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Anti-PD-1 immunotherapies have transformed cancer treatment, yet the determinants of clinical 
response are largely unknown. We performed CODEX multiplexed tissue imaging and RNA sequencing 
on 70 tumor regions from 14 advanced cutaneous T cell lymphoma (CTCL) patients enrolled in a clinical 
trial of pembrolizumab therapy. Clinical response was not associated with the frequency of tumor-
infiltrating T cell subsets, but rather with striking differences in the spatial organization and functional 
immune state of the tumor microenvironment (TME). After treatment, pembrolizumab responders had 
a localized enrichment of tumor and CD4+ T cells, which coincided with immune activation and cytotoxic 
PD-1+ CD4+ T cells. In contrast, non-responders had a localized enrichment of Tregs pre- and post-
treatment, consistent with a persistently immunosuppressed TME and exhausted PD-1+ CD4+ T cells. 
Integrating these findings by computing the physical distances between PD-1+ CD4+ T cells, tumor cells, 
and Tregs revealed a spatial biomarker predictive of pembrolizumab response. Finally, the chemokine 
CXCL13 was upregulated in tumor cells in responders post-treatment, suggesting that chemoattraction 
of PD-1+ CD4+ T cells towards tumor cells facilitates a positive outcome. Together, these data show that 
T cell topography reflects the balance of effector and suppressive activity within the TME and predicts 
clinical response to PD-1 blockade in CTCL. 
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INTRODUCTION  
Cutaneous T cell lymphomas (CTCL) are a rare, heterogeneous group of T cell malignancies that 

primarily occur in the skin. The majority of CTCLs are comprised of mycosis fungoides and Sézary 
syndrome, which originate from mature, skin-tropic CD4+ T cells1. A third of patients present with 
advanced-stage disease and those meeting high risk criteria have a 5-year survival rate of 28%2. With the 
exception of hematopoietic stem cell transplantation, there are no curative therapies for advanced CTCL, 
and current treatments typically induce short-lived, partial disease control3. However, immune checkpoint 
inhibitors, such as antibodies against PD-1, restore T cell effector function at the tumor site4,5 and promote 
robust and durable responses in a number of advanced cancers6-8. In CTCL, PD-1 and its ligands can be 
simultaneously expressed on tumor cells, making this pathway an attractive therapeutic target for PD-1 
blockade9-12.  

A Cancer Immunotherapy Trials Network (CITN) multicenter phase II clinical trial of the anti-PD-1 
immunotherapy, pembrolizumab, in heavily pre-treated patients with advanced relapsed/refractory CTCL 
was recently reported (NCT02243579)13. In this study, 38% of patients achieved a sustained clinical 
response, whereas 25% experienced rapid disease progression, likely because inhibition of PD-1 on tumor 
cells promoted cancer growth14,15. Such outcome discrepancies underscore a need for predictive 
biomarkers of PD-1 blockade that will allow patients to be stratified into probable responders and non-
responders prior to initiating therapy.  

To date, biomarker studies with immunohistochemistry (IHC), gene expression profiling, and mass 
cytometry (CyTOF), have not yet provided predictive indices of pembrolizumab responsiveness in CTCL13. 
Similarly, predictive biomarkers remain in-demand for other tumor types and immunotherapies16,17. As 
the immune system acts via coordinated cell-cell association, it is expected that spatial cellular attributes 
within the tumor microenvironment (TME) would be predictive of clinical outcomes. As such, organized 
cellular contexts would be productive whereas incorrectly arranged cellular contexts (i.e., absence or 
misplacement of certain cell-types) would prognosticate a negative outcome. Indeed, recent studies 
indicate that immune cells are not randomly distributed within the TME, but are purposefully organized 
into cellular neighborhoods and niches that facilitate anti- or pro-tumor functions18,19. This raises the 
question of how PD-1 blockade alters spatial cellular context, and in turn, how such changes in 
architecture relate to patient responses in CTCL.   

We combined CO-Detection by indEXing (CODEX) multiplexed tissue imaging19,20 with gene 
expression profiling by RNA-seq to interrogate tumors from 14 patients with advanced CTCL sampled 
before and after pembrolizumab treatment. Then we computationally correlated spatial protein 
information at the single cell level with matched global gene expression data to generate insights into the 
drivers and resistors of PD-1 blockade. Our data revealed a localized enrichment of effector CD4+ T cells 
in responders versus inhibitory Tregs in non-responders. Such topographical differences coincided with 
variations in the functional immune state of the TME, T cell function, and tumor cell-specific chemokine 
expression. We integrated these findings into a single SpatialScore—a spatial biomarker predictive of 
pembrolizumab outcome—that can be accurately recapitulated using clinically accessible multiplexed IHC 
(mIHC) platforms. The results underscore a key determinant of spatial cellular organization, namely a 
distancing balance of effector and suppressive T cell activity, for predicting anti-PD-1 immunotherapy 
response in CTCL.  
 
 
RESULTS 

CTCL clinical cohort and multimodal experimental approach     
We analyzed pre- and post-treatment biopsies from 14 patients with advanced-stage CTCL, who 

received pembrolizumab every 3 weeks for up to 2 years as part of the CITN-10 trial (NCT02243579) (Fig. 
1a.1, Sup. Fig. 1a-b, Sup. Table 1)13. The post-treatment biopsies were collected at several timepoints, 
which is detailed per patient in Sup. Fig. 1c and Sup. Table 1. The spatial organization and immunogenomic 
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heterogeneity of the CTCL TME was dissected using a formalin-fixed paraffin-embedded (FFPE) tissue 
microarray from 70 patient-matched pre- and post-treatment skin tumor samples (Fig. 1a.2). The tissue 
microarray spots were selected from the most infiltrated regions of the skin biopsies. CODEX multiplexed 
protein imaging identified 117,170 cells in the tissue microarray. These results were integrated with 64 
tissue transcriptomes obtained from serial sections using laser capture microdissection and Smart-3Seq21 
(i.e., RNA-seq) (Fig. 1a.3). Integrative analyses, including  cellular neighborhood assessment19 and 
CIBERSORTx (CSx)22, were then used to profile the molecular dynamics of CTCL and identify predictive 
biomarkers of anti-PD-1 immunotherapy (Fig. 1a.4). 

Therapeutic response to pembrolizumab was assessed by consensus global response criteria23. 
No significant differences were observed at baseline between responders and non-responders for patient 
demographics, cancer type/stage, and treatment history (Sup. Fig. 1b). Clinical outcomes were 
significantly different between patient groups (Sup. Fig. 1b). Responders had a significant improvement 
in their overall skin response compared to non-responders, as measured by the modified Severity 
Weighted Assessment Tool (mSWAT)24 (Sup. Fig. 1b). Similarly, overall survival was significantly longer in 
responders than non-responders: Non-responders had a median survival of 109 weeks after treatment 
initiation, whereas all but one responder was alive at the median follow-up time of 142 weeks (Fig. 1b). 
The expression of key T cell, macrophage and PD-1 signaling markers was assessed by standard IHC for 
each patient’s pre-treatment tumor biopsy: PD-L2 expression was slightly increased in non-responders 
compared to responders but did not reach statistical significance (Fig. 1c). No differences were observed 
for the other seven markers, as shown for CD4, FoxP3, PD-1, and PD-L1 (Fig. 1d). 
 
Discrimination of malignant from reactive CD4+ T cells in the CTCL TME 

Distinguishing malignant from reactive CD4+ T cells is a major challenge in CTCL, because no 
protein marker is 100% specific for tumor cells and both cell-types can be clonal25. Using a 55-marker 
CODEX panel (Fig. 1e, Sup. Fig. 1d, Sup. Table 2), unsupervised machine learning and manual curation 
based on marker expression, tissue localization, and morphology, we identified and validated 21 unique 
cell-type clusters (Fig. 1f, Sup. Fig. 2a-b), including reactive CD4+ T cells and malignant CD4+ T cells (i.e., 
tumor cells). Comparing the fluorescent stainings of reactive CD4+ T cells (blue crosses) and malignant 
CD4+ T cells (red crosses) showed that in tumor cells CD7 was decreased and CD25 and Ki-67 were 
increased (Fig. 1g), consistent with an advanced CTCL phenotype26. Quantifying these expression 
differences for tumor cells relative to reactive CD4+ T cells showed a fold-change of 0.40 for CD7, 1.87 for 
CD25, and 3.47 for Ki-67 (Fig. 1h, p<0.0001). Tumor cells were also larger in size than reactive CD4+ T cells 
(Fig. 1i), in line with previous reports27. One patient had large cell transformation, but the average size of 
tumor cells in that patient was not significantly different from the other 13 patients. Additionally, we 
identified genes predictive of the frequency of tumor cells per tissue microarray spot by fitting an L1-
regularized linear model to bulk RNA-seq data. This confirmed that higher expression of several known 
CTCL marker genes, including CD27, IL-32, CXCL13, BATF, and TIGIT28-32, was associated with spots with 
higher frequencies of tumor cells (Fig. 1j, see yellow highlighted gene names).  Notably, CTCL tumor cells 
can also express FoxP333, as was the case for one patient in this clinical trial cohort. Our clustering 
approach identified this population of malignant FoxP3+ CD4+ T cells, which differed significantly from 
Tregs, with lower CD3, CD4, and FoxP3 marker expression and larger cell size (Sup. Fig. 1e). Given the 
heterogeneity of CTCL, the marker expression profile of tumor cells may differ between cohorts, especially 
those that were heavily pre-treated. However, these findings demonstrate that multiplexed imaging can 
discriminate malignant from reactive CD4+ T cells at the single-cell level, which is supported by cell size 
measurements and gene expression profiling.   
 
Deep profiling of the CTCL TME in response to anti-PD-1 immunotherapy  

Anti-PD-1 immunotherapies are premised on the ability to alter the delicate balance of positive 
and negative immune signaling to promote the recognition and elimination of tumor cells. Tumor cells, 
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however, shift this balance in favor of their own survival and proliferation. We reasoned that delineating 
the complexities of tumor and immune cell interactions within the TME may reveal the cell specific 
organizations that determine pembrolizumab response and resistance in CTCL.  

We first explored how cellular composition contributes to the efficacy of PD-1 blockade in CTCL 
by cataloging the frequencies of the 21 cell-types identified by CODEX across patient groups. The 21 cell-
types included 13 immune cell-types, 6 auxiliary cell-types, and 2 tumor cell-types (Sup. Fig. 2b). Markers 
for T cell subsets (CD4, CD8, FoxP3), macrophages (CD68), dendritic cells (CD11c), tumor cells (CD4), 
vasculature (CD31), and epithelium (cytokeratin) were clearly visualized in the CODEX fluorescent images 
(Fig. 2a-b, upper panels; Sup. Fig. 3a). The corresponding hematoxylin and eosin (H&E) images (Fig. 2a-b, 
inserts; Sup. Fig. 3b) confirmed accurate staining of structural elements like epithelium and vasculature. 
Fluorescent staining of immune and tumor cells confirmed the cell-type assignments shown in the 
corresponding cell-type maps (Fig. 2a-b, lower panels).  

Interestingly, no differences in the content of the 21 identified cell-types were noted between 
responders and non-responders pre- or post-treatment (Fig. 2c-d; Sup. Fig. 2c). The combined frequencies 
of tumor, immune and auxiliary cell-types each comprised approximately one-third of all cells (Fig. 2c, 
upper panel); the same trend held across patient groups (Sup. Fig. 2c). Tumor cell content (averaged 
across all TMA spots in a patient group) was unchanged in responders or non-responders following 
pembrolizumab therapy (Sup. Fig. 2c), likely because only heavily infiltrated skin tumor biopsy regions 
were used for this study. Among all immune cells, the ranked cell-type frequencies were 38% for M1 
macrophages, 21% for Tregs, 15% for CD8+ T cells, 5% for M2 macrophages, 5% for  CD4+ T cells, and <5% 
for other immune cell-types including B cells, plasma cells, dendritic cells, Langerhans cells, mast cells, and 
neutrophils (Fig. 2c, lower panel). No differences in the mean frequencies of immune cell-types were 
observed when comparing responders and non-responders pre- and post-treatment; this is highlighted 
for T cells (CD4+ T, CD8+ T, Tregs) and macrophages (M1 and M2) (Fig. 2d). This finding is consistent with 
the initial publication on this CTCL cohort and our baseline IHC data (Fig. 1c-d), which showed no 
correlation between pembrolizumab response and the expression of T cell, macrophage or PD-1 signaling 
markers13. However, it contrasts with some solid tumor studies, which have correlated the density of 
tumor infiltrating lymphocytes with clinical outcome34,35 and immunotherapy response36,37.  

