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Abstract 

Longitudinal intervention studies with repeated measurements over time are an important type 

of experimental design in biomedical research. Due to the advent of “omics”-sciences 

(genomics, transcriptomics, proteomics, metabolomics), longitudinal studies generate 

increasingly multivariate outcome data. Analysis of such data must take both the longitudinal 

intervention structure and multivariate nature of the data into account. The ASCA+-framework 

combines general linear models with principal component analysis, and can be used to separate 

and visualize the multivariate effect of different experimental factors. However, this 

methodology has not yet been developed for the more complex designs often found in 

longitudinal intervention studies, which may be unbalanced, involve randomized interventions, 

and have substantial missing data. Here we describe a new methodology, repeated measures 

ASCA+ (RM-ASCA+), and show how it can be used to model metabolic changes over time, 

and compare metabolic changes between groups, in both randomized and non-randomized 

intervention studies. Tools for both visualization and model validation are discussed. This 

approach can facilitate easier interpretation of data from longitudinal clinical trials with 

multivariate outcomes.  
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Author summary 

Clinical trials are increasingly generating large amounts of complex biological data. Examples 

can include measuring metabolism or gene expression in tissue or blood sampled repeatedly 

over the course of a treatment. In such cases, one might wish to compare changes in not one, 

but hundreds, or thousands of variables simultaneously. In order to effectively analyze such 

data, both the study design and the multivariate nature of the data should be considered during 

data analysis. ANOVA simultaneous component analysis+ (ASCA+) is a statistical method 

which combines general linear models with principal component analysis, and provides a way 

to separate and visualize the effects of different factors on complex biological data. In this 

work, we describe how repeated measures linear mixed models, a class of models commonly 

used when analyzing changes over time and treatment effects in longitudinal studies, can be 

used together with ASCA+ for analyzing clinical trials in a novel method called repeated 

measures-ASCA+ (RM-ASCA+). 
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1 Introduction 

In recent decades, scientific and technological developments have increased our ability to both 

collect and manage large amounts of data. In biomedicine this has contributed to the rise of 

various “-omics”-fields (e.g. genomics, transcriptomics, proteomics, and metabolomics), 

where the focus is not on single variables such as individual genes, proteins or metabolites, but 

rather on the whole genome, proteome, or metabolome. Because “-omics”-datasets may 

contain hundreds to thousands of variables, considering each variable individually may be 

inefficient. In addition, “-omics”-data are multivariate by nature, and performing separate 

analyses for each variable does not take the interrelatedness between the variables into 

consideration. 

A subset of the methods developed to analyze such data are based on the idea of combining 

two different kinds of statistical methods: 1) analysis of variance (ANOVA), and 2) 

dimensionality reduction methods such as principal component analysis (PCA) (1). Combining 

these methods in various ways allows the researcher to separate and visualize effects from 

different sources of variation in the data, while also accounting for the correlations between 

the outcome variables. One such method is ANOVA simultaneous component analysis 

(ASCA), where the response matrix is first decomposed into effect matrices according to the 

experimental design, and the impact of each experimental factor is visualized by applying PCA 

to the effect matrices (2). This methodology has since been extended to unbalanced designs by 

the adoption of the general linear model (GLM)-framework in estimating the effects, in a 

method called ASCA+. (3). A related approach was recently developed, termed linear mixed 

model-PCA (LiMM-PCA), in which the ASCA+ methodology is adapted to include random 

effects (4).  
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Longitudinal intervention studies with repeated measurements over time are an important type 

of experimental design in biomedical research. Such designs allow separating within-subject 

variation from between-subject variation, and also permit the study of trends over time. 

However, repeated measures data have properties which preclude the use of standard linear 

regression methods, such as fixed effects ANOVA, the most important one being that the 

observations belonging to the same individual are not independent. While the classical ASCA 

methodology has long been applied for longitudinal data analysis (2, 5), this approach has 

generally required strongly balanced designs to yield valid results. In contrast, longitudinal 

intervention studies routinely have many complicating features, such as unbalanced designs, 

randomized interventions, and substantial missing data. Repeated measures linear mixed 

models provide a powerful way to handle these issues (6), but these capabilities have so far not 

been extended to the multivariate case.  

In this paper we introduce a new methodology, repeated measures ASCA+ (RM-ASCA+), 

using repeated measures linear mixed models in conjunction with ASCA+. We show how this 

method can be used in the analysis of longitudinal multivariate data with unbalanced designs 

and missing outcome data, including both visualization of results and assessment of model 

uncertainty. We also discuss other linear models for longitudinal data which can be used to 

estimate the effects, and comment on their suitability for ASCA+. We discuss how to adjust 

the analyses depending on whether the intervention is randomized or not, and we illustrate 

these differences by analyzing two different metabolomics datasets. We compare our findings 

with the original research papers for these datasets, and discuss the added benefit of RM-

ASCA+ for biological interpretation in this setting. 
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2 Methods 

2.1 Linear models for longitudinal data 

A key step in ASCA+ is to define an appropriate linear model to use for estimating the effects. 

