gnomAD (version 440 

r2.0.2)17 and CADD18 databases to obtain the minor allele frequency and CADD score, 441 

respectively, for each variant. Variant annotations were obtained using Variant Effect Predictor 442 

(VEP) (version 88)24. Minor allele frequencies were calculated across all individuals in gnomAD. 443 

Non-SNP (i.e. indel, SNV) variants were discarded. SNPs were retained if the gnomAD MAF fell 444 

in the range 0<MAF<1%. Multi-allelic SNPs were removed (multi-allelic in gnomAD). Finally, 445 

SNPs were required to have been directly measured or imputed in UKB Phase 1 GWAS 446 

(imputation quality as described in [25], namely: UKB MAF > 0.1%; Hardy-Weinberg Equilibrium 447 

P > 1x10-10; INFO score > 0.8).  448 

 449 

Processed RNA-sequencing data was obtained from GTEx v7 (see Resource Availability). To 450 

identify GTEx outlier gene expression samples, normalized gene expression values (FPKM) 451 

were processed across all GTEx v7 tissues, limited to autosomal genes annotated as protein 452 

coding or long non-coding RNA genes in GENCODE v19. A minimum expression filter was 453 

applied per gene (>=10 individuals with FPKM > 0.1 and read count > 6); genes not passing this 454 

filter were removed. Expression values were PEER26 factor corrected (using 15 factors for 455 

tissues with <= 150 samples, 30 for tissues with <= 250 samples, and 35 for tissues with > 250 456 

samples), then scaled and centered to generate expression Z-scores. Individuals exhibiting 457 

global patterns of outlier gene expression for a given tissue were removed from the final 458 

corrected expression matrix for that tissue. Global outlier is defined as any individual who has 459 

the most-extreme absolute Z-score of corrected gene expression in 100 or more genes in a 460 

given tissue at an outlier cutoff of abs(Z-score)>2.  461 

 462 

UK Biobank data 463 

UKB Phase 1 GWAS summary statistics were downloaded from the Neale Lab server (available 464 

at http://www.nealelab.is/uk-biobank). Summary statistics for each GTEx outlier and non-outlier 465 

variant were joined on chromosome, position, ref, and alt columns, using hg19 coordinates. All 466 

other phenotypic and genotypic data were sourced from the data instance approved under UKB 467 
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application #24983 (see Resource Availability). Individual-level phenotypes for weight (UKB 468 

data field #21002), body mass index (UKB data field #21001) and diabetes (UKB data field 469 

#2443) were downloaded from the relevant phenotype file. For weight and BMI, we averaged 470 

(using the median) over all observations per-individual for those individuals with multiple 471 

observations for the same phenotype. Imputed and directly measured genotypes for all variants 472 

used in this study were extracted from the genotyping callset (version 3). Additional phenotypic 473 

and demographic data used included: age, sex, principal components, genotyping array (all 474 

included in the UKB sample QC file); age of onset of diagnosis (obesity (UKB data field 475 

#130792), high blood pressure (UKB data field #2966), diabetes (UKB data field #2976)); and 476 

comparative body size at age 10 (UKB data field #1687). 477 

 478 

TOPMed Women’s Health Initiative (WHI) data 479 

The full TOPMed WHI cohort was first subset to self-reported European ancestry only (race 480 

code ‘5’ in file WHI.phv00078450.v6.p3.c1.txt). Individual-level weight and BMI measurements 481 

were obtained from the file phs000200.v11.pht001019.v6.p3.c1.f80_rel1.HMB-IRB.txt.gz. The 482 

average (median) was found for individuals with multiple observations of the same phenotype. 483 

Genotypes were obtained from whole genome sequencing data available in the archive 484 

phg001146.v1.TOPMed_WGS_WHI.genotype-calls-vcf.c1.HMB-IRB.tar. BED files were created 485 

using the software plink (version 2.0)27. TOPMed WHI bed files are in hg38 assembly; we used 486 

the software CrossMap28 to convert genome coordinates from hg19 to hg38 assemblies for the 487 

purposes of measuring GTEx outlier and non-outlier variants among TOPMed WHI individuals 488 

and computing polygenic risk scores.  489 

 490 

Genotype principal components we computed using a random selection of common variants 491 

(N=50,000) available in UKB; we chose to leverage UK Biobank allele count information to 492 

define a set of high-confidence common variants (UKB minor allele count > 50,000), given the 493 

increased sample size of UKB compared with TOPMed WHI. Genotypes were extracted using 494 

plink (version 2.0). To create the input matrix for computed principal components, the genotypes 495 

of each extracted variant was imported and checked for minor allele variants and the 496 

percentage of missing genotypes; alles with zero minor allele variants and/or >1% missingness 497 

were removed. For variants with >0 and <=1% genotype missingness, missing genotypes were 498 

replaced by the mode for that particular variant. Principal components were computed using the 499 

software flashpca29. 500 

 501 
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Million Veteran Program (MVP) GWAS for body mass index 502 