We next focused on differences in immune signaling between responders and non-responders. 
Immunogenomic analyses were preformed to characterize the functional immune state of the TME, which 
has been shown to be a key determinant of immunotherapeutic activity38. Gene expression signatures 
that have predicted PD-1/PD-L1 blockade response (e.g., IFN-γ scores39, Sup. Table 3) and non-response 
(e.g., TGF-β scores40, Sup. Table 3) in solid tumors were applied to our CTCL data. No differences were 
observed pre-treatment in responders versus non-responders for the IFN-γ (Fig. 2e, median R, pre (0.77) 
versus NR, pre (0.76)) or TGF-β (Fig. 2f, median R, pre (0.28) versus NR, pre (-0.32)) gene scores; hence, 
neither signature was predictive of pembrolizumab response in CTCL. Since these predictive gene 
signatures were derived from single-disease studies, their utilization may be limited to similar solid tumor 
types41.  

Rare cancers like CTCL do not have specifically defined immune gene signatures, making it a 
challenge to catalogue their tumor immunogenicity. Gene lists of immune activation (e.g., CD27, EOMES, 
and ICOS) and immunosuppression (e.g., ENTPD1, TGFB1, and TIGIT) molecules were therefore compiled 
(Sup. Table 3) and used to assess how the functional immune state of the CTCL TME was altered in 
response to pembrolizumab. Notably, genes like PDCD1 and TNFRSF18, which can be both immune 
activating and suppressive depending on cellular state and microenvironmental context, were excluded 
from this analysis. The immune activation gene score was significantly increased in responders post-
treatment compared with pre-treatment (Fig. 2g, median R, pre (-2.54) versus R, post (1.21)), with no 
significant change in non-responders post- versus pre-treatment. This indicates that only responders 
develop an immune activated TME phenotype following pembrolizumab therapy. In contrast, the 
immunosuppression gene scores were significantly increased in non-responders compared to responders 
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both pre- and post-treatment (Fig. 2h, median NR, pre (0.59) versus R, pre (-0.83) and NR, post (0.64) 
versus R, post (-1.12)), implying that non-responders have an immunosuppressed TME phenotype relative 
to responders. Collectively, these results demonstrate that the functional immune state of the CTCL TME 
depends on factors beyond raw immune cell counts. Exploring the spatial patterns of immune infiltration 
is an essential step towards understanding the indicators predictive of immunotherapy outcome.   
 
PD-1 blockade induces spatial re-organization of the CTCL TME  

It is expected that the functional immune state of the TME will be mediated by its spatial cellular 
organization. Cellular neighborhood (CN) analysis, applied previously in a study on colorectal cancer19, 
was performed to obtain a high level view of CTCL tissue architecture. CNs are analogous to urban 
neighborhoods—essentially geographically localized areas within a larger city that facilitate social 
interaction42 (Sup. Fig. 2d). Likewise, CNs are defined by a localized enrichment of specific cell-types within 
the tissue that mediate cellular interactions and vital tissue functions (Sup. Fig. 2e). Computationally, the 
CN algorithm extracts quantitative data on the composition and spatial distribution of individual cells to 
reveal how local cellular niches are organized within tissues (Fig. 3a)19. Specifically, computational 
parameters like the window size and number of CNs to be computed are manually set (Fig. 3a.1). Each 
cell in the tissue is assigned to a given CN based on the composition of cell-types within the specified 
window (Fig. 3a.2). The windows are then clustered and the correlation of CNs and cell-types are 
represented as a heatmap (Fig. 3a.3). CNs are visualized as Voronoi diagrams and analyzed to better 
understand cellular spatial behavior (Fig. 3a.4).   

Using a window size of 10 nearest neighbors, we identified 10 distinct CNs that were conserved 
across this CTCL cohort (Fig. 3b, Sup. Fig. 3c). Some CNs recapitulated structural components that are 
clearly discernable in the corresponding H&E and fluorescent images, such as epithelium (CN-1, green 
region) and vasculature (CN-3, brown region) (Fig. 3c). The other CNs were composed of previously 
unappreciated sub-structures within the dermal infiltrate that were not apparent in the corresponding 
H&E or fluorescent images, including immune-infiltrated stroma (CN-2, red region), vascularized stroma 
(CN-4, gray region), tumor and dendritic cells (CN-5, purple region), lymphatic enriched stroma (CN-6, 
orange region), tumor and mixed immune cells (CN-7, cyan region), tumor and CD4+ T cells (CN-8, yellow 
region), innate immune cell enriched (CN-9, blue region), and Treg enriched (CN-10, pink region) (Fig. 3c).   

Representative Voronoi diagrams from a responder (Fig. 3d, see CN-5 and CN-8, purple and yellow 
regions, respectively) and non-responder (Fig. 3e, see CN-10, pink region) post-treatment show significant 
differences in the frequency of CNs between patient groups. CNs enriched in tumor and dendritic cells 
(CN-5, purple region) (Fig. 3f, mean frequency in R, post (21.4%) versus R, pre (3.2%)) and tumor and CD4+ 
T cells (CN-8, yellow region) (Fig. 3g, mean frequency in R, post (19.0%) versus R, pre (8.5%)) were present 
at significantly higher levels in responders post-treatment than in non-responders or either group pre-
treatment. In contrast, the Treg enriched CN (CN-10, pink region) was present at a significantly higher 
frequency in non-responders than responders pre- and post-treatment (Fig. 3h, mean frequency in NR, 
pre (15.5%) versus R, pre (3.3%) and NR, post (22.7%) versus R, post (4.9%)). Notably, these differences in 
the spatial organization of certain cell-types were observed even though there were no differences in the 
abundance of CD4+ T cells, dendritic cells, Tregs, or tumor cells between patient groups, as previously 
described (Fig. 2c-d).  

The increased co-localization of dendritic cells, CD4+ T cells and tumor cells in responders post-
treatment, relative to other patient groups, suggests that the more immune activated TME observed in 
responders following pembrolizumab therapy (i.e., increased immune activation gene score in Fig. 2g) 
may in part be mediated by CD4+ T cell activation by antigen-presenting cells. Indeed, after PD-1 blockade, 
responders had increased frequencies of activated ICOS+ CD4+ T cells (Fig. 3i, mean frequency in R, post 
(1.9%) versus R, pre (0.7%) and NR, post (0.2%)) and proliferating Ki-67+ CD4+ T cells (Fig. 3j, mean 
frequency in R, post (0.8%) versus R, pre (0.1%) and NR, post (0.1%)) compared to responders pre-
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treatment and non-responders post-treatment, suggesting that pembrolizumab therapy activates CD4+ T 
cells through upregulation of immune activating molecules.  

The increased frequency of the Treg enriched CN in non-responders pre- and post-treatment is 
consistent with our finding that non-responders have a persistently immunosuppressed TME (i.e., 
increased immunosuppression gene score in Fig. 2h), which is further supported by the higher frequency 
of a potently suppressive subset of Tregs expressing ICOS in non-responders (Fig. 3k, mean frequency in 
NR, pre (4.4%) versus R, pre (1.2%) and NR, post (6.2%) versus R, post (1.2%))43,44. Interestingly, despite 
treatment with PD-1 blockade, no differences were observed in PD-1+ subsets of CD4+, CD8+, Tregs, or 
tumor cells between groups (Sup. Fig. 2-i). Collectively, these data link the spatial re-organization of CD4+ 
T cells, tumor cells, and Tregs with immune activity of the TME, highlighting patterns of immune control 
and pembrolizumab responsiveness.      
 
Spatial signature of PD-1+ CD4+ T cells, tumor cells, and Tregs predicts pembrolizumab response in CTCL 

It is reasonable to suspect that specific cellular interactions drive pembrolizumab responsiveness 
in CTCL. While complex spatial analyses have been used to prognosticate cancer outcomes in select clinical 
cohorts19, we hypothesized that a simplified approach based on the distances between specific immune 
and tumor cells could be employed.  Guided by our CN findings, which highlighted the spatial arrangement 
of CD4+ T cells, tumor cells and Tregs, we formalized a computational scoring approach to standardizing a 
spatial signature. This score, termed SpatialScore, calculates the physical distance ratio of each CD4+ T cell 
and its nearest tumor cell (“right” distance) relative to its nearest Treg (“left” distance) (Fig. 4a). A lower 
SpatialScore (i.e., CD4+ T cells are closer to tumor cells than Tregs) suggests increased T cell effector 
activity (Fig. 4a.1), whereas a higher SpatialScore (i.e., CD4+ T cells are closer to Tregs than tumor cells) 
suggests increased T cell suppression (Fig. 4a.2). As such, the SpatialScore can be viewed as a proxy of the 
balance between T cell effector activity and suppression in the TME.  

The SpatialScore is calculated on a per cell basis and the mean value is reported for each patient 
group. When calculated with all CD4+ T cells, the pre-treatment SpatialScore was significantly lower in 
responders than non-responders, with enhancement post-treatment for both groups (Fig. 4b, compare 
mean SpatialScore for R, pre (0.57) versus NR, pre (0.63)). The same trend was observed on a per patient 
basis (Sup. Fig. 4a). Since the current study trialed PD-1 blockade in CTCL, we next asked how the 
SpatialScore was influenced by the PD-1+ CD4+ T cell subset. As observed when calculated with all CD4+ T 
cells, when computed with PD-1+ CD4+ T cells, tumor cells, and Tregs, the SpatialScore was lower in 
responders than non-responders (Fig. 4c, compare mean SpatialScore for R, pre (0.41) versus NR, pre 
(0.62)). The same trend was seen on a per patient basis (Sup. Fig. 4b). Notably, the SpatialScore was lower 
in responders pre-treatment when calculated with PD-1+ CD4+ T cells versus all CD4+ T cells, implying 
increased effector activity in this T cell subset. These results suggest that PD-1+ CD4+ T cells in responders 
are primed for increased anti-tumor activity, which is enhanced in the immune activated TME that results 
following pembrolizumab therapy.   

Since the SpatialScore approach appears to predict the outcome of PD-1 blockade in CTCL, it 
stands to reason that there is a deep phenotype of cell-type specific architecture that is driving the 
SpatialScore. Pre-treatment differences were driven by the closer proximity of PD-1+ CD4+ T cells and Tregs 
in non-responders (Sup. Fig. 4c, see red arrow), consistent with the increased immunosuppression gene 
scores in non-responders relative to responders (Fig. 2h). In contrast, post-treatment differences were 
driven by the closer proximity of PD-1+ CD4+ T cells and tumor cells in responders (Sup. Fig. 4d, see red 
arrow), consistent with the increased immune activation gene score in responders relative to non-
responders (Fig. 2i). Importantly, no correlation was identified between the abundance of PD-1+ CD4+ T 
cells, tumor cells, or Tregs and the SpatialScore on a per tissue microarray spot basis (Sup. Fig. 4g-i), 
implying that the SpatialScore is not merely driven by cell-type frequency. Additionally, the mean 
SpatialScore was significantly different from that of a random sample in responders pre- and post-
treatment (Sup. Fig. 4j and l), but not in non-responders pre- and post-treatment (Sup. Fig. 4k and m). 
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This suggests that an active process coordinates the spatial interactions of PD-1+ CD4+ T cells, tumor cells 
and Tregs in responders, whereas no such mechanism exists in non-responders. Finally, when the 
SpatialScore was calculated for CD8+ T cells (Sup. Fig. 4e) or PD-1+ CD8+ T cells (Sup. Fig. 4f), it was not 
predictive of pembrolizumab response. The increased proximity of CD4+ T cells and tumor cells observed 
in pembrolizumab responders—and lack thereof for CD8+ T cells—suggests that CD4+ T cells may have a 
more important effector function in CTCL than previously appreciated.  
 
PD-1+ CD4+ T cells upregulate cytotoxic effector molecules in pembrolizumab responders 

We reasoned that the spatial proximity of PD-1+ CD4+ T cells and tumor cells reflected the 
enhanced CD4+ T cell tumor reactivity seen in responders following pembrolizumab therapy. CODEX and 
RNA-seq datasets were therefore used to assess the cytotoxic potential of effector PD-1+ CD4+ T cells. In 
CTCL, cytotoxic CD4+ T cells act through a granzyme-perforin-dependent pathway to achieve tumor cell 
killing45,46, similar to cytotoxic CD8+ T cells46-48. The expression of granzyme B (GZMB) on PD-1+ CD4+ T cells 
was increased in responders post- versus pre-treatment (Fig. 4d, mean GZMB expression, R, post (26.9) 
versus NR, post (12.2) and R, pre (12.1)). This increased GZMB expression is confirmed visually in a 
responder post-treatment with DRAQ5 (nuclear stain), CD4, PD-1, and GZMB fluorescent staining (Fig. 4e, 
see white arrow) and is consistent with the increased cytotoxicity gene score49,50 seen in responders post-
treatment compared to pre-treatment (Fig. 4f, median R, post (1.21) versus R, pre (-1.77), Sup. Table 3). 
No differences were observed between non-responders pre- and post-treatment with regards to GZMB 
expression on PD-1+ CD4+ T cells (Fig. 4d, mean expression, NR, pre (11.7) versus NR, post (12.2)) or the 
cytotoxicity gene score (Fig. 4e, median NR, pre (0.21) versus NR, post (0.43)).  