In this section we discuss some possible model types for analysis of longitudinal repeated 

measures data, and comment on their suitability for ASCA+. These models differ both in how 

they handle missing data, and whether they control for the baseline value of the response 

variable. The latter point can strongly affect, and even reverse, the effect estimates if the groups 

come from different pre-baseline populations, which is known as Lord’s paradox (7). The 

models to be discussed are: 1) repeated measures models, 2) longitudinal analysis of covariance 

(ANCOVA), and 3) analysis of changes. All model types  discussed here involve including a 

random intercept for each subject, except for longitudinal ANCOVA and analysis of changes 

in the case of only two measurement occasions, as in this setting each subject only appears 

once in the response vector, and there is no need to account for within-subject correlation. The 

linear models  presented here are the same as presented in the paper by Twisk et al., concerning 

different ways of analyzing randomized controlled trials with repeated measurements (8). 

2.1.1 Repeated measures 

In a repeated measures model, the baseline value of the response variable is included in the 

responses in the same way as the follow-up measurements. Suppose that a response variable y 

is measured at K timepoints (k = 1..K) for I subjects (i = 1..I) belonging to one of H groups (h 

= 1..H). If the number of timepoints K = 3, and the number of groups H = 2, then a repeated 

measures model for this data is: 

𝑦𝑖ℎ𝑘 = (𝛽0 + 𝛾0𝑖) + 𝛽1𝑇1 + 𝛽2𝑇2 + 𝛽3𝐺 + 𝛽4(𝑇1 ∗ 𝐺) + 𝛽5(𝑇2 ∗ 𝐺) 

where β0-5 are the coefficients to be estimated from the data, T1 and T2 are indicator variables 

for the time factor, G is an indicator variable for the group factor, T1*G and T2*G are interaction 
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variables, and γ0i represents a subject-specific random intercept. Because the marginal mean 

for each timepoint is estimated individually, all subjects with at least one available response 

are included in the analysis. The indicator variables for time (T1 and T2) are either 0 or 1, i.e. 

they are reference coded with the first timepoint (baseline measurement) as the reference level. 

Depending on whether the indicator variable G is reference coded or sum coded, the 

coefficients for time, β1 and β2, will represent either the time effect for the reference group, or 

the time effect across both groups. In both cases β3 represents the group differences at baseline, 

while the interaction effects β4 and β5 represent the group differences in within-group change 

from baseline at each of the timepoints. 

When assessing whether change in the response variable over time is different between the 

groups, a decision has to be made whether an adjustment for baseline differences in the 

response variable should be made. While adjustment also can be made for other baseline 

covariates, baseline adjustment will here refer to an adjustment for baseline differences in the 

response variable, unless otherwise stated. Although it is often believed that such an adjustment 

is made by assessing changes instead of directly comparing means, this is not correct (8). 

Suppose that change in the response variable is being compared between two groups, and that 

the true effect of both time and group is zero. Because of regression to the mean, the group 

with the highest baseline value will be expected to decrease slightly more than the group with 

the lowest baseline value (and vice versa), even if the treatment has no effect. Simply 

comparing changes can therefore lead to either over- or underestimation of the true treatment 

effect. The interaction coefficients β4 and β5 in the above model are therefore unadjusted, 

because they are only assessing whether the within-group change is different between the 

groups. Typically, one adjusts for a variable by including it as a covariate in a model. However, 

in this model, where the baseline values already are included in the responses, an adjustment 
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can instead be made by removing the main effect for treatment, β3G, from the model while 

keeping its interactions with time: 

𝑦𝑖ℎ𝑘 = (𝛽0 + 𝛾0𝑖) + 𝛽1𝑇1 + 𝛽2𝑇2 + 𝛽3(𝑇1 ∗ 𝐺) + 𝛽4(𝑇2 ∗ 𝐺) 

In this model, the estimated group means are constrained to be the same at baseline. This is 

also known as a constrained longitudinal data analysis (cLDA) model (9), while the previous 

model with the main effect for treatment included is sometimes referred to as an unconstrained 

longitudinal data analysis (ucLDA) model. The result of this constraint is that the interaction 

effects β3 and β4 will be adjusted for baseline. 

The decision of whether to adjust for baseline depends primarily on the study design, and the 

research question of interest. In analysis of randomized controlled trials with a continuous 

response variable, adjusting for baseline is recommended, because it improves the precision of 

the treatment effect estimate (10, 11). In non-randomized studies, however, where uncontrolled 

group differences can exist prior to the study, adjustment for baseline can induce spurious 

effects if the groups originate from different pre-baseline populations (12). This phenomenon 

is known as Lord’s paradox, and implies that baseline adjustments must be done with care in 

non-randomized settings. In general, the decision to adjust for any covariate is dependent on 

prior knowledge about the study design and the measured variables, as well as on assumptions 

about how they causally interact. This applies to all forms of covariate adjustment, of which 

baseline adjustment is only a special case. Causal diagrams in the form of directed acyclic 

graphs provide a general framework for determining whether adjustment for a given variable 

creates or reduces bias with respect to the effect of interest (13).  
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2.1.2 Longitudinal ANCOVA 

The method of longitudinal ANCOVA involves using the baseline value, yih1, as a covariate, 

instead of modeling it as a response together with the follow-up values. This model can be 

written as: 

𝑦𝑖ℎ𝑘 = (𝛽0 + 𝛾0𝑖) + 𝛽1𝑇 + 𝛽2𝐺 + 𝛽3(𝑇 ∗ 𝐺) + 𝛽4𝑦𝑖ℎ1 

In this example, because the first timepoint is not included in the response vector, only two 

timepoints are represented in y, which can be described by one indicator variable T. In this 

model β2 represents the treatment effect at the first follow-up timepoint, while (β2 + β3) 

represents the treatment effect at the second follow-up timepoint. Clearly, longitudinal 