DNA extracted from participants’ blood was genotyped using a customized Affymetrix Axiom® 503 

biobank array, the MVP 1.0 Genotyping Array. The array was enriched for both common and 504 

rare genetic variants of clinical significance in different ethnic backgrounds. Quality-control 505 

procedures used to assign ancestry, remove low-quality samples and variants, and perform 506 

genotype imputation to the 1000 Genomes reference panel were previously described30. 507 

Individuals related more than second degree cousins were excluded.  508 

 509 

We recently conducted HARE (Harmonized ancestry and Race/Ethnicity) analysis using 510 

race/ethnicity information from MVP participants31. Genotyped MVP participants are assigned 511 

into one of the four HARE groups (Hispanics, non-Hispanics White, non-Hispanics Black, and 512 

non-Hispanics Asian) and “Other”. The analysis is based on a machine learning algorithm, 513 

which integrates race/ethnicity information from MVP baseline survey and high-density genetic 514 

variation data. Trans-ethnic, and ethnicity-specific principal component analyses were 515 

performed using flashPCA29. BMI was calculated as average BMI using all measurements within 516 

a three-year window around the date of MVP enrollment (i.e., 1.5 years before/after the date of 517 

enrollment), excluding height measurements that were >3 inches or weight measurements >60 518 

pounds from the average of each participant.  519 

 520 

Genetic association with BMI in the MVP cohort was examined among 217,980 non-Hispanic 521 

White participants. BMI was stratified by sex and adjusted for age, age-squared, and the top ten 522 

genotype-derived principal components in a linear regression model. The resulting residuals 523 

were transformed to approximate normality using inverse normal scores. Imputed and directly 524 

measured genetic variants were tested for association with the inverse normal transformed 525 

residuals of BMI through linear regression assuming an additive genetic model.  526 

 527 

Isolating rare variants observed in GTEx gene expression outliers and non-outliers 528 

Rare variants occurring in gene expression outlier individuals are identified using two methods; 529 

namely, top-outlier and all-outliers. Both approaches start with genetic and transcriptomic data 530 

processed as detailed above (“GTEx v7 genetic and transcriptomic data”). Using the top-outlier 531 

approach, variants were aggregated across all individuals and subset to gnomAD MAF > 0 and 532 

< 1%. This list was then tabulated to obtain a count of unique individuals with each variant; any 533 

variant observed in > 1 individual was removed. As a further filtering step, variants were 534 

retained only if they were included in UKB Phase 1 GWAS. To link variants to expression 535 
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outliers, we identified for each tissue the individuals with the least or most expression per gene 536 

(i.e. under-expression outlier and over-expression outlier), removing any results falling below a 537 

predefined Z-score threshold of abs(Z-score) < 2. We also defined, for each tissue and gene, a 538 

set of individuals with non-outlier gene expression (defined as abs(Z-score)<1). Non-outlier 539 

variants were filtered to match the CADD score (within a window +/- 5) of any outlier variants for 540 

each tissue/gene/outlier direction triple; this is important for genes with both an under-541 

expression and over-expression outlier, as subsequent permutation testing uses outlier and 542 

non-outlier variants matched on a CADD score window. Variants identified in outliers in >=1 543 

tissue were ignored when identifying matching non-outlier variants; in this way, a putatively 544 

causal large-effect expression variant (in any number of tissues) would not be counted in both 545 

outlier and non-outlier variant sets. For the all-outliers method, we removed any outlier variant 546 

also identified in >= 1 non-outlier individual; this differs from the top-outlier method, in which 547 

outlier variants identified in any other individual (regardless of outlier status) are removed. We 548 

did not define a matching set of non-outlier variants in the all-outliers method, due to run-time 549 

constraints on the computational pipeline developed for this study. For both methods, we 550 

recorded the number of tissues in which each outlier variant was identified (for variants 551 

identified in >1 tissue, we refer to these as multi-tissue outlier variants). 552 

 553 

GWAS effect size permutation test 554 

We performed a permutation test to study differences in GWAS effect sizes for GTEx outlier and 555 

non-outlier variants. This test was repeated for two independent GWAS cohorts: UK Biobank 556 

and Million Veteran Program. For each GWAS, the input data is a file containing outlier and 557 

non-outlier variants with associated GWAS effect size (i.e. beta estimate), linked outlier gene, 558 