Increased cytotoxicity should coincide with decreased tumor cell aggressiveness and, using genes 
associated with poor response to therapy51 and progressive52 CTCL (Sup. Table 3), it was observed that 
tumor aggressiveness decreased in 100% of responders following pembrolizumab therapy (Fig. 4g) but 
increased in 71% of non-responders (Fig. 4h). This increased tumor aggressiveness in non-responders was 
further supported by an increased frequency of proliferating (Ki-67+) tumor cells in non-responders post- 
versus pre-treatment and compared to responders post-treatment (Fig. 4i, mean frequency, NR, post 
(17.0%) versus NR, pre (8.9%) and R, post (7.8%))26,53. Collectively, these data show the cytotoxic potential 
of effector PD-1+ CD4+ T cells and their association with a favorable response to pembrolizumab therapy 
in CTCL.  
 
Validation of the SpatialScore biomarker with a clinically accessible multiplexed IHC platform  

While mIHC approaches, such as CODEX, provide the raw data for deep cellular profiling, 
translating these findings to a clinical arena requires simplifying the predictive signature to a diagnostic 
platform that can be readily implemented in clinical practice. Vectra, in conjugation with the Phenoptics 
workflow, is a commercially available, widely adopted clinical mIHC imaging platform, which has been 
used to identify biomarkers for renal cell carcinoma54 and B cell lymphoma55. We devised a simplified 
staining panel (DAPI, CD3, CD4, CD7, CD8, CD25, FoxP3, and PD-1) that captured the PD-1+ CD4+ T cells, 
tumor cells, and Tregs used to calculate the SpatialScore. Notably, the tumor cell phenotype identified by 
CODEX (i.e., decreased expression of CD7 and increased expression of CD25 and Ki-67; Fig. 1h), was critical 
for establishing this streamlined staining panel and could be readily transferred to the Vectra platform.   

Serial sections from the same CTCL TMA used for CODEX and RNA-seq were stained with this 
simplified panel and imaged with Vectra (Sup. Fig. 5a). Across all TMA spots, 126,653 cells were identified, 
including 2,957 PD-1+ CD4+ T cells, 6,161 Tregs, and 19,847 tumor cells. The SpatialScore was then 
computed on a per cell basis and the mean was reported for each patient group. Consistent with the 
CODEX results (Fig. 4c), the Vectra-calculated SpatialScore was significantly lower in responders than non-
responders pre-treatment (Fig. 4j, mean SpatialScore R, pre (0.35) versus NR, pre (0.76)), with 
enhancement post-treatment compared to pre-treatment. The Vectra mIHC images (Fig. 4k, left) and 
corresponding spatial maps (Fig. 4k, right) provide visual validation at the single-cell level that PD-1+ CD4+ 
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T cells were closer to tumor cells in responders but closer to Tregs in non-responders. Furthermore, on a 
per patient basis, the pre-treatment SpatialScore was nearly 5-times lower in responders than non-
responders (Fig. 4l, mean SpatialScore R, pre (0.31) versus NR, pre (1.52)), with excellent biomarker 
performance measures at a SpatialScore cutoff point of 0.7908 (Sup. Fig. 5b-e). Notably, when calculated 
per patient, the SpatialScore extended over a wider range than when calculated for all cells per group; 
this is due to sample size differences (i.e., n=7 per patient versus n=1000s of cells per group). It is 
noteworthy that the skin-derived SpatialScore is so robust and predictive of pembrolizumab response, 
since clinical outcome in advanced CTCL is often driven by the burden of disease in the non-skin 
compartments (i.e., blood or viscera). Collectively, these results show that findings identified by highly 
multiplexed imaging platforms like CODEX can be translated to more simplified platforms like Vectra, 
further demonstrating the clinical utility of the SpatialScore as a biomarker predictive of PD-1 blockade 
outcome in CTCL.   

 
Tumor cell-specific CXCL13 expression coincides with a favorable response to PD-1 blockade in CTCL  

Potential recruitment mechanisms driving the SpatialScore were investigated by identifying genes 
predictive of the spatial interactions between PD-1+ CD4+ T cells, tumor cells, and Tregs.  An L1-regularized 
linear model was fit to bulk RNA-seq data on a per spot basis, which revealed seven genes predictive of 
the SpatialScore including three chemokines: CXCL9, CCL22 and CXCL13 (Fig. 5a). CXCL9 and CCL22 are 
known to mediate Treg recruitment56,57; they had positive coefficients and were predictive of the higher 
SpatialScore seen in non-responders. CXCL13 is a chemoattractant expressed on benign lymphocytes and 
CTCL tumor cells28,58; it had a negative coefficient and was predictive of the lower SpatialScore seen in 
responders. Bulk CXCL13 gene expression was significantly increased in responders post- versus pre-
treatment and compared to non-responders post-treatment (Fig. 5b, median normalized CXCL13 
expression, R, post (615.5) versus NR, post (94.7) and R, pre (16.0)). This upregulation of CXCL13 in 
responders post-treatment relative to other patient groups was confirmed by CXCL13 IHC shown 
quantitatively (Fig. 5c, mean CXCL13 IHC expression, R, post (34.5) versus NR, post (7.8) and R, pre (7.6)) 
and visually (Fig. 5d, see R, post for highest expression of CXCL13). 

We next analyzed a publicly available scRNA-seq dataset of four CTCL skin tumors (Gaydosik et 
al.)59 to identify the main cell-type overexpressing CXCL13. Using this dataset, we annotated 10 clusters 
including tumor cells, CD4+ T cells (CD4), Tregs, CD8+ T cells (CD8), B & plasma cells (B&PC), macrophages 
(mac), dendritic cells (DC), stroma, vasculature (vasc), and keratinocytes (KC) (Sup. Fig. 6a-b). Examining 
all cells with a CXCL13 log1p normalized read count > 0.5  showed that tumor cells had the highest mean 
expression compared to other cell-types (Fig. 5e, median CXCL13 expression, tumor (3.3) versus less than 
2.0 for the other 9 cell-types). Moreover, the frequency of CXCL13 expressing cells was highest among 
tumor cells compared to other cell-types (Fig. 5f, mean frequency of CXCL13 positive cells, tumor (0.27) 
versus less than 0.1 for the other 9 cell-types).   

CIBERSORTx (CSx) is a computational framework that uses gene expression signatures  to enable 
cell type-specific gene expression to be inferred from bulk RNA-seq data without physical cell isolation22. 
We used CSx to computationally resolve tumor, stromal, and immune cell subsets in bulk RNA-seq data 
(Fig. 5g and Sup. Table 4). Using the 10 annotated clusters shown in Fig. e-f, a signature matrix, consisting 
of cell-type specific marker genes, was generated (Sup. Fig 6c and see Methods, marker genes are shown 
as rows). This signature matrix was used to enumerate CSx-resolved cell-type fractions and resolve gene 
expression profiles from CTCL bulk transcriptomes. Strong correlations were observed between most of 
the CSx-resolved cell-type frequencies and CODEX-identified cell-type frequencies (Fig. 5h, see correlation 
coefficients along the diagonal of the heatmap).  

The CSx-resolved gene expression profiles of tumor cells were then thoroughly characterized and 
compared across patient groups. Interestingly, RAB11B, a RAS superfamily member of small GTP-binding 
proteins, was the only tumor cell gene that was significantly differentially expressed between responders 
and non-responders pre-treatment (Sup. Fig. 6d). This suggests an absence of tumor cell-intrinsic 
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differences between responders and non-responders at baseline. In contrast, numerous genes, including 
CXCL13, were upregulated in tumor cells of responders post-treatment compared to pre-treatment (Fig. 
5i, see CXCL13 in bold). This finding is consistent with an increased susceptibility of responder tumor cells 
to PD-1 blockade therapy, which is supported by the decreased tumor aggressiveness score observed in 
responders post-treatment relative to pre-treatment (Fig. 4g). Interestingly, only three genes (BRD3, 
TWF2 and ZNF365) were differentially expressed in non-responder tumor cells post-treatment compared 
to pre-treatment (Fig. 5j). This suggests that non-responder tumor cells are resistant to PD-1 blockade, 
which is in line with the increased tumor aggressiveness score observed in non-responders post-treatment 
compared to pre-treatment (Fig. 4h). Finally, co-staining the tissue section used for the Vectra mIHC 
experiment with a standard IHC anti-CXCL13 antibody, followed by co-localization of tumor cells with 
CXCL13-positive cells, provided visual confirmation that tumor cells are the primary expressors of CXCL13 
(Fig. 5k, Sup. Fig. 6e).  

Next, we assessed CXCL13 expression in tumor cells and its role in recruiting reactive lymphocytes. 
CSx-resolved tumor cell-specific CXCL13 expression was significantly increased in responders post-
treatment compared with non-responders post-treatment and responders pre-treatment on a per tissue 
microarray spot basis (Fig. 5l, median normalized tumor cell-specific CXCL13 expression, R, post (12.64) 
versus NR, post (11.14) and R, pre (10.54)). On a per patient basis, following PD-1 blockade, tumor cell-
resolved CXCL13 expression increased in 100% of responders (Fig. 5m) versus 29% of non-responders (Fig. 
5n). CXCL13 exclusively binds to the chemokine receptor CXCR5, which is expressed on B cells, CD4+ T 
cells, CD8+ T cells, and skin-derived migratory dendritic cells60. Although not significant, CXCR5 expression 
was increased in bulk mRNA of responders post-treatment relative to pre-treatment (Sup. Fig. 6f). The 
data lacked significant power to unmix CXCR5 on CD4+ T cells by CSx; however, tumor cell-specific CXCL13 
expression was positively correlated (Spearman correlation coefficient = 0.68) with bulk mRNA CXCR5 
expression (Fig. 5o), suggesting a chemoattractant recruitment mechanism.  

Collectively, these results indicate that PD-1 blockade distinctly alters the CTCL TME of therapeutic 
responders and non-responders. In responders, pembrolizumab therapy promotes immune activation 
and upregulates CXCL13 in tumor cells (Fig. 6, top panel). CXCL13 overexpression then attracts 
effector/cytotoxic PD-1+ CD4+ T cells to tumor cells, promoting CD4+ T cell-mediated tumor cell inhibition 
and killing. As such, the overexpression of CXCL13 in tumor cells provides a mechanism for the sustained 
clinical activity seen in responders. In contrast, non-responders have a persistently immunosuppressed 
TME, which mediates the increased interaction between inhibitory Tregs and PD-1+ CD4+ T cells and 
maintains this CD4+ T cell subset in an exhausted state (Fig. 6, bottom panel). In the setting of 
pembrolizumab resistance, non-responder tumor cells remain active and proliferative following 
treatment. Thus, underlying differences in the functional immune state of the TME—coupled with 
alterations in CD4+ T cell effector activity versus suppression, and tumor cell-specific CXCL13 expression—
are associated with distinct spatial cellular patterns that predict the efficacy of PD-1 blockade in CTCL.  
 
DISCUSSION  

For anti-PD-1 immunotherapies to provide maximal benefit to cancer patients, the drivers and 
resistors of clinical response must be identified. Traditional biomarker studies with IHC, gene expression 
profiling, and tumor mutational burden assays do not fully account for spatial cellular context and have 
imperfect correlation with immunotherapy outcomes16. This was true for our CTCL cohort: No pre-
treatment differences were observed in immune composition, expression of PD-1/PD-L1 proteins, or IFN-
γ/TGF-β gene signatures between responders and non-responders. We therefore explored alternative 
approaches, including spatially resolved multiplexed tissue imaging, which has been shown to significantly 
improve the accuracy of predicting response to PD-1 blockade in several tumor types61.  