ANCOVA also involves an adjustment for baseline, because it is included as a covariate in the 

model. It can be shown that cLDA and longitudinal ANCOVA are mathematically related; 

Differences in point estimates and confidence intervals for the group effect disappear with 

increasing sample size under randomization, and are usually small for non-randomized data 

(11). However, a possible disadvantage of longitudinal ANCOVA is that it cannot be used to 

model change from baseline. Another disadvantage is that subjects with missing baseline data 

are excluded from the analysis. The inclusion of the baseline response as a covariate also 

changes the meaning of the intercept term, possibly making the interpretation of the random 

intercept less intuitive. 

2.1.3 Analysis of changes 

Analysis of changes involves expressing all follow-up values as differences from baseline, 

without including the baseline response as either a response or covariate in the model. An 

ANOVA, or linear model is then made to assess whether the average Δ differs significantly 

depending on group and time: 

𝑦𝑖ℎ𝑘 − 𝑦𝑖ℎ1 = (𝛽0 + 𝛾0𝑖) + 𝛽1𝑇 + 𝛽2𝐺 + 𝛽3(𝑇 ∗ 𝐺) 
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Testing β2 and (β2 + β3) in this model effectively amounts to testing the same null hypotheses 

as β4 and β5, respectively, in the ucLDA-model, namely whether the time effect, or 

equivalently, the within-group change, is the same in both groups (11). One difference lies in 

how missing responses are handled. While all available response data is used in ucLDA, 

analysis of changes excludes responses where either the baseline or follow-up measurement is 

missing. As previously stated, this approach only assesses whether the change over time is 

significantly different depending on group, and a baseline adjustment is not made. If the 

baseline value is added as a covariate, then the model becomes equivalent to a longitudinal 

ANCOVA (8). Analysis of changes shares the previously mentioned disadvantages as 

longitudinal ANCOVA, such as not including the baseline measurements in the response 

vector, and poorer efficiency in the presence of missing outcome data. 

2.2 ASCA+  / LiMM-PCA 

2.2.1 ASCA 

In classical ASCA, the response matrix Y is decomposed into effect matrices according to the 

experimental design with standard ANOVA calculations, using differences in level averages.  

𝑌 = 𝑀μ +𝑀𝑇 +𝑀𝐺 +𝑀𝑇∗𝐺 + 𝐸 

The resulting effect matrices are then analyzed and interpreted using PCA. However, this 

method is limited in that it only allows inclusion of fixed effects, and that classical ANOVA 

effect estimators based on differences in level means results in biased effect estimates for 

unbalanced designs. Classical ASCA is therefore only valid for longitudinal studies if the 

design is strongly balanced. 
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2.2.2 ASCA+ 

In ASCA+, the original ASCA-methodology is extended to unbalanced designs by using 

general linear models (GLM) to estimate the effect matrices, instead of the classical ANOVA 

estimators based on differences in means. The GLM can be written as: 

𝑦 = 𝑋𝛽 + 𝑒 

Where y is the response variable, X is the design matrix for the chosen linear model, β is the 

vector of coefficients to be estimated from the data, and e is a vector containing the residuals. 

In ASCA+, this equation is extended to multiple response variables. 

𝑌 = 𝑋𝐵 + 𝐸 

where Y now represents a response matrix with J columns (j = 1..J), and B represents a 

parameter matrix, where the j-th column of B corresponds to the regression coefficients 

belonging to the j-th column of Y. A GLM based on the design matrix X is then applied to every 

column of Y, and the coefficients are collected in the matrix B.  

After estimation of the matrix B, the effect matrices are then made by multiplying the 

corresponding columns of X together with the corresponding rows of B. For example, in order 

to make the effect matrix for the time effect, all columns in X and rows in B except those 

belonging to the time factor are turned into zero, and the following operation is done to produce 

the effect matrix for time, MT: 

(

 
 
 

𝐼𝑛𝑡 |𝑻𝟐 𝑻𝟑| 𝐺 𝑇2𝐺 𝑇3𝐺
0 𝟎 𝟎 0 0 0
0 𝟏 𝟎 0 0 0
0 𝟎 𝟏 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 𝟏 𝟎 0 0 0 )

 
 
 
×

(

 
 
 

0 ⋯ 0
𝒃𝟏𝟏 ⋯ 𝒃𝟏𝑱
𝒃𝟐𝟏 ⋯ 𝒃𝟐𝑱
0 ⋯ 0
0 ⋯ 0
0 ⋯ 0 )

 
 
 
= 𝑀𝑇 
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The effect matrix MT, which now contains the estimated level averages for the factor for time, 

can be analyzed by PCA in order to visualize the multivariate differences between the 

timepoints. 