GTEx sample ID, outlier direction (under-expression/over-expression), and outlier tissue. 559 

Additionally, for GWAS of traits and disease where we also run a separate test after integrating 560 

PRS information, subsetting genes to those linked to any outlier variant falling within 10 Kb of a 561 

PRS variant. To define a set of outlier and non-outlier variants, we first subset outlier variants 562 

using a defined absolute Z-score of outlier gene expression, then find the intersection (using 563 

tissue, gene, and outlier direction) between the outlier variants that pass the Z-score thresholds 564 

and the matched non-outlier controls. This step ensures we have sufficient data to randomly 565 

select exactly one outlier and non-outlier variant per tissue/gene/outlier direction triple (we refer 566 

to this as an outlier triple), per permutation. The permutation test is based on the results of the 567 

top-outlier methods (see previous section); therefore, there is exactly one outlier individual per 568 

outlier triple. However, for non-outlier variants, there can be matched variants identified in > 1 569 
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unique individual. We subset randomly to one non-outlier individual per outlier triple, then 570 

randomly select exactly one outlier and non-outlier variant per outlier triple. For each outlier 571 

triple, we then count which variant is associated with the greater GWAS absolute effect size 572 

(outlier/non-outlier); this information can then be summarized in a contingency table, which is 573 

then used as the input to compute an odds ratio. We repeated this analysis for a file containing 574 

non-outlier variants only, which follows the same method described above, comparing two 575 

randomly chosen non-outlier variants per outlier triple, for outlier triples with non-outlier variants 576 

from >= 2 unique non-outlier individuals. 577 

 578 

Calculating polygenic risk scores 579 

We computed polygenic risk scores (PRS) for the UKB and TOPMed WHI cohorts in this study. 580 

Two high-quality, publicly-available PRS were used (see Resource Availability): body mass 581 

index (Khera.et.al_GPS_BMI_Cell_2019.txt.zip); and type-2 diabetes 582 

(Type2Diabetes_PRS_LDpred_rho0.01_v3.txt). Scores were calculated using the software plink 583 

(version 2.0) (--score flag). PRS variant coordinates were first converted to hg38 assembly 584 

using CrossMap28 for calculating PRS scores in the TOPMed WHI cohort. Scores were 585 

calculated separately for each chromosome, then summed per individual and scaled to 586 

generate Z-scores. 587 

 588 

GTEx eQTL to assess concordance in GWAS effect direction between eQTL and outlier 589 

variants 590 

GTEx eQTL summary statistics were downloaded and filtered on P-value (using column 591 

“pval_nominal”) with threshold P<1×10-18. Remaining variants were linked to their GWAS effect 592 

size (i.e. protective or risk). For genes with >1 eQTL passing the P-value threshold, the variant 593 

with the smallest UKB GWAS P-value was retained. This step was computed separately for 594 

each GTEx tissue. We used a majority-rule approach to assign a single, high-quality consensus 595 

GWAS effect direction per gene, based on the median slope estimate and GWAS effect 596 

direction across all top eQTL variants per tissue that passed the two P-value filtering steps. For 597 

example, if a given gene consisted of 10 eQTL risk variants and 5 protective risk variants, the 598 

gene would be assigned a “risk” label. We removed any genes where a majority GWAS effect 599 

direction could not be computed (i.e. an equal number of protective and risk effects), genes 600 

where eQTL risk variants shared a median slope that matched the median slope of eQTL 601 

protective variants (e.g. positive slope in both cases), and genes where the slope of any eQTL 602 

risk variant matches the slope of any eQTL protective variant. Outlier variants are then 603 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.02.20242990doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.02.20242990
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

compared on the slope and GWAS effect direction of the consensus eQTL results (e.g. for a 604 

given gene with positive median slope and GWAS risk effect, we assessed if the outlier variant 605 

was an over-expression outlier variant and its comparable relationship to GWAS risk). 606 

  607 

Inferring UKB non-British white validation cohort 608 

Using the self-identified non-British white labels that were reported in the UKB metadata, a 609 

larger cohort of predicted non-British white individuals was inferred. For all self-reported non-610 

British white individuals, the mean and standard deviation of the first and second genotypic 611 

principal components were calculated. All individuals without a self-reported ethnic identity that 612 

were within +/- 3 SD of the calculated mean PC1 and PC2 values were inferred to be non-613 

British white. All self-reported non-British white individuals that fell out of this range were also 614 

excluded. This final cohort consisted of 23,790 self-reported non-British individuals, and 97,154 615 

inferred non-British white individuals. We found that the PRS distribution of this non-British white 616 

cohort did not differ significantly from a normal distribution (Shapiro-Wilk normality test; P = 617 