Multiparameter histologic analysis revealed global prognostic spatial patterns that were 
predictive of clinical response, including a localized enrichment of tumor and CD4+ T cells (CN-8) in 
responders and of Tregs (CN-10) in non-responders. Profiling the spatial relationships between effector 
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PD-1+ CD4+ T cells, tumor cells, and immunosuppressive Tregs allowed us to derive the SpatialScore—a 
clinically useful biomarker that correlated strongly with pembrolizumab response in CTCL. Previously 
identified spatial biomarkers rely on pairwise distances (e.g., PD-1+ T cells and PD-L1+ tumor cells)17,62,63, 
whereas the SpatialScore accounts for the interactions between three functionally distinct cell-types. As 
such, the SpatialScore represents a novel predictive approach and provides insight into three key 
therapeutic determinants underlying PD-1 blockade in CTCL: 1) functional immune state of the TME, 2) T 
cell function, and 3) chemoattraction.   

First, the SpatialScore captures differences in the functional immune phenotypes between 
responders and non-responders. Following pembrolizumab therapy, the TME of responders becomes 
activated, as evidenced by the increased immune activation gene score, increased frequency of ICOS+ and 
Ki-67+ CD4+ T cells, and a local enrichment of tumor cells with dendritic cells (CN-5) and CD4+ T cells (CN-
8). These findings suggest that in responders PD-1 blockade specifically activates CD4+ T cells through the 
expression of immunostimulatory molecules and co-stimulation by antigen-presenting cells, resulting in 
CD4+ T cell proliferation64,65. In contrast, non-responders have a persistently immunosuppressed TME. This 
is supported  by the increased frequency of a Treg enriched neighborhood (CN-10) and the expansion of 
a highly suppressive ICOS+ Treg subset, which has been associated with poor clinical outcomes in 
melanoma43 and liver cancer44. These results suggest that the increased suppressive function and spatial 
organization of Tregs in non-responders account for the strong immunosuppression and lack of 
pembrolizumab response. We speculate that the absence of this pre-treatment immunosuppression in 
responders enables priming and activation of CD4+ T cells following immunotherapy.  

Second, the SpatialScore reflects differences in T cell function between responders and non-
responders: After PD-1 blockade, T cell effector activity is restored in responders, whereas non-
responders have a continually exhausted T cell phenotype. Consistent with studies of Hodgkin 
lymphoma63, bladder cancer50, and glioblastoma66, our data suggest that CD4+ T cells, and particularly the 
PD-1+ CD4+ T cell subset, are crucial effectors that influence pembrolizumab efficacy in CTCL. In responders 
post-treatment, PD-1+ CD4+ T cells increase GZMB expression and move closer to tumor cells, similar to 
the granzyme-perforin-dependent tumor killing mechanism used by cytotoxic CD8+ T cells45-48. Previous 
studies have shown that antitumor activity is enhanced by a closer proximity of cytotoxic T cells to tumor 
cells67,68 and by removing inhibitory Tregs from the TME milleu50. The SpatialScore combines these 
principles by measuring the physical distances between PD-1+ CD4+ T cells and tumor cells (i.e., effector 
function) as well as PD-1+ CD4+ T cells and Tregs (i.e., suppressive function). The SpatialScore therefore 
reflects the balance of T cell effector activity versus suppression in the TME and the efficacy of PD-1 
blockade in CTCL.   

Third, pembrolizumab therapy leads to increased RNA and protein expression of CXCL13 in 
responder tumor cells (or kills cells with lower levels of expression), which may be advantageous in 
localizing effector PD-1+ CD4+ T cells within the TME. Overexpression of CXCL13 is associated with 
improved clinical outcomes in breast69, colon70, ovarian71, lung72, and urothelial cancers73 as well as 
responsiveness to anti-PD-1 immunotherapy72,74. Additionally, upregulation of CXCL13 can be 
accompanied by constitutive protein secretion69,72, which strongly attracts CXCR5+ CD4+ T cells72 and PD-
1+ CD4+ T cells75 to the tumor site. A recent study also showed that the tumor-specific gene expression 
program of cytotoxic GZMB+ CD4+ T cells in bladder cancer treated with anti-PD-L1 therapy was marked 
by tumor overexpression of CXCL1350. Furthermore, CXCL13 null mice with bladder tumors did not 
respond to anti-PD-1 treatment and had a lower frequency of T cell infiltration compared their wild-type 
counterparts73. Collectively, these findings support a chemoattractant mechanism for the sustained 
clinical response to pembrolizumab therapy observed in responders: Upregulation of CXCL13 in tumor 
cells attracts effector PD-1+ CD4+ T cells to them, promoting successful antitumor activity. This aspect of 
pembrolizumab responsiveness is captured by the lower SpatialScore seen in responders and underscores 
the importance of T cell topography as a spatial biomarker.  
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There are important limitations to this study. Discovery of the SpatialScore was based on 14 
patients. Larger studies are needed to determine if this spatial biomarker translates broadly for prediction 
of pembrolizumab response in CTCL and to establish a threshold value for the SpatialScore that can be 
used to stratify patients into probabilistic responders and non-responders. Additionally, larger studies 
might delineate more subtle features of the spatial architecture not detected in this study. Another 
limitation of this study is that the post-treatment tumor biopsies were collected at various time points, 
impairing our ability to directly assess modulation of T cell subsets at the precise time of therapeutic 
success or failure. Finally, our cohort is limited to advanced, heavily pre-treated CTCL patients. Further 
efforts should examine the therapeutic activity of PD-1 blockade in early stage and treatment naïve 
patients, since early tumors are generally more responsive to immunotherapy 76-81 and prior systemic 
treatment may alter the immune response to therapy. Despite these limitations, the robustness of our 
findings highlights that spatial organization and immune functionality are conserved in responders and 
non-responders, which reinforces the importance of these factors for determining pembrolizumab 
response in CTCL.   

Future studies with scRNA-seq and paired T cell receptor sequencing are needed to better 
characterize the heterogeneity of PD-1+ CD4+ T cells across patient groups and to fully understand the 
cytotoxic potential of this crucial effector subset. Similarly, investigating the increased suppressive 
function of Tregs and the ICOS+ Treg subset in non-responders may reveal vulnerabilities that could be 
targeted in combination with PD-1 blockade. Given our findings that non-responders have an increased 
localization of Tregs and upregulation of BRD3, an epigenetic regulator, in their tumor cells pre-treatment, 
future studies should investigate the therapeutic potential of combining mogamulizumab (which depletes 
Tregs82) and/or bromodomain inhibitors (which inhibit BRD3 and decrease tumor cell proliferation83) with 
pembrolizumab therapy for CTCL. Further studies are also required to determine if CXCL13 expression 
levels—in both skin and blood—can serve as a surrogate of pembrolizumab activity and therefore guide 
ongoing treatment decisions. Such studies are especially important for advanced CTCL patients, where 
the burden of disease in the non-skin compartments often dictate clinical outcome. 

This work provides an important conceptual foundation for improving the efficacy of anti-PD-1 
immunotherapy in CTCL. We identify effector PD-1+ CD4+ T cells in responders and inhibitory ICOS+ Tregs 
in non-responders. The SpatialScore captures the interactions of these cell-types with tumor cells and 
reveals how PD-1 blockade manipulates the balance of effector and suppressive T cell function to achieve 
disease control. We anticipate that the cell-types comprising the SpatialScore will depend on the specific 
cancer and immunotherapy. The SpatialScore biomarker approach and the ability to measure it using a 
clinically accessible mIHC platform should enable its widespread use in cancer immunotherapy studies.    
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METHODS 
Human subjects and clinical trial study design. The CITN-10 trial was a multicenter, phase II, single-arm 
clinical trial that investigated the efficacy of pembrolizumab in 24 patients with two common forms of 
relapsed/refractory CTCL, mycosis fungoides and Sézary syndrome13. Written informed consent was 
obtained from all enrolled patients. The use of their tissues for research was fully de-personalized and 
approved by the Stanford University IRB Administrative Panels on Human Subjects in Medical Research 
(HSR 46894). All patients had a clinicopathologically confirmed diagnosis of mycosis fungoides or Sézary 
syndrome (clinical stage IB to IV) that had relapsed, was refractory to, or had progressed after at least one 
standard systemic therapy. Exclusion criteria included central nervous system disease, active autoimmune 
disease, previous exposure to any anti-PD-1, anti-PD-L1, or anti-PD-L2 therapy, or treatment with 
radiotherapy or other anti-cancer agents within 15 weeks of the pre-treatment biopsy. Topical 
medications were not applied to the biopsied areas during treatment or within 8 weeks of the pre-
treatment biopsy. Patients were treated with 2 mg/kg pembrolizumab by intravenous infusion every 3 
weeks for up to 24 months13. Response and primary end point (overall response rate) were assessed by 
consensus global response criteria23.    
 
Sample collection and tissue microarray construction. Skin biopsy specimens were collected from the 
primary tumor site and FFPE histology blocks were generated according to standard pathology 
procedures. Pre-treatment biopsies were obtained prior to the first pembrolizumab infusion and post-
treatment biopsies were collected during and at the conclusion of therapy (Sup. Fig. 1, Sup. Table 1). H&E-
stained sections from all biopsies were reviewed by two board-certified pathologists (C.M.S. and R.H.P.). 
Fourteen of the 24 biopsy samples had adequate FFPE material to be assembled into a tissue microarray, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 8, 2020. ; https://doi.org/10.1101/2020.12.06.20244913doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.06.20244913
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
13 

and two to three cores of 0.6 mm diameter from the most infiltrated regions of each biopsy were digitally 
annotated and compiled into a tissue microarray. The tissue microarray was sectioned at 4-µm thickness 
and mounted onto VectabondTM-treated (Vector Labs, #SP-1800) square glass coverslips (22x22 mm, #1 
1/2, Electron Microscopy Sciences, #72204-01).  
 
Immunohistochemistry. IHC for CD3 (clone CD3-12; Abd Serotec), CD4 (clone 4B12; Leica), CD8 (clone 
CD8/144B; Dako), FoxP3 (clone 236A/E7; Abcam), CD163 (clone 10D6; Thermo Fisher Scientific), PD-1 
(clone NAT105; Cell Marque), PD-L1 (clone 22C3; Merck Research Laboratories), and PD-L2 (clone 3G2; 
Merck Research Laboratories) was performed as previously described84. Images were scored by CITN 
pathologists, and the positive percentage of the total mononuclear cell infiltrate was reported13.  
 
Multiplex immunohistochemistry and analysis. mIHC was performed as previously described85. Briefly, 
4-µm FFPE tissue sections were baked for 1 h at 60 °C, dewaxed, and stained on a BOND Rx autostainer 
(Leica) according to Opal Multiplex IHC assay (Akoya Biosciences)s protocol with the following changes: 
additional high stringency washes were performed after the secondary antibody and Opal fluor 
applications using high-salt TBST (0.05M Tris, 0.3M NaCl and 0.1% Tween-20, pH 7.2-7.6), and TCT was 
used as the blocking buffer (0.05M Tris, 0.15M NaCl, 0.25% Casein, 0.1% Tween 20, pH 7.6 +/- 0.1). The 
antibody panel was stained in the following order, with antibody stripping between positions. Each 
primary antibody was incubated for 60 min, followed by 10-min incubation with secondary antibody 
(OPAL polymer HRP mouse plus rabbit, Akoya Biosciences), followed by application of the tertiary TSA-
amplification reagent (OPAL Fluor, Akoya Biosciences) for 10 min. Positions were as follows: position 1: 
CD8 (clone CD8/144B, DAKO #M7103; concentration 0.8 µg/ml; OPAL Fluor 520); position 2: CD25 (clone 
4C9, Cell Marque #125M-14; concentration 0.17 µg/ml; OPAL Fluor 540); position 3: CD3 (clone SP7, 
Thermo Fisher Scientific #RM-9107; concentration 0.06 µg/ml; OPAL Fluor 570); position 4: PD-1 (clone 
EPR4877(2), Abcam #ab137132, concentration 1.0 µg/ml; OPAL Fluor 650); position 5: CD7 (clone MRQ-
56; Cell Marque #107M-24; concentration 1.18 µg/ml; OPAL Fluor 690); position 6: CD4 (clone EP204, 
Epitomics; #AC0173A; concentration 0.08 µg/ml; OPAL Fluor 480); and position 7: FoxP3 (clone 236A/E7; 
eBioscience #14-4777-82; 5.0 µg/ml; OPAL Fluor 620). Subsequently, slides were stained with Spectral 
DAPI (Akoya Biosciences) for 5 min, rinsed, and mounted with Prolong Gold Antifade reagent (Thermo 
Fisher Scientific #P36930). After curing for 24 h at room temperature in the dark, images were acquired 
on a Vectra Polaris automated quantitative pathology imaging system (Akoya Biosciences). The raw 
images were spectrally unmixed using the Phenoptics inForm software (Akoya Biosciences) and exported 
as multi-image TIFF files.  