2.2.3 LiMM-PCA 

In LiMM-PCA, the ASCA+ methodology is further adapted to also include random effects, 

making it a potentially suitable method for correctly modeling the longitudinal structure of 

intervention studies. In LiMM-PCA, the response matrix Y is initially analyzed by PCA, and 

the resulting score matrix is used as input for the effect matrix estimation instead of Y. This is 

done because the methods for variance partitioning and statistical inference in LiMM-PCA rely 

on the response variables being orthogonal, which is ensured by analyzing the score matrix for 

Y instead of Y directly. By excluding components explaining minimal variation, one also limits 

the necessary number of variables to analyze, thus making it more feasible for analysis of high-

dimensional data. During visualization, the effect matrices estimated from the Y-score matrix 

are analyzed with PCA, and then the resulting effect matrix loadings are multiplied by the 

original loadings for Y in order to back-transform the variables to their original variable space.  

2.2.4 RM-ASCA+ 

In the methodology presented here, RM-ASCA+, we combine repeated measures linear mixed 

models with ASCA+ to estimate the multivariate effects of time and the interaction between 

time and group in an unbalanced setting, while also accounting for within-subject dependency. 

We do this without applying the initial PCA-step as done in LiMM-PCA. The effects are 

estimated directly based on the full response matrix. This simplifies the methodology, and 

makes our proposed validation method, shown in the next section, more straightforward to 

implement. The linear mixed model for a single response with a random intercept for subject 

may be written as: 
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𝑦 = 𝑋𝛽 + 𝑍𝑢 + 𝑒 

where X is the design matrix for the fixed effects according to the chosen linear model, β is a 

vector of fixed effect coefficients to be estimated from the data, Z is a dummy coded matrix for 

subject, and u is a vector containing the random intercepts. The fixed effects vector β is 

estimated by maximum likelihood methods, while u is predicted for each subject based on the 

estimated variance of u.  

Like in ASCA+, this can be extended to multiple response variables. 

𝑌 = 𝑋𝐵 + 𝑍𝑈 + 𝐸 

where Y now represents a response matrix with J columns (j = 1..J), and B represents a 

parameter matrix, where the j-th column of B corresponds to the regression coefficients 

belonging to the j-th column of Y, and U is a matrix containing the random intercepts. The 

effect matrices are then constructed as in ASCA+. If one wishes to visualize the joint impact 

of several experimental factors, it is possible to add effect matrices together by extending this 

operation out to more columns in X and rows in B: 

(

 
 
 

𝐼𝑛𝑡 |𝑻𝟐 𝑻𝟑 𝑮 𝑻𝟐𝑮 𝑻𝟑𝑮|
0 𝟎 𝟎 𝟎 𝟎 𝟎
0 𝟏 𝟎 𝟏 𝟏 𝟎
0 𝟎 𝟏 𝟎 𝟎 𝟏
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 𝟏 𝟎 𝟏 𝟏 𝟎 )

 
 
 
×

(

 
 
 
 

0 ⋯ 0
𝒃𝟏𝟏 ⋯ 𝒃𝟏𝑱
𝒃𝟐𝟏 ⋯ 𝒃𝟐𝑱
𝒃𝟑𝟏 ⋯ 𝒃𝟑𝑱
𝒃𝟒𝟏 ⋯ 𝒃𝟒𝑱
𝒃𝟓𝟏 ⋯ 𝒃𝟓𝑱)

 
 
 
 

= 𝑀𝑇 +𝑀𝐺 +𝑀𝑇∗𝐺 

The resulting effect matrix, MT+G+T*G contains the estimated level averages for all the 

combinations of the factor levels, and can be analyzed by PCA similar as MT. Although this 

approach confounds variation from different experimental factors, it may be useful during 

interpretation because it allows visualization the treatment effect in combination with the time 

effect.  
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In classical ASCA, the effect matrices are automatically mean-centered, because the mean 

matrix is subtracted from the data during the decomposition of Y, and the other effects are 

expressed relative to the grand mean. This does not happen with the coding system used here, 

where the factor for time is reference coded with baseline as reference. Instead, because the 

intercept represents the baseline mean, the rows in the matrix MT belonging to baseline are set 

to zero. If G is sum-coded, then MG + MT*G will be centered around zero, while if it is reference 

coded, the chosen reference group will have all its scores set to zero in MG + MT*G.  

So far the random effects structure in the model is only used when estimating the fixed effects 

in B. However, the random effects themselves can also be included and visualized. The 

following method is adapted from a method by Zwanenburg et al., where variability between 

samples is visualized by projecting the effect matrix plus the residual matrix (e.g. MT+G+T*G + 

E), onto the effect matrix loadings (14). Similarly, we can also add the random effect matrix 

ZU, where U is the matrix containing the best linear unbiased predictions for the random effects 

for each variable, to the effect matrix together with the residuals, and project (MT+G+T*G + ZU 

+ E) onto the loadings of the effect matrix MT+G+T*G. This allows visualizing the score 

trajectory of each individual in the loading space of MT+G+T*G, and is helpful for evaluating the 

size of the estimated effects relative to the between-subject variation and residuals.  

2.2.5 Model validation 

In order to assess the robustness of the findings we use a seven-fold jackknife approach to 

assess variability in model parameters (15). This approach involves iteratively excluding a 

random subset of patients from the data, while keeping the proportion of groups constant, and 

then re-estimating the effects and the PCA-scores and loadings for the effect matrices. During 

each iteration the new loadings are rotated by orthogonal Procrustes rotation towards the 

original loadings, and the score matrix is rotated by multiplying it with the inverse of the 

resulting loading rotation matrix. The 2.5th and 97.5th percentiles of the jackknifed score- and 
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loading estimates are then plotted as error bars around the estimates based on the full data. This 

approach only provides an approximate measure of the uncertainty of the estimated mean 

differences, and should not be interpreted as parametric 95 % confidence intervals. We mean 

center the effect matrices during every iteration, to avoid variability in the overall mean of the 

data to be incorporated in the error estimates. 