0.2774), suggesting that the PRS as calculated on the British white cohort generalizes well to 618 

this cohort.  619 

 620 

Quantifying effect on phenotypes associated with IOGC score 621 

Using the list of GTEx outlier variants linked to genes, we retained the genes in which >= 1 622 

outlier variant overlapped any PRS variants (within a +/- 10 Kb window). In this way, we focus 623 

only on genes previously linked to the phenotype (and therefore included in the PRS). The 624 

resulting set of outlier- and non-outlier variants in retained genes were written to a lookup file 625 

which was then input to the software plink27 (--extract flag) to identify UKB individuals in the 626 

validation cohort who are heterozygous or homozygous for each variant (i.e. alternate allele 627 

genotype 1 and 2, respectively). We then used previously-released UKB GWAS effect estimates 628 

to assign effect directions to each outlier variant (i.e. risk/protective). Given that the previously-629 

released GWAS were calculated on UKB individuals with white British genetic ancestry (see25), 630 

the non-British white cohort validation cohort we constructed for this study, as well as the 631 

TOPMed WHI cohort, was non-overlapping. 632 

 633 

We quantified the effect of outlier variant burden on phenotype by computing a score that 634 

summarizes, per individual, putative outlier gene burden. We refer to this quantity as the 635 

independent outlier gene count (IOGC). To compute this score, for each individual we link 636 
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variants to effect size direction in UKB, then collapse to gene-level to prevent double-counting. 637 

Per individual, we convert the beta effect estimate per variant to integers using a sign function: 638 

 639 

𝑠𝑔𝑛(𝛽&) ≔ )
−1 𝑖𝑓	𝛽& < 0,
0 𝑖𝑓	𝛽& = 0,
1 𝑖𝑓	𝛽& > 0.

 640 

 641 

, where 𝛽 is the UKB GWAS beta coefficient for variant 𝑘. In practice, effect sizes of zero are 642 

not generally observed, so we expect to see only values of -1 or 1. Following this step, we take 643 

the distinct values per gene (i.e. remove duplicates); since our goal is to use outlier variants to 644 

tag outlier/dysregulated gene expression, this step prevents counting of putative outlier gene 645 

expression more than once. Therefore, if we denote the vector of 𝑠𝑔𝑛(𝛽&) for variants linked to 646 

a given gene as 𝑠, then: 647 

 648 

𝜃(𝑠) = {𝑠8}8∈{;,…,=}	, where 𝑠 = [𝑠8, … , 𝑠=] 649 
 650 

This is repeated across all genes 𝑔 linked to >=1 outlier variant, and summed to yield the IOGC 651 

score for each individual 𝑗: 652 

𝐼𝑂𝐺𝐶E =F𝜃(𝑠)8

G

8H;

 653 

 654 

Linear regression was used for quantitative phenotypes, and logistic regression for binary 655 

phenotypes. In the regression models, we adjusted for PRS, age, sex (UKB only since TOPMed 656 

WHI is a female-only cohort), first ten principal components of genetic ancestry, and genotyping 657 

array (UKB only). 658 

 659 

All statistical analyses were performed using R (version 3.6.0). Plots were generated using 660 

ggplot2 (version 3.3.0)32. 661 

 662 

  663 
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Resource availability 664 
GTEx (v7) RNA-seq and WGS data is available from dbGaP (dbGaP Accession phs000424.v7.p2) 665 
GTEx (v7) eQTL summary statistics were downloaded from the GTEx Portal available at 666 
https://gtexportal.org/home/datasets 667 
Data from the TOPMed Women's Health Initiative is available from dbGaP (dbGaP Accession 668 
phs001237) 669 
UK Biobank (UKB) data was obtained under application number 24983 (PI: Dr. Manuel Rivas) 670 
UKB Phase 1 GWAS summary statistics were downloaded from the Neale Lab server available at  671 
http://www.nealelab.is/uk-biobank 672 
Polygenic risk scores (PRS) for body mass index and type-2 diabetes were downloaded from the 673 
Cardiovascular Disease Knowledge Portal available at http://kp4cd.org/dataset_downloads/mi 674 
Gene annotation data was obtained from GENCODE (version 19) available at 675 
https://www.gencodegenes.org/human/release_19.html 676 
Allele frequency data was obtained from gnomAD (version r2.0.2) available at 677 
https://console.cloud.google.com/storage/browser/gnomad-public/release/2.0.2/ 678 
hg19 coordinates were converted to hg38 using the chain file available at 679 
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/liftOver/   680 
Custom scripts to conduct all analyses not performed using existing software can be found at 681 
https://github.com/csmail/outlier_prs 682 
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