After fluorescent imaging, the slides were de-coverslipped, loaded onto the BOND Rx autostainer, 
stripped of bound antibody, and a post-mIHC staining for CXCL13 (goat polyclonal, R&D Systems #AF801; 
concentration 0.5 µg/ml; incubation 60 min) was performed. Bound antibody was revealed by anti-goat 
HRP secondary ImmPress HRP (Vector Labs #MP-7405; incubation 12 min), followed by DAB chromogen 
using the BOND Polymer Refine Detection kit (Leica) according to the manufacturer’s instructions. After 
counterstaining with hematoxylin, slides were dry-mounted and scanned on an Aperio AT turbo digital 
slide scanning system (Leica).  

HALO software (Indica Labs) was used to perform single-cell analysis of mIHC images. Cells were 
visualized based on nuclear and cytoplasmic stains, and mean pixel fluorescence intensity in the applicable 
compartments of each cell were measured (i.e., CD4 in the cytoplasmic compartment and FoxP3 in the 
nuclear compartment). A mean intensity threshold above background was used to determine positivity 
for each fluorochrome, thereby defining cells as either positive or negative for each marker. The data was 
then used to define co-localized populations, including PD-1+ CD4+ T cells, tumor cells, and Tregs. Spatial 
positions were extracted for each cell, and the spatial distances and ratios between these three cells types 
were calculated as detailed below. Performance of the SpatialScore biomarker was evaluated with the 
easyROC interface available with the R package shiny86. CXCL13 IHC images were scored using a classifier 
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method for the DAB stain based on optical density to obtain the positive percentage of the total 
mononuclear cell infiltrate per spot.  

 
CODEX antibodies. For CODEX, purified, carrier-free monoclonal and polyclonal anti-human antibodies 
were purchased from commercial vendors (Sup. Table 1). Conjugations to maleimide-modified short DNA 
oligonucleotides (TriLink) were performed at a 2:1 weight/weight ratio of oligonucleotide to antibody, 
with at least 100 µg of antibody per reaction, as previously described19. Conjugated antibodies were 
validated and titrated under the supervision of a board-certified pathologist (C.M.S.).  
 
CODEX multiplex tissue staining and imaging. The CODEX experiment was performed as previously 
described19. Briefly, the coverslip was deparaffinized and rehydrated, and heat-induced epitope retrieval 
was performed using Dako target retrieval solution, pH 9 (Agilent, #S236784-2) at 97 °C for 10 min. The 
coverslip was stained with an antibody cocktail (Sup. Table 2) to a volume of 100 µl overnight at 4 °C in a 
sealed humidity chamber on a shaker. After multiple fixation steps using 1.6% paraformaldehyde, 100% 
methanol, and BS3 (Thermo Fisher Scientific, #21580), the coverslip was mounted onto a custom-made 
acrylic plate (Bayview Plastic Solutions). Imaging was performed with a Keyence BZ-X710 inverted 
fluorescence microscope equipped with a CFI Plan Apo λ 20x/0.75 objective (Nikon), an Akoya CODEX 
microfluidics instrument, and CODEX driver software (Akoya Biosciences). Light exposure times and the 
arrangement of cycles are outlined in Sup. Table 2. At the conclusion of the CODEX multicycle reaction, 
H&E staining was performed, and images were acquired in brightfield mode.           
 
Data processing of CODEX images. Raw TIFF image files were processed using the CODEX Toolkit as 
previously described. After processing, the staining quality for each antibody was visually assessed in each 
tissue microarray spot, and cell segmentation was performed using the DRAQ5 nuclear stain. Marker 
expression was quantified, and single-cell data were saved as FCS files, which were then imported into 
CellEngine (https://cellengine.com) for cleanup gating. This resulted in a total of 117,170 cells across all 
tissue microarray spots.  
 After cleanup gating, FCS files were exported from CellEngine, imported into VorteX clustering 
software87, and subjected to unsupervised X-shift clustering using an angular distance algorithm. 
Clustering was based on all antibody markers except CD11b, CD16, CD164, CCR4, CCR6, EGFR, and p53. 
The optimal cluster number was guided by the elbow point validation tool in VorteX, resulting in 78 
clusters. Clusters were manually verified and assigned to cell-types based on morphology in H&E and 
fluorescent CODEX images and on their marker expression profiles. Clusters with similar features were 
merged, resulting in 21 cell-type clusters. The expression frequencies of ICOS, IDO, Ki-67, and PD-1 were 
determined for the T cell and tumor cell clusters by manual gating in CellEngine for each tissue microarray 
spot, with visual comparison to the raw fluorescent image.  
 
Cellular neighborhood identification. CN identification was performed using a custom k-nearest 
neighbors’ algorithm in Python19. For each of the 117,220 cells in this experiment, the window size was 
set at 10, capturing the center cell and its nine nearest neighboring cells, as measured by the Euclidean 
distance between X/Y coordinates. To identify 10 CNs, these windows were then clustered by the 
composition of their microenvironment with respect to the 21 cell-types that were previously identified. 
This resulted in a vector for each window containing the frequency of each of the 21 cell-types amongst 
the 10 neighborhoods. These windows were then clustered using Python’s scikit-learn implementation of 
MiniBatchKMeans with k=10. Each cell was then allocated to the same CN as the window in which it was 
centered. All CN assignments were validated by overlaying them on the original fluorescent and H&E-
stained images.  
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Calculation of spatial distances and ratios between cell-types. The X/Y coordinates for each cell type 
were determined during cellular segmentation, as described above. The minimal distance between each 
cell-type and its nearest other cell-types, and the averages of these minimal distances per tissue spot, 
were calculated in R. Given our interest in the relationship of cell distances between three cell-types (i.e., 
effector T cells (CT1), tumor cells (CT2) and Tregs (CT3)), we calculated the ratio of the minimal distances 
between CT1—CT2 (right distance) versus CT1—CT3 (left distance). This distance ratio represented the 
SpatialScore. To assess whether these ratios were significantly different from those of a random sample, 
we performed the following analysis per spot: For the number of CT1 cells in each spot, we randomly 
selected the same number of non-CT1 (nCT1) cells. For each of these nCT1 cells, we calculated the ratio 
of the minimal distances (nCT1—CT2 / nCT1—CT3) and determined the mean of this sample. We repeated 
this random sampling 100 times, and the average of all the means was reported. Distribution of the 
random values was assessed by the quant output variable, which indicates how many of the random 
means are smaller than the measured means. For instance, a quant of 97 indicates that 97% of the random 
means are smaller than the measured means. Thus, quant values closer to 100 or 0 indicate that the 
measured means are not random (Sup. Fig. 4j-m).   
 
Laser-capture microdissection (LCM). Two serial sections of the tissue microarray were taken at 7 µm 
thickness and mounted onto frame slides with polyethylene naphthalate membranes (Thermo Fisher 
Scientific, #LCM0521). Slides were immersed for 20 s each in xylene (three times), 100% ethanol (three 
times), 95% ethanol (two times), 70% ethanol (two times), water, hematoxylin (Dako, #S3309), water, 
bluing reagent (Thermo Fisher Scientific, #7301), water, 70% ethanol (two times), 95% ethanol (two 
times), 100% ethanol (three times), and xylene (three times). Immediately after staining, cells were 
dissected from every tissue microarray spot on an ArcturusXT LCM System (Thermo Fisher Scientific) using 
the ultraviolet laser to cut out the desired region and the infrared laser to adhere the membrane to a 
CapSure HS LCM Cap (Thermo Fisher Scientific, #LCM0215). A tissue area containing roughly 1000 
mononuclear cells was captured from each spot, with cell numbers determined based on density 
estimates by cell counting in an adjacent H&E-stained section. If a core had more than 1000 mononuclear 
cells, a tissue fragment containing around 1000 mononuclear cells was dissected from that core. If a core 
had less than 1000 cells, tissue fragments from corresponding cores on the serial section membrane were 
combined in the same LCM cap to obtain approximately 1000 cells. After microdissection, the caps were 
sealed using 0.5-ml tubes (Thermo Fisher Scientific, #N8010611) and stored at -80 °C until cDNA library 
preparation. 
 
Preparation of cDNA libraries and RNA sequencing. Sequencing libraries were prepared according to the 
Smart-3Seq protocol for LCM HS caps, as previously described with slight modifications21. Briefly, 10 µl of 
lysis mix consisting of 40% (v/v) 5 M trimethylglycine solution (Sigma, #B0300), 20% (v/v) 10 mM nuclease-
free dNTP mix (Thermo Fisher Scientific, #R0192), 10% (v/v) 20 µM first-strand primer in TE buffer (1S, 
/5Biosg/GT GAC TGG AGT TCA GAC GTG TGC TCT TCC GAT CTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TV; 
Integrated DNA Technologies), 10% (v/v) Triton-X 100 (Sigma #T8787; diluted to 0.5% v/v in molecular 
biology-grade water), and 20% (v/v) Proteinase K (New England Biolabs, #P8107S; diluted to 0.125 mg/ml 
in in molecular biology-grade water) was added to the center of each LCM cap. Caps were sealed with 0.2 
ml low-retention PCR tubes (Corning, #PCR-02-L-C) and incubated on a pre-warmed metal CapSure 
incubation block (Thermo Fisher Scientific, #LCM0505) at 60 °C in an incubator. Then, tubes were briefly 
centrifuged, and 10 µl of template-switching reverse-transcription (TS-RT) FFPE LCM mix consisting of 40% 
(v/v) 5x SMARTScribe first-strand reaction buffer (Clontech, #639537), 20% (v/v) 20 mM DTT (Clontech, 
#639537), 10% (v/v) 20x RNase inhibitor (Thermo Fisher Scientific, #AM2694), 4% (v/v) 50 µM second-
strand primer in TE buffer (2S, /5Biosg/CT ACA CGA CGC TCT TCC GAT CTN NNN NrGrG rG; Integrated DNA 
Technologies), 4% (v/v) 200 mM MgCl2 (Sigma, #63069), 2% 5 mM proteinase K inhibitor (EMD Millipore, 
#539470), and 20% (v/v) 100 U/µl SMARTScribe reverse transcriptase (Clontech, #639537) was added. 
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Samples were incubated in a programmable thermal cycler (42 °C for 30 min, 70 °C for 10 min, 4 °C hold), 
and 1.25 µl of a unique P5 primer and 1.25 µl of a universal P7 primer (2 µM in TE buffer each; Integrated 
DNA Technologies; sequences available upon request) and HiFi HotStart ReadyMix (Kapa, #KK2601) were 
then added, followed by 22 cycles of PCR amplification (98 °C for 45 s; 22 cycles at 98 °C for 15 s, 60 °C for 
30 s, 72 °C for 10 s; then 72 °C for 60 s, and 4 °C hold). Amplified cDNA was next purified with SPRI bead 
mix (Beckman Coulter, #B23317) and a magnetic separation block (V&P Scientific, #VP772F4). Finally, the 
samples were washed with 80% ethanol and resuspended in TE buffer to yield the sequencing-ready 
library.  
 Libraries were profiled for size distribution on an Agilent 2200 TapeStation with High Sensitivity 
D1000 reagent kits and quantified by qPCR with a dual-labeled probe as previously described88. Libraries 
were excluded if <40% of their transcripts were within a 165-500 bp range. A total of 64 libraries were 
mixed to equimolarity, according to the qPCR measurements. The RNA libraries were sequenced on an 
Illumina NextSeq 500 instrument with a High Output v2.5 reagent kit (Illumina, #20024906) to a minimum 
sequencing depth of1.5 M reads per sample (mean: 3.7 M)  and minimum uniquely aligned reads of 
364,468 per sample (mean: 916,607) using read lengths of 76 nucleotides (nt) for read 1 and 8 nt for read 
2. On average, we obtained reads from 11,166 genes per sample (median: 11,267) and 379,615 unique 
transcripts per sample (median: 336,005), which is comparable to previously published FFPE-based RNA-
seq studies of human cancers21.   
 
Processing of RNA-seq data. Base calls from the NextSeq were de-multiplexed and converted to FASTQ 
format with bcl2fastq (Illumina). The five-base unique molecular identifier (UMI) sequence and the G-
overhang were extracted from FASTQ data, and A-tails were removed with umi_homopolymer.py 
(github.com/jwfoley/3SEQtools). Reads were aligned and further processed to remove duplicates using 
STAR (github.com/alexdobin/STAR). Bulk gene expression profiles were transcript per million (TPM) 
normalized and log2 transformed. Differences in CXCL13 and CXCR5 expression between groups were 
modeled with Linear Mixed Effects Models on a per spot basis using the lmer function from package lme4 
(v1.1.21)89 and taking the patient intercept as a random effect. The pairwise p-values were derived from 
t-ratio statistics in the contrast analysis using the lmerTest (v3.1.2)90 and corrected for multiple hypothesis 
testing using the Holm Bonferroni method implemented in the modelbased (v0.1.2) package 
(github.com/easystats/modelbased).   
 