2.3 Software and data analysis 

All statistical analysis and figure creation were done in MATLAB 2019b. The fitlmematrix-

function was used for mixed models, and the pca-function in the Statistics and Machine 

Learning Toolbox was used for PCA-analysis. MATLAB-code to reproduce the results is 

available on GitHub at (https://github.com/ntnu-mr-cancer/RM_ASCA). 

3 Materials 

To demonstrate RM-ASCA+, two published datasets are here used. These will be briefly 

described, and the reader is directed to their source publications for further details. 

3.1 The NeoAva-trial 

The first dataset used is from the NeoAva-trial, which is a randomized controlled trial assessing 

the effect of adding bevacizumab, an anti-angiogenic monoclonal antibody, to conventional 

chemotherapy in breast cancer patients with locally advanced HER2-negative tumors in a 

neoadjuvant treatment setting. In a study by Euceda et al., repeated tumor biopsies obtained 

over the course of treatment were analyzed with high resolution magic angle spinning (HR 

MAS) MR spectroscopy, using a CPMG sequence (16). The spectral region between 1.40 – 

4.70 ppm, containing the majority of low-molecular weight metabolites, was selected as the 

region of interest, and spectral regions containing mostly lipids, ethanol, acetone and lidocaine 

were excluded. Spectra were PQN-normalized after removal of these areas (17), and 

metabolites were quantified by peak integration. For further details on spectral acquisition and 
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processing we refer to the original publication by Euceda et al. (16). Metabolic changes were 

related to treatment group and tumor response. The dataset includes 16 quantified and log-

transformed metabolites from 122 patients, of whom 60 received bevacizumab + 

chemotherapy, and 62 received chemotherapy only. Three tumor biopsies were taken; one 

before start of treatment, one after 12 weeks of treatment, and the last was taken from the 

surgically removed tumor. Data is missing at all timepoints, with 14 %, 36 %, and 29 % missing 

outcome data at each timepoint respectively, giving a total of 270 responses in the study. 

3.2 Metabolic fingerprint after bariatric surgery 

The second dataset used is from a study by Gralka et al., which prospectively assessed 

alterations in serum metabolites in patients undergoing one of three different kinds of bariatric 

surgery (proximal Roux-en-Y gastric bypass (RYGB), distal RYGB, and gastric sleeve) (18). 

Procedure selection was based on pre-existing clinical factors, such as degree of obesity, 

comorbidities, and patient preferences. Blood was drawn at baseline before surgery, and at 3, 

6, 9, and 12 months after surgery, and the serum was analyzed using NMR spectroscopy. 

Spectra were obtained using a Bruker spectrometer operating at 14.1T, with a triple resonance 

inverse cryoprobe, and automatic tuning-matching unit and sample changer. A CPMG-

sequence was used to acquire the spectra. The water region between 6.0 and 4.5 ppm was 

removed, and the non-normalized spectra were divided into 0.2 ppm bins, which were 

integrated using AMIX software (version 3.8.4; Bruker BioSpin). Thirty metabolites were 

quantified, of which 24 showed variability over time, and 21 were included in the published 

dataset. The study design is unbalanced, with 60 patients undergoing distal RYGB, 27 

undergoing proximal RYGB, and 19 undergoing gastric sleeve. Data is missing at all post-

baseline timepoints, with 7 %, 8 %, 12 %, and 32 % missing outcome data at each post-baseline 

timepoint, respectively, giving a total of 463 responses in the study. The metabolomics data 
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was made freely available by the authors at the online repository MetaboLights, with the 

identifier MTBLS242. 

4 Results 

4.1 Effect of bevacizumab on tumor metabolism in breast cancer 

As the NeoAva study is a randomized controlled trial, a constrained repeated measures model 

is used to estimate the effect matrices for RM-ASCA+. The following model was used: 

𝑦𝑖ℎ𝑘 = (𝛽0 + 𝛾0𝑖) + 𝛽1𝑇1 + 𝛽2𝑇2 + 𝛽3(𝑇1 ∗ 𝐵𝑒𝑣𝑎𝑐𝑖𝑧𝑢𝑚𝑎𝑏) + 𝛽4(𝑇2 ∗ 𝐵𝑒𝑣𝑎𝑐𝑖𝑧𝑢𝑚𝑎𝑏) 

where the time factor was reference coded with baseline (T0) as reference, and the variable 

Bevacizumab was reference coded, where 1 indicates bevacizumab + conventional 

chemotherapy (Treatment), and 0 indicates conventional chemotherapy only (Control). In order 

to visualize how the treatment modified the metabolic changes during chemotherapy, the effect 

matrix for time and time*treatment interaction were added together, and the combined effect 

matrix was analyzed with PCA. While this confounds the variation from the time- and 

treatment factors, it also facilitates a more direct assessment of how the treatment and control 

groups differ at the different timepoints. The plots showing results for separate PCAs on each 

effect matrix are available in Supplementary Figure 1 and 2. All metabolite responses were 

log-transformed before analysis, and the effect matrix was mean-centered before PCA. 
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The scree plot (Figure 1) shows that two principal components (PC) explain approximately 

95% of the variation in the time and time*treatment interaction effect. The scores and loadings 

for PC1 show that levels of ascorbate, tyrosine, glycerophosphocholine, phosphocholine, 

choline, creatine and glutathione decrease over time, while levels of glucose, lactate, taurine, 

glutamine, and alanine increase over time, and that these changes are most rapid and 

pronounced for the treatment group. 