Principal component analysis (PCA) immune scores. PCA scores and principal component 1 (PC1) 
coefficients were computed for the normalized bulk RNA-seq data on a per spot basis using the prcomp 
function in base R. The IFN-γ score was calculated using the six gene signature published by Ayers et al.39. 
The TGF-β score was calculated using the 15 gene signature published by Mariathasan et al.40. The immune 
activation and immunosuppression scores were computed using the genes listed in Fig. 2g. Differences in 
PC1 scores between patient groups were modeled using Linear Mixed Effects Models on a per spot basis 
using the lmer function from package lme4 (v1.1.21)89 and taking the patient intercept as a random effect. 
Differences between responders and non-responders as well as pre-treatment and post-treatment 
samples were modeled as fixed effects and tested using Satterthwaite’s degrees of freedom method. The 
pairwise p values were derived from t-ratio statistics in the contrast analysis using the lmerTest (v3.1.2)90 
and corrected for multiple hypothesis testing using the Holm Bonferroni method implemented in the 
modelbased (v0.1.2) package (github.com/easystats/modelbased).  
 
Identifying bulk RNAseq gene signatures associated with tumor cells and the SpatialScore. LASSO 
regression models were used to find genes predictive of tumor cells and the SpatialScore. These models 
were estimated using the LassoCV object in the scikit-learn python package. Six-fold cross validation was 
used to select the optimal regularization parameter. Specifically, an L1-regularized linear model was fit to 
predict the frequency of tumor cells from the gene expression data per tissue microarray spot. For this 
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model, the response variable was the log transformed per spot percentage of tumor cells. A pseudo-count 
of 1% was added to genes. The features utilized as predictors were the per spot log transformed TPM 
counts and the log frequency of CD4+ T cells. Genes with positive nonzero coefficients were interpreted 
as positively associated with tumor cells. Similarly, an L1-regularized linear model was fit to predict the 
SpatialScore from the gene expression data on a per spot basis. For this model, the response variable was 
the log transformed SpatialScore distance ratio. The features used as predictors were the per spot log 
transformed TPM counts. Genes with nonzero coefficients were selected in figures as predictive. 
 
CIBERSORTx signature matrix. To generate a CSx signature matrix, we used a publicly available scRNA-
seq dataset from Gaydosik et al.59 that was obtained from skin biopsies of five CTCL patients. Datasets 
were downloaded from the Gene Expression Omnibus (GEO) database (accession code GSE128531), and 
single-cell profiles were combined and analyzed using the Seurat R package (3.1.4)91. Cells with between 
500 and 7500 genes detected and less than 10% mitochondrial transcripts were included in the analysis.  

Data were log10normalized and clustered with the Louvain method92 based on the first 13 PCs 
and resolution of 1.8. Cell clusters were visualized using Uniform Manifold Approximation and Projection 
(UMAP)93, with the same PCs. Major cell-types were assigned according to expression of corresponding 
marker genes (Sup. Fig. 6a, Sup. Table 4). Fibroblasts and pericytes were merged into a stromal cluster. 
The T cell cluster was divided into CD4+ T cells, CD8+ T cells, Tregs, and tumor cells based on the expression 
of certain T cell and tumor marker genes (Sup. Fig 6b, Sup. Table 4). Tumor cells from patient CTCL-5 were 
excluded due to extreme heterogeneity. T cell clustering was based on the first 15 PCs and resolution of 
1.9. The same PCs were used to generate UMAP projections for the T cell clusters. A matrix of single cells 
and their assigned cell-type identities was used to create a signature matrix using the CSx (v.1.0) website22 
(code available from https://cibersortx.stanford.edu/). There was good correlation between the CSx and 
CODEX cell-type clusters (Sup. Fig 5c).  

 
CIBERSORTx deconvolution. The signature matrix was used to deconvolve tumor cell gene expression in 
CSx (v.1.0) with the CSx website (arguments used: rmbatchSmode = T, QN = F)22. Log2 fold changes were 
computed for every deconvolved gene across patient groups. Differences in gene expression between 
patient groups were modeled with Linear Mixed Effects Models on a per spot basis using the lmer function 
from package lme4 (v1.1.21)89 and taking the patient intercept as a random effect.  The p values were 
derived using Satterthwaite’s degrees of freedom method, implemented in the lmerTest (v3.1.2)90 
package. The p values were adjusted with the Benjamini-Hochberg correction using the p.adjust function 
in R. Volcano plots were generated using the ggplot2 (3.3.0)94 and ggrepel (0.8.1)95 packages in R. Genes 
with Benjamini-Hochberg-adjusted p < 0.1 were considered significant (Fig. 5i-j, Sup. Fig. 5d). 

CSx-deconvolved CXCL13 expression in tumor cells was log2 transformed on a per spot basis. 
Differences in CXCL13 expression between patient groups were modeled using Linear Mixed Effects 
Models on a per spot basis using the lmer function from package lme4 (v1.1.21) and taking the patient 
intercept as a random effect. The pairwise p values were derived from t-ratio statistics in the contrast 
analysis using the lmerTest (v3.1.2) and corrected for multiple hypothesis testing using the Holm 
Bonferroni method implemented in the modelbased (v0.1.2) package 
(github.com/easystats/modelbased). To examine CXCL13 expression in tumor cells on a per patient basis, 
the mean from biological replicates was computed before plotting the log2 normalized CSx-deconvolved 
CXCL13 expression. The Wilcoxon signed-rank test was used to evaluate whether patient-matched CSx-
deconvolved CXCL13 expression in the tumor cells was different between groups. 

 
Statistical analysis. Statistical analyses were performed with R and Prism v8 (GraphPad Software, Inc). 
Results with p < 0.05 were considered significant, unless otherwise stated. For pre-treatment differences 
between responders and non-responders, the significance was tested using a two-sided Wilcoxon’s rank-
sum test. For differences across patient groups (i.e., responders and non-responders pre-treatment, 
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responders pre- and post-treatment, non-responders pre- and post-treatment, and responders and non-
responders post-treatment), the significance was tested using a linear mixed-effect model with 
Bonferroni’s corrections for multiple comparisons. Pre- to post-treatment pairwise statistical significance 
for individual patients was tested using a two-sided Wilcoxon’s signed-rank test. Correlations were 
evaluated with the non-parametric Spearman test. The investigators were not blinded to allocation during 
experiments and outcome assessment. No sample-size estimates were performed to ensure adequate 
power to detect a pre-specific effect size. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
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FIGURE LEGENDS 

Fig 1. Discrimination of malignant and reactive CD4+ T cells in the CTCL TME. a, Workflow for sample 
preparation, CODEX, RNAseq, and computational analyses. b, Kaplan-Meier overall survival curve, 
comparing responders (R, n=7, blue line) and non-responders (NR, n=7, black line) (hazard ratio 0.0969 
responder/non-responder; p value calculated by log-rank test). c, IHC protein marker expression in 
responders and non-responders pre-treatment (mean ± s.e.m.). P values were calculated by two-sided 
Wilcoxon’s rank-sum tests (p = not significant (n.s.) for all comparisons). d, Representative pre-treatment 
IHC images for select markers from a responder (top) and non-responder (bottom). e, CODEX antibody 
panel (see also Sup. Fig. 1d). f, Identification of 21 cell-types by clustering (see also Sup. Fig. 2a-b). g, 
Visual verification of reactive (blue crosses) versus malignant (red crosses) CD4+ T cells in CTCL tissue. 
Scale bars, 20 µm. h, Average expression of select markers on malignant (red bars) relative to reactive 
(blue line) CD4+ T cells. P values were calculated by two-sided Wilcoxon’s rank-sum tests (****, p<0.0001). 
i, Cell size, measured in pixels/cell, of all malignant (red square) versus reactive (blue square) CD4+ T cells 
(mean ± s.e.m.). P value was calculated by a two-sided Wilcoxon’s rank-sum test. j, Ranking genes most 
predictive of tumor cells per tissue microarray spot using an L1-regularized linear model. Red colored 
genes have positive predictive coefficients (i.e., most likely to represent tumor cells); gray colored genes 
have negative predictive coefficients (i.e., less likely to represent tumor cells). Known CTCL marker genes 
are highlighted in yellow.  

Fig 2. Characterization of the CTCL TME pre- and post-pembrolizumab treatment. a-b, Top panels: 
Representative CODEX seven-color overlay images from a responder (left) and non-responder (right) pre-
treatment. Scale bar, 50 µm. Insets, corresponding H&E images; scale bars, 50 µm. Bottom panels: 
corresponding cell-type maps. c, Upper pie chart: overall frequencies of tumor, immune and auxiliary cell-
types. Lower pie chart: overall frequencies of all immune cell-types, including CD4+ T cells, CD8+ T cells, 
Tregs, M1 macrophages, M2 macrophages, and other (B cells, dendritic cells, Langerhans cells, mast cells, 
neutrophils, and plasma cells). d, Cell-type frequencies of CD4+ T cell, CD8+ T cell, Treg, M1 macrophage, 
and M2 macrophage as a percentage of all immune cells per tissue microarray spot in responders and 
non-responders pre- and post-treatment (mean, red bar). P values were calculated with a linear mixed-
effect model with Bonferroni’s corrections for multiple comparisons (p = not significant (n.s.) for all 
comparisons). e-f, IFN-γ (e) and TGF-β (f) gene scores between responders and non-responders pre-
treatment per spot. Boxes, median ± interquartile range (IQR); whiskers, 1.5x IQR. P values were 
calculated with a linear mixed-effect model with Bonferroni’s corrections for multiple comparisons. g-h, 
Immune activation (g) and immunosuppression (h) gene scores, computed on bulk RNA-seq data, 
between responders and non-responders pre- and post-treatment per spot. Boxes, median ± IQR; 
whiskers, 1.5x IQR. P values were calculated with a linear mixed-effect model with Bonferroni’s 
corrections for multiple comparisons.  
 
Fig 3. Cellular neighborhoods reveal differences in the spatial TME organization in responders and non-
responders. a, Cellular neighborhood (CN) analysis schematic. [1] Selection of computational parameters, 
including the window size (five in this schematic) and the number of CNs to be computed (five in this 
schematic). [2] Assignment of an index cell (i, center of window) to a given CN based on the composition 
of cell-types within its corresponding window the clustering of windows. [3] Heatmap of cell-type 
distribution for each CN and assignment of CN names. [4] Visualization of CNs as a Voronoi diagram. b, 
Identification of 10 conserved CNs in the CTCL TME using a window size of 10. c, Representative Voronoi 
diagram of the 10 CNs in a responder post-treatment, with the corresponding H&E and seven color 
fluorescent CODEX images. Scale bar, 20 µm. d-e, Voronoi diagrams of CNs in a responder (d) and non-
responder (e) post-treatment, highlighting CN-5 (tumor and dendritic cells), CN-8 (tumor and CD4+ T cells) 
and CN-10 (Treg enriched). f-h, Frequencies of CN-5 (f), CN-8 (g) and CN-10 (h) per tissue microarray spot 
in responders and non-responders pre- and post-treatment (mean, red bar). P values were calculated with 
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a linear mixed-effect model with Bonferroni’s corrections for multiple comparisons. i-k, Frequencies of 
ICOS+ CD4+ T cell (i), Ki-67+ CD4+ T cell (j) and ICOS+ Treg (k) as a percentage of all immune cells per spot in 
responders and non-responders pre- and post-treatment (mean, red bar). P values were calculated with 
a linear mixed-effect model with Bonferroni’s corrections for multiple comparisons.   
 
Fig 4. Spatial relationship between CD4+ T cells, Tregs and tumor cells predicts pembrolizumab response 
in CTCL. a, SpatialScore schematic. The SpatialScore is calculated by taking the ratio of the physical 
distance between each CD4+ T cell and its nearest tumor cell (distance “right”) relative to its nearest Treg 
(distance “left”). [1] A lower SpatialScore (i.e., CD4+ T cells are closer to tumor cells than Tregs) suggests 
increased T cell effector activity. [2] A higher spatial score (i.e., CD4+ T cells are closer to Tregs than tumor 
cells) suggests increased T cell suppression. b-c, SpatialScore on a per cell basis for CD4+ T cells (b) and PD-
1+ CD4+ T cells (c) for each patient group (mean ± s.e.m.). P values were calculated by two-sided Wilcoxon’s 
rank-sum tests, with no adjustments for multiple comparisons. d, GZMB protein expression on PD-1+ CD4+ 
T cells by CODEX in responders and non-responders pre- and post-treatment per tissue microarray spot 
(mean fluorescence intensity (arbitrary units, a.u.) ± s.e.m.) P values were calculated with a linear mixed-
effect model with Bonferroni’s corrections for multiple comparisons. e, CODEX images of DRAQ5 (white), 
CD4 (red), PD-1 (green), GZMB (cyan), and overlay showing contact between a tumor cell (marked by 
cross) and GZMB-expressing PD-1+ CD4+ T cell (marked by arrow) in responder patient 13 post-treatment. 
Scale bars, 10 µm. f, Cytotoxicity gene scores, computed on bulk RNA-seq data, between responders and 
non-responders pre- and post-treatment per spot. Boxes, median ± IQR; whiskers, 1.5x IQR.  P values were 
calculated with a linear mixed-effect model with Bonferroni’s corrections for multiple comparisons. g-h, 
Pre- to post-treatment changes in tumor aggressiveness gene scores, computed on bulk RNA-seq data, on 
a per patient basis in responders (g) and non-responders (h). Boxes, median ± IQR; whiskers, 1.5x IQR.  P 
values were calculated by two-sided Wilcoxon’s signed-rank tests. i, Ki-67+ tumor cell frequencies per spot 
in responders and non-responders pre- and post-treatment (mean, red bar). P values were calculated with 
a linear mixed-effect model with Bonferroni’s corrections for multiple comparisons. j, SpatialScore on a 
per cell basis calculated from Vectra mIHC data using PD-1+CD4+ T cells for each patient group (mean ± 
s.e.m.). P values were calculated by two-sided Wilcoxon’s rank-sum tests, with no adjustments for 
multiple comparisons. k, Vectra mIHC images (left panels; representative regions of a tissue microarray 
spot) in responder patient 13 (R) and non-responder patient 14 (NR) pre-treatment. Scale bars, 20 µm. 
The corresponding spatial plots (right panels) show that PD-1+ CD4+ T cells (blue dots) are closer to tumor 
cells (red dots) than Tregs (green dots) in the responder and vice versa in the non-responder. l, Pre-
treatment SpatialScore calculated from Vectra mIHC data for responders and non-responders on a per 
patient basis (mean, red bar). P values was calculated by a two-sided Wilcoxon’s rank-sum test. 
 
Fig 5. CXCL13 is a key driver of pembrolizumab response in CTCL. a, Seven genes predictive of the 
SpatialScore identified from bulk RNA-seq data. Genes with a positive coefficient are associated with a 
higher SpatialScore (i.e., a suppressive phenotype), whereas those with a negative coefficient are 
associated with a lower SpatialScore (i.e., an effector phenotype). b, Normalized bulk CXCL13 gene 
expression between responders and non-responders pre- and post-treatment per tissue microarray spot. 
Boxes, median ± IQR; whiskers, 1.5x IQR.  P values were calculated with a linear mixed-effect model with 
Bonferroni’s corrections for multiple comparisons. c, CXCL13 protein expression by IHC in responders and 
non-responders pre- and post-treatment per spot (mean ± s.e.m.). P values were calculated with a linear 
mixed-effect model with Bonferroni’s corrections for multiple comparisons. d, Representative CXCL13 IHC 
images from responder patient 9 pre-treatment (top left) and post-treatment (bottom left) as well as non-
responder patient 14 pre-treatment (top right) and post-treatment (bottom right). Scale bars, 20 µm. e-f, 
Single-cell transcriptomes from a publicly available scRNA-seq dataset of CTCL skin tumors (Gaydosik et 
al.)59 were analyzed for CXCL13 expression. Abbreviations: mac (macrophages), B&PC (B and plasma cells), 
vasc (vasculature), DC (dendritic cells), and KC (keratinocytes).  e, Normalized expression of CXCL13 in 
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single cells (each dot represents a cell positive for CXCL13). Cells with CXCL13 log1p normalized read 
counts less than 0.5 were excluded (see Methods). Boxes, median ± IQR; whiskers, 1.5x IQR. f, Proportion 
of CXCL13-expressing cells per cell-type. g, CIBERSORTx analysis workflow schematic. Single cell 
transcriptomes from Gaydosik et al.59 were used to generate a CSx deconvolution signature matrix, 
consisting of cell-type-specific marker genes (left portion of schematic). This matrix was then applied to 
CTCL bulk transcriptomes obtained with laser-capture microdissection (LCM) and Smart-3Seq (right 
portion of schematic) to enumerate cell-type fractions and resolve gene expression profiles (see 
Methods). h, Heatmap of the correlation between CSx-resolved cell-type frequencies and CODEX-
identified cell-type frequencies. Spearman correlation coefficients between corresponding cell-types are 
shown along the diagonal. For this analysis, some of the original 21 CODEX cell-types were manually 
merged to match CSx cell-types (e.g., B cells and plasma cells). i-j, Volcano plots of differential gene 
expression of CSx-resolved tumor cell genes in responders (j) and non-responders (k) pre- and post-
treatment. P values were calculated with a linear mixed-effect model with Benjamini-Hochberg 
correction. Significantly different genes (p < 0.1) are colored red; CXCL13 is highlighted yellow.  k, Vectra 
mIHC image of DAPI (blue), CD3 (yellow), CD4 (red), CD7 (magenta), CD8 (green), CD25 (purple), FoxP3 
(white), and PD-1 (cyan) (top left), corresponding tumor cell depiction (top right), corresponding CXCL13 
IHC image (bottom left), and overlaid image showing that CXCL13 IHC staining most commonly localized 
to tumor cells (red circles) (bottom right) in responder patient 9 post-treatment. Scale bars, 20 µm.  l, 
Normalized CSx-resolved CXCL13 expression in tumor cells between responders and non-responders pre- 
and post-treatment per spot. Boxes, median ± IQR; whiskers, 1.5x IQR. P values were calculated with a 
linear mixed-effect model with Bonferroni’s corrections for multiple comparisons. m-n, Pre- to post-
treatment changes in normalized CXCL13 gene expression from CSx-resolved tumor genes on a per patient 
basis in responders (m) and non-responders (n). Boxes, median ± IQR; whiskers, 1.5x IQR. P values were 
calculated by two-sided Wilcoxon’s signed-rank tests. o, Correlation of CSx-resolved tumor cell CXCL13 
expression and bulk CXCR5 expression per spot. Data was evaluated with the Spearman test and a two-
tailed t-distribution with n-2 degrees of freedom. 
 
Fig 6. Proposed mechanisms of pembrolizumab response in CTCL.  Proposed mechanisms of 
pembrolizumab response in therapy responders (top panel) and non-responders (bottom panel) pre- and 
post-treatment. The functional immune status of the TME is represented by blue shading when activated 
and pink shading when suppressed. In non-responders, the TME is continually immunosuppressed and 
persistently exhausted PD-1+CD4+ T cells are in closer proximity to potently suppressive ICOS+ Tregs. Due 
to pembrolizumab resistance, non-responder tumor cells become more aggressive following therapy. In 
contrast, responders have a neutral functional immune state pre-treatment, which becomes activated 
following pembrolizumab therapy, enabling the transition from exhausted to effector PD-1+ CD4+ T cells. 
Additionally, responder tumor cells are susceptible to PD-1 blockade and overexpress CXCL13. This 
attracts effector PD-1+ CD4+ T cells toward tumor cells, providing a mechanism for the sustained clinical 
response seen in responders.  
 
 

 
 
 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 8, 2020. ; https://doi.org/10.1101/2020.12.06.20244913doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.06.20244913
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
28 

FIGURE 1 
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FIGURE 2 
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FIGURE 3 
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FIGURE 4 
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FIGURE 5 
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FIGURE 6 
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SUPPLEMENTARY FIGURE AND TABLE LEGENDS 
 
Sup. Fig. 1. Study design and CODEX experimental validation. a, Framework for the 14 included CTCL 
patient samples used for CODEX tissue imaging, RNA-seq and mIHC imaging. b, Patient characteristics for 
the 7 responders and 7 non-responders. Significant differences between responders and non-responders 
were only noted for patient outcomes: the change from baseline in skin by the modified Severity Weighted 
Assessment Tool (mSWAT) (**, p=0.0019 by Wilcoxon’s rank sum test), the 1 year progression free survival 
(PFS) (*, p=0.0306 by Wilcoxon’s rank sum test), and patients deaths (*, p=0.0168 by log rank test in 
Kaplan-Meier overall survival curve; see Fig. 1b). c, Swimmer plot of individual patients, depicting 
treatment history and timepoints in weeks for every tumor biopsy used in this study. Lines represent 
overall survival in weeks. A rightward arrow indicates that the patient was still alive following the final 
tumor collection. A rightward X indicates that the patient died. d, Validation of the 55-marker CODEX 
antibody panel used to stain the CTCL skin tissue microarray. Images of a single microarray spot are 
depicted in false gray color for each marker. H&E staining is also shown. Scale bars, 100 µm. e, Average 
expression of CD3, CD4, FoxP3, and cell size (measured in pixels/cell) of malignant FoxP3+ CD4+ T cells 
from responder patient 2 (green bars), relative to Tregs from all patients (purple line). P values were 
calculated by two-sided Wilcoxon’s rank-sum tests (****, p<0.0001).  
 
Sup. Fig. 2. Characterizing CODEX cell-types, the cellular neighborhood concept, and PD-1 positivity. a, 
Heatmap of CODEX antibody marker expression in each of the 21 identified cell-types. b, Minimal 
spanning tree of the 21 cell-types, which are colored blue (immune cell-types), red (tumor cell-types) and 
gray (auxiliary cell-types). c, Frequencies of tumor, immune and auxiliary cell-types for each patient group 
(p=n.s. for all comparisons). d-e, Conceptual neighborhood schematic showing how urban neighborhoods 
are determined based on their composition of buildings (d) and cellular neighborhoods based on cell-
types (e). f-i, Frequencies of PD-1+ CD4+ T cells (f), PD-1+ CD8+ T cells (g), PD-1+ Tregs (h), and , PD-1+ tumor 
cells (i) per tissue microarray spot in responders and non-responders pre- and post-treatment (mean, red 
bar). P values were calculated with a linear mixed-effect model with Bonferroni’s corrections for multiple 
comparisons.  
 
Sup. Fig. 3. CODEX, H&E, and cellular neighborhood images for the CTCL tissue microarray. a, CODEX 
seven-color overlay image of the CTCL tissue microarray. Scale bar, 100 µm. b, Corresponding H&E image 
of the CTCL tissue microarray. Scale bar, 100 µm. c, Dot plot Voronoi diagram of the 10 identified CNs, 
colored according to the corresponding legend.  
 
Sup. Fig. 4. Detailing the SpatialScore in CTCL. a-b, SpatialScore based on all CD4+ T cells (a) and PD-1+ 
CD4+ T cells (b) on a per patient basis across patient groups (mean, red bar). Patients were excluded from 
this analysis if they did not have at least 10 CD4+ or PD-1+ CD4+ T cells. P values were calculated by two-
sided Wilcoxon’s rank-sum tests, with no adjustments for multiple comparisons.  c, Frequency distribution 
of the physical distances in the tissue between PD-1+ CD4+ and Tregs by patient group, with the red arrow 
showing that these two cell-types are closest in non-responders pre-treatment. d, Frequency distribution 
of the distances between PD-1+ CD4+ and tumor cells by patient group, with the red arrow showing that 
these two cell-types are closest in responders post-treatment.  e-f, SpatialScore on a per cell basis using 
CD8+ T cells (e) and PD-1+ CD8+ T cells (f) for each patient group (mean ± s.e.m.). P values were calculated 
by two-sided Wilcoxon’s rank-sum tests, with no adjustments for multiple comparisons.   g-i, Correlations 
of the number of PD-1+ CD4+ T cells (g) tumor cells (h), and Tregs (i) relative to the SpatialScore per tissue 
microarray spot. Correlations were evaluated with the Spearman test. j-m, Density plots of the measured 
mean SpatialScore distribution (blue) and corresponding random mean with its standard deviation 
(orange) for responders pre-treatment (j) non-responders pre-treatment (k) responders post-treatment 
(l), and non-responders post-treatment (m). P values were calculated by two-sided Wilcoxon’s rank-sum 
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tests, with no adjustments for multiple comparisons. The Quant values correspond to the percentage of 
randomly measured values that are smaller than the measured value; values closer to 0 or 100 indicate 
that the measurement is not random.   
 