In PC2, which explains only 7 % of the variation, both groups show an increased score value 

at the second timepoint compared with baseline, but the increase is higher in the treatment 

group. The PC2-loadings suggest that glutathione and myo-inositol are increased at this 

Figure 1:  Scree-, score-, and loading plots for the full effect matrix for time + time*treatment. Abbreviations: PC: Principal 

component, CTX: Chemotherapy, B: Bevacizumab, GPC: Glycerophosphocholine, PC: Phosphocholine. 
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timepoint compared with the other timepoints, while glycine, phosphocholine, choline and 

succinate are decreased.  

When the effect matrix for time + time*treatment is augmented with the random intercepts and 

residuals (Figure 2), we observe significant between-patient variation and heterogeneity in 

treatment response, showing that the estimated difference, while consistent, is modest relative 

to the variation between subjects and unexplained variation in the model. For comparison, we 

have projected both the fitted values (MT+G+T*G + ZU, continuous lines) and with the residuals 

added (MT+G+T*G + ZU + E, dashed lines), showing that there is significant residual variation 

after accounting for the between-subject variation. 

4.2 Metabolic effects of bariatric surgery 

To estimate the effects for RM-ASCA+ analysis of the bariatric surgery data, an unconstrained 

repeated measures model was used:  

Figure 2: Score plots for PC1 and PC2 for the effect matrix for time + time*treatment, augmented with random effects 

(continuous lines) and both random effects and residuals (dashed lines). Only a random subset of patients with complete data 

are included in the plot. 
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𝑦𝑖ℎ𝑘 = (𝛽0 + 𝛾0𝑖) + 𝛽1𝑇1 + 𝛽2𝑇2 + 𝛽3𝑇3 + 𝛽4𝑇4 + 𝛽5(𝐷𝑖𝑠𝑡𝑎𝑙) + 𝛽6(𝑃𝑟𝑜𝑥𝑖𝑚𝑎𝑙)

+ 𝛽7(𝐷𝑖𝑠𝑡𝑎𝑙 ∗ 𝑇1) + 𝛽8(𝐷𝑖𝑠𝑡𝑎𝑙 ∗ 𝑇2) + 𝛽9(𝐷𝑖𝑠𝑡𝑎𝑙 ∗ 𝑇3) + 𝛽10(𝐷𝑖𝑠𝑡𝑎𝑙 ∗ 𝑇4)

+ 𝛽11(𝑃𝑟𝑜𝑥𝑖𝑚𝑎𝑙 ∗ 𝑇1) + 𝛽12(𝑃𝑟𝑜𝑥𝑖𝑚𝑎𝑙 ∗ 𝑇2) + 𝛽13(𝑃𝑟𝑜𝑥𝑖𝑚𝑎𝑙 ∗ 𝑇3)

+ 𝛽14(𝑃𝑟𝑜𝑥𝑖𝑚𝑎𝑙 ∗ 𝑇4) 

where time was reference coded with baseline  as reference, and variables for treatment (Distal 

and Proximal) were sum coded, with the third category (Sleeve) specified by setting both Distal 

and Proximal equal to -1. With this coding system, the time effect represents the mean change 

over time across all groups, and the treatment and time*treatment interactions will be expressed 

as deviations from the time effect. In this analysis the effect matrices for the experimental 

factors are analyzed separately. To make the effect matrix for time, a matrix containing the 

coefficients β1-β4 for each metabolite was multiplied with their corresponding columns in the 

design matrix X. To make the effect matrix for (treatment + time*treatment), the same was 

done for the coefficients β5-β14. The results from the combined effect matrix is shown in 

Supplementary Figure 3. Before analysis every metabolite was square root transformed and 

scaled to its baseline standard deviation. 
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4.2.1 Time effect 

The results from PCA on the effect matrix for time is shown in Figure 3. This trend represents 

the average change over time across all three groups. Two distinct patterns are observed in the 

score plots. Along the first component, which explains 69 % of the variance in the Time effect, 

there is a pronounced increase in score value between the first and second timepoint, and this 

difference persists over time. Metabolites with positive loadings on PC1 include 

methylsulfonylmethane, and the amino acid glycine, while the amino acids valine, isoleucine, 

tyrosine, and phenylalanine, the alcohols isopropylalcohol and methanol, and the lipoprotein 

signal have negative loadings.  

Figure 3:  Scree-, score-, and loading plots for the effect matrix for time in the bariatric surgery data. Abbreviations: PC: 

principal component, MSM: methylsulfonylmethane. 
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In the second component, which explains 28 % of the variance in the time effect, a different 

pattern is observed. There is a temporary increase in scores after surgery, and then a progressive 

decrease over time. Metabolites with positive loadings on PC2 mainly include citrate and the 

ketone bodies acetoacetate and hydroxybutyrate, while methylsulfonylmethane has the most 

negative loading value.  

4.2.2 Treatment and time*treatment interaction effect 

The results from PCA on the effect matrix for the treatment + time*treatment interaction effects 

is shown in Figure 4. The first principal component explains 64 % of the variation in the effects. 

In the score plot for PC1, the group receiving distal RYGB shows increasing score values over 

time, and diverges from the two other surgery groups. The loading plot for PC1 is characterized 

by a highly positive loading for methylsulfonylmethane. The fact that the PC1-scores of the 

three groups is the same at baseline suggests that the main source of variation is change in 

methylsulfonylmethane over time, and that this difference is not present at baseline. The 

baseline differences are visible at the first timepoint in PC2, which explains 14 % of the 

variation, but then start to significantly overlap at later timepoints. 
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5 Discussion 

In this work we have described a novel methodology, RM-ASCA+, suitable for analysis of 

longitudinal multivariate data, and we have demonstrated this using two publicly available 

metabolomics datasets. We find that RM-ASCA+ yields interpretable and efficient 

representations of the findings in the original studies, while also revealing trends not previously 

apparent. 

We have discussed three commonly used types of longitudinal linear models: 1) repeated 

measures models (cLDA/ucLDA), 2) longitudinal ANCOVA, and 3) analysis of changes. 

While the model types will in some settings yield equivalent results, and all will give unbiased 

estimates of the treatment effect for randomized studies (19), repeated measures models have 

Figure 4:  Scree-, score-, and loading plots for the effect matrix for the time*treatment interaction. Abbreviations: PC: 

principal component, MSM: methylsulfonylmethane. 
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some general advantages. In addition to allowing direct modeling of the time effect, which is 

useful when visualizing the effects over time in score plots, they can accommodate both 

randomized and non-randomized study designs. For these reasons, we find repeated measures 

models to be a suitable starting point for analyzing such studies using ASCA+.  

For randomized studies, ucLDA and cLDA will usually yield similar score- and loading plots 

for the same dataset. However, in the case of chance imbalances in metabolites at baseline 

(which are always present), cLDA will adjust the effect estimates for regression to the mean 

(8). The intuitive explanation for this is that the group showing highest levels at baseline will 

on average be expected to decrease slightly at the next measurement, while the lowest group 

will be expected to increase. A consequence of this is that when estimating the treatment effect, 

an increase in the group showing the highest baseline levels should be given greater weight 

than an equivalent increase in the group with the lowest levels, because a further increase is 

more difficult to achieve if baseline levels are already high by chance. The same holds in the 

reverse situation. Models involving a baseline adjustment therefore give the most correct 

estimate of the treatment effect in this setting. The same does not hold for non-randomized 

studies, except for special situations where treatment assignment is determined by the baseline 

value (11). For most non-randomized studies, the treatment and control group will regress to 

different population means, and adjusting for baseline value of the response variable will 

introduce bias in the effect estimate. In such cases, limiting the analysis to comparison of 

within-group change may be more appropriate. 

We have demonstrated RM-ASCA+ using data from two different studies. In the first study, 

by Euceda et al., the metabolic impact of neoadjuvant bevacizumab on tumor metabolism was 

assessed in a randomized controlled trial (16). The statistical analysis in the published paper 

involved a combination of PCA, PLS-DA, and univariate mixed models. A clear overall 

metabolic change over time for the entire cohort was described, characterized by increased 
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levels of glucose and lipids, and decreased levels of phosphocholine, glycerophosphocholine, 

choline, and taurine, which was interpreted as signs of normalization of breast tissue 

metabolism (20). However, no significant discrimination was found at any timepoint between 

treatment and control by PLS-DA, and on univariate tests only glutathione was found to be 

significantly affected in the treatment group after adjustment for multiple tests. When applying 

RM-ASCA+, we find that the estimated scores of the treatment- and control group differ at all 

post-baseline timepoints, and the difference is robust to Jackknife-validation. The groups show 

directionally similar metabolic trajectories over time, but the slope is more steep for the 

treatment group. In PC2 we observe that both groups show a temporary increase in score value, 

which again is most pronounced in the group treated with bevacizumab, suggesting that the 

metabolites prominent in the loadings of PC2 (glutathione, choline, phosphocholine, glycine) 

are differently affected at this timepoint. This might reflect different chemotherapy regimens, 

as during the first half of the treatment the patients were treated with FEC (fluorouracil, 

epirubicine, and cyclophosphamide), while the remaining chemotherapy was taxane-based. 

Another possibility is that it is caused by discontinuation of active treatment, as patients were 

not given systemic cancer-directed therapies in the last four weeks before surgery. 

In the second dataset included in this paper, Gralka et al. assessed metabolic changes in serum 

after bariatric surgery. They describe several changes, including increased levels of the amino 

acids glycine, glutamine, histidine, and arginine, along with increased levels of 

methylsulfonylmethane, trimethylamine-N-oxide, and formate, irrespective of procedure type. 

Conversely, concentrations of the branched chain amino acids (BCAA) isoleucine, leucine, 

valine, and the aromatic amino acids (AAA) phenylalanine and tyrosine were found to 

decrease, along with the lipoprotein signal and the gut microbiome derived metabolites 

methanol and isopropylalcohol. They also describe temporarily increased levels of the ketone 

bodies acetoacetate and hydroxybutyrate, and citrate after surgery, which was interpreted as 
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reflective of ongoing fat catabolism. We find that by using RM-ASCA+ these results are 

visualized as two separate temporal trends. PC1 shows a large increase in score value from 

baseline to the first follow-up, and this score remains largely unaltered over time. This 

component describes the decreased levels of BCAAs, AAAs, lipoprotein signal, and methanol 

and isopropylalcohol, and increased levels of methylsulfonylmethane, glycine and ketone 

bodies. Both BCAAs and AAAs are implicated in the pathogenesis of obesity and metabolic 

syndrome, although their causal relationships remain unclear. Reduced serum levels of BCAAs 

can be observed after weight loss achieved by either surgery or diet, with the effect possibly 

being more pronounced for weight loss achieved through surgery (21-23). Like BCAAs, the 

AAAs phenylalanine and tyrosine have been positively associated with both prediabetes and 

T2D (24, 25), and changes during weight loss have generally been found to mirror changes in 

BCAAs (26). Glycine, which increased after bariatric surgery, has been inversely associated 

with metabolic syndrome, and positively associated with physical activity (27). In one study, 

reduced glycine levels in obesity was experimentally related to BCAA flux, where BCAA 

oversupply was hypothesized to interfere with oxidation of fatty acids, causing accumulation 

of lipid intermediates in the cell, which may deplete glycine levels through production of 

acylglycine (28). Increased glycine levels could therefore possibly be explained by the reduced 

supply of BCAAs. 

The response pattern described by PC2 is characterized primarily by increased levels of ketone 

bodies and citrate. These metabolites increase after surgery, before decreasing over time and 

appearing to approach a steady state, which is not yet reached at the final follow-up. Both the 

temporal development and metabolite loadings of PC2 suggest that this component may reflect 

changes in fat catabolism, which presumably is highest in the first months after surgery, and 

then tapers off as the patients lose weight and reach a new energy equilibrium. Ketone bodies 

generally increase during periods of increased fat oxidation, due to increased availability of 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.20243097doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.03.20243097
http://creativecommons.org/licenses/by/4.0/


 

26 

 

acetyl-CoA, which then react to produce ketone bodies (29). The explanation for increased 

citrate is less obvious, but levels of citrate, and other TCA-metabolites in general, have 

previously been reported to increase during prolonged fasting, possibly due to enhanced 

mitochondrial activity (30). As the prolonged caloric deficit after surgery may be metabolically 

similar to fasting, this could explain the increased citrate levels during the period of greatest 

weight loss.  

Analysis of the time-treatment interaction effect showed that the metabolic effects of proximal 

RYGB and GS were similar, while the group receiving distal RYGB showed a different 

metabolic trajectory. This divergence was mainly driven by different effects on the metabolite 

methylsulfonylmethane. Methylsulfonylmethane increased in all surgery groups after surgery, 

but the group receiving distal RYGB showed more pronounced increases compared with 

proximal RYGB or GS. This difference was suggested by Gralka et al. to be due to the 

malabsorptive effects of distal RYGB, which could result in increased production of 

methylsulfonylmethane from the gut microbiome as a consequence of increased nutrient 

availability (18). Dietary supplementation of methylsulfonylmethane has been observed to 

improve the metabolic profile in obese mice (31). Moreover, observational studies suggest that 

malabsorptive procedures may produce superior improvements in blood pressure, lipid profile, 

and subsequent cardiovascular risk reduction, despite producing comparable weight loss (32, 

33). These observations may imply that malabsorptive procedures may have additional benefits 

which are independent of their effects on weight loss. Other gut microbiome-derived 

metabolites observed to decline after surgery were methanol and isopropylalcohol. However, 

as these were equally decreased across all surgery types, they are likely altered by a different 

mechanism than methylsulfonylmethane. 

While RM-ASCA+  can reveal interesting patterns in high-dimensional longitudinal data, some 

issues remain to be resolved. Although we have introduced ways of visually assessing the 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.20243097doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.03.20243097
http://creativecommons.org/licenses/by/4.0/


 

27 

 

robustness of the results through jackknifing and augmenting the effect matrices with random 

effects and residuals, how to obtain p-values for the factor effects is not considered here. 

Another important issue is missing data. While LDA-models use all available data when 

estimating the effects, they require missing data to be missing at random (MAR) in order to 

provide unbiased estimates. This means that the probability of missingness must be 

conditionally independent of the value of the unobserved response, given the subject’s 

observed covariates (34). For example, if missing samples are metabolically different from 

non-missing samples from patients with the same covariates, missing data will bias the effect 

estimates regardless of which linear model is used. This is referred to as missing not at random 

(MNAR), or non-ignorable missing data.  If there is substantial missing data, and it is suspected 

to be non-ignorable, it is recommended to perform multiple imputation to assess how different 

assumed distributions for the missing data affect the findings (35). A limitation of RM-ASCA+ 

compared to LiMM-PCA is that mixed models are computationally demanding, and applying 

mixed models to potentially tens of thousands of variables may not be feasible. In such 

situations, the pre-transformation of the response matrix by PCA done in LiMM-PCA can 

drastically reduce the number of response variables, making LiMM-PCA the more scalable 

alternative for high-dimensional data.  

In conclusion, repeated measures linear mixed models can be used in conjunction with ASCA+ 

to visualize and compare multivariate changes between groups over time. This approach is not 

limited to metabolomics data, but may be suitable for any study using a longitudinal repeated 

measures design with a multivariate endpoint.  
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