Sup. Fig. 5. Validation of the SpatialScore biomarker using a clinically accessible mIHC platform. a, Vectra 
mIHC staining of the CTCL tissue microarray with an eight-color overlay image, including DAPI (blue), CD3 
(yellow), CD4 (red), CD7 (magenta), CD8 (green), CD25 (purple), FoxP3 (white), and PD-1 (cyan). Scale bars, 
100 µm. b-e, Biomarker performance measures, using an optimal cut-off point of 0.7908, for the pre-
treatment SpatialScore calculated from data obtained with the Vectra mIHC platform including an ROC 
curve (b),sensitivity and specificity plots (c), density plots (d), and patient-based scatter plots (e), whereby  
100% of responders were below the SpatialScore cut-off point and 85.7% of non-responders were above 
the cut-off point). 
 
Sup. Fig. 6. Characterizing CIBERSORTx cell-types and CXCL13 expression patterns. a, UMAP of 10 major 
cell-types identified in the Gaydosik et al.59 CTCL scRNA-seq dataset (see Methods), with feature plots 
showing expression for a subset of marker genes including TOX (tumor cells), CD4 (CD4+ T cells), CD8A 
(CD8+ T cells), FOXP3 (Tregs), CD68 (macrophages), and CD1A (dendritic cells). b, Heatmap of the top 
differentially expressed genes (rows) for the 10 cell-types, corresponding to the top color bar. The other 
color bar corresponds to patient samples from the Gaydosik et al.59 CTCL scRNA-seq dataset (legend is at 
the bottom of the heatmap). c, Signature matrix, highlighting key marker selected genes (rows), used to 
enumerate cell-type fractions and resolve gene expression profiles from CTCL bulk RNA-seq. d, Differential 
expression of CSx-resolved tumor cell genes in responders versus non-responders pre-treatment. e, 
CXCL13 IHC staining of the CTCL tissue microarray. Scale bars, 100 µm. f, Normalized bulk CXCR5 gene 
expression across patient groups. Boxes, median ± IQR; whiskers, 1.5x IQR.  P values were calculated with 
a linear mixed-effect model with Bonferroni’s corrections for multiple comparisons.   
 
 
Supplementary Table 1. Cohort and tissue microarray layout.  

Sup. Table 1a. Cohort.  
Sup. Table 1b. Tissue microarray layout.  

 
Supplementary Table 2. Targets. 
 
Supplementary Table 3. Genes lists; related to Figures 2e-h, 4f-h.  

Sup. Table 3a. Interferon gamma gene score. 
Sup. Table 3b. Transforming growth factor beta gene score.  
Sup. Table 3c. Immune activation gene score.  
Sup. Table 3d. Immunosuppression gene score.  
Sup. Table 3e. Cytotoxicity gene score.  
Sup. Table 3f. Tumor aggressiveness.  

 
Supplementary Table 4. CIBERSORTx marker genes.  

Sup. Table 4a. Markers of CIBERSORTx cell-types. 
Sup. Table 4b. T cell and tumor cell markers for CIBERSORTx. 
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SUPPLEMENTARY FIGURE 1 
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SUPPLEMENTARY FIGURE 2 
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SUPPLEMENTARY FIGURE 3 
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SUPPLEMENTARY FIGURE 4 
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SUPPLEMENTARY FIGURE 5 
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SUPPLEMENTARY FIGURE 6 
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Supplementary Table 1. Cohort and tissue microarray layout.  

Sup. Table 1a. Cohort.  

 
 
 
 
 
 
 
 
  

Patient 
ID

Age at 
screening 
(years)

Gender Diagnosis 
Disease 
stage

Prior 
therapies

Response 
status

Biopsy 
timepoints

C02 
(weeks)

Response / 
progression 
time (weeks)

EOT 
time 
(weeks)

Death 
time 
(weeks)

Follow-up 
time 
(weeks)

1 76.14 Male MF IIIA 3 Responder Pre, EOT 104 142
2 60.59 Male MF IIIB 4 Responder Pre, EOT 104 151

3 52.01 Male SS IVA 3
Non-
responder

Pre, EOT 98 98 98

4 85.14 Female SS IVA 4
Non-
responder

Pre, EOT 104 142 142

5 75.24 Male MF IIB 6 Responder Pre, EOT 104 103

6 46.74 Male MF IVA 9
Non-
responder

Pre, C02, 
EOT

3 25 25

7 46.71 Female MF IIIB 3
Non-
responder

Pre, EOT 9 9

8 67.44 Male SS IIIB 1
Non-
responder

Pre, EOT 104 121 121

9 77.65 Female SS IVA 6 Responder
Pre, C02, 
EOT

3 71 71

10 66.40 Male MF IIIA 2 Responder Pre N/A 119 119

11 72.23 Male SS IVA 3 Responder
Pre, 
Response

22 104 171

12 72.59 Male SS IVA 5
Non-
responder

Pre, 
Progression

15 15 15

13 44.10 Female SS IVA 1 Responder
Pre, C02, 
Response, 
EOT

3 15 104 179

14 63.69 Male MF IB 5
Non-
responder

Pre, C02, 
Response, 
EOT

3 10 92 92 92

MF: mycosis fungoides
SS: Sezary syndrome
Pre: biopsy obtained pre-treatment 
C02: biopsy obtained prior to cycle 2 
Response / Progression: biopsy obtained at point of response or progression
EOT: end of trial 
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Sup. Table 1b. Tissue microarray layout.  

 

TMA spot Patient ID Biopsy timepoint
1 1 Pre_1 Pre: pre-treatment biopsy
2 1 Pre_2 C02: biopsy obtained prior to cycle 2 (3 weeks)
3 1 EOT_1 Response / Progression: biopsy obtained 
4 1 EOT_2 at point of response or progression
5 2 Pre_1 EOT: end of trial (104 weeks) 
6 2 Pre_2
7 2 EOT_1
8 2 EOT_2
9 3 Pre_1
10 3 Pre_2
11 3 EOT_1
12 3 EOT_2
13 4 Pre_1
14 4 Pre_2
15 4 EOT_1
16 4 EOT_2
17 5 Pre_1
18 5 Pre_2
19 5 EOT_1
20 5 EOT_2
21 6 Pre_1
22 6 Pre_2
23 6 EOT_1
24 6 EOT_2
25 7 Pre_1
26 7 Pre_2
27 7 EOT_1
28 7 EOT_2
29 8 Pre_1
30 8 Pre_2
31 8 Pre_3
32 8 EOT_1
33 8 EOT_2
34 8 EOT_3
35 9 Pre_1
36 9 Pre_2
37 9 EOT_1
38 9 EOT_2
39 10 Pre_1
40 10 Pre_2
41 11 Pre_1
42 11 Pre_2
43 11 Resp_1
44 11 Resp_2
45 12 Pre_1
46 12 Pre_2
47 12 Resp_1
48 12 Resp_2
49 6 C02_1
50 6 C02_2
51 13 Pre_1
52 13 Pre_2
53 13 Resp_1
54 13 Resp_2
55 13 EOT_1
56 13 EOT_2
57 14 Pre_1
58 14 Pre_2
59 14 Resp_1
60 14 Resp_2
61 14 Resp_3
62 14 EOT_1
63 14 EOT_2
64 14 EOT_3
65 14 C02_1
66 14 C02_2
67 9 C02_1
68 9 C02_2
69 13 C02_1
70 13 C02_2
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Supplementary Table 2. Targets. 

  

Antibody target Oligonucleotide Flourophore Dilution Exposure time Reaction cycle Reaction channel
CD1a 43 Cy5 1:100 1/2s 20 4
CD2 25 Cy5 1:25 1/2s 7 4
CD3 77 Cy5 1:100 1/2s 17 4
CD4 20 ATTO550 1:100 1/2s 9 3
CD5 75 ATTO550 1:50 1/2s 8 3
CD7 63 ATTO550 1:100 1/2s 19 3
CD8 8 Cy5 1:50 1/5s 18 4

CD11b 28 Cy5 1:50 1/2s 13 4
CD11c 49 ATTO550 1:50 1/2s 12 3
CD15 14 Alexa488 1:200 1/10s 7 2
CD16 26 ATTO550 1:100 1/2s 13 3
CD20 48 ATTO550 1:200 1/4s 11 3
CD25 24 ATTO550 1:100 1/2s 10 3
CD30 57 ATTO550 1:25 1/2s 7 3
CD31 68 ATTO550 1:200 1/8.5s 25 3
CD34 38 ATTO550 1:100 1/4s 23 3
CD38 66 ATTO550 1:100 1/2s 24 3
CD45 56 ATTO550 1:400 1/8.5s 20 3

CD45RA 72 Cy5 1:50 1/2s 19 4
CD45RO 2 ATTO550 1:100 1/4s 22 3

CD56 29 Cy5 1:50 1/2s 10 4
CD57 30 ATTO550 1:200 1/4s 21 3
CD68 70 Cy5 1:100 1/4s 23 4
CD69 36 ATTO550 1:200 1/2s 18 3
CD71 3 Cy5 1:100 1/5s 22 4

CD138 76 ATTO550 1:100 1/8.5s 26 3
CD162 46 Cy5 1:200 1/8.5s 12 4
CD163 45 Cy5 1:200 1/3s 26 4
CD164 69 Alexa488 1:200 1/2s 3 2
CD194 55 ATTO550 1:100 1/2s 14 3

Beta-catenin 51 Cy5 1:50 1/2s 21 4
BCL-2 41 ATTO550 1:50 1/2s 17 3

Collagen IV 33 Cy5 1:200 1/4s 24 4
Cytokeratin 67 Alexa488 1:200 1/5s 6 2

DRAQ5 N/A Cy5 1:100 1/8.5s 29 4
EGFR 58 ATTO550 1:25 1/2s 15 3
FoxP3 61 ATTO550 1:100 1/4s 3 3
GATA3 60 Cy5 1:100 1/2s 3 4

Granzyme B 81 Alexa488 1:200 1/8.5s 8 2
HLA-DR 65 ATTO550 1:200 1/4s 16 3

ICOS 74 Cy5 1:100 1/2s 16 4
IDO-1 59 Cy5 1:25 1/2s 14 4
Ki-67 6 Cy5 1:100 1/5s 6 4
LAG3 42 Cy5 1:25 1/2s 9 4

Mast cell tryptase 44 ATTO550 1:200 1/80s 27 3
MMP-9 62 Alexa488 1:400 1/3s 9 2
MUC-1 15 Alexa488 1:100 1/2s 4 2

p53 52 ATTO550 1:50 1/2s 4 3
PD-1 23 Cy5 1:50 1/2s 11 4

PD-L1 11 ATTO550 1:50 1/2s 6 3
Podoplanin 32 Cy5 1:200 1/3s 25 4

T-bet 5 ATTO550 1:100 1/2s 5 3
Vimentin 7 Alexa488 1:200 1/4s 5 2

VISTA 79 Cy5 1:50 1/2s 15 4
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Supplementary Table 3. Genes lists; related to Figures 2e-h, 4f-h.  

Sup. Table 3a. Interferon gamma gene score39. 
Gene Coefficient 
IFNG -0.30685 
HLA-DRA -0.35484 
IDO1 -0.36499 
STAT1 -0.45212 
CXCL10 -0.46207 
CXCL9 -0.47832 

 
 
Sup. Table 3b. Transforming growth factor beta gene score40.  

Gene Coefficient 
IL6ST 0.48031 
PDGFRB 0.40325 
TGFBR2 0.39434 
TNFRSF1A 0.39151 
PDGFA 0.25311 
KIT 0.25002 
FLT4 0.24409 
IFNGR1 0.10497 
TNFRSF14 0.03628 
ACVR1 -0.03375 
TGFB1 -0.04924 
TNFRSF10B -0.15319 
LIF -0.17415 
IL4R -0.20508 
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Sup. Table 3c. Immune activation gene score.  
Gene Coefficient 
CXCL9 0.28056 
CCL5 0.27507 
GZMH 0.27229 
EOMES 0.26916 
GZMK 0.26379 
CD27 0.25655 
TNFRSF9 0.25375 
IL2RG 0.24956 
PRF1 0.24024 
FASLG 0.23683 
IL2RA 0.22805 
IFNG 0.21895 
ICOS 0.20233 
CD40 0.18924 
CD40LG 0.18919 
IL17RA 0.14444 
IL12B 0.13478 
TNFSF9 0.12999 
CD28 0.12862 
CX3CR1 0.11662 
TNFRSF4 0.11086 
GZMB 0.07612 
CCR7 0.06002 
IL23A 0.05400 
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Sup. Table 3d. Immunosuppression gene score.  
Gene Coefficient 
TGFB1 0.31255 
ENTPD1 0.30707 
IL24 0.30658 
CXCL1 0.30076 
IL6 0.29989 
TGFBR1 0.27375 
IL10 0.24295 
HAVCR2 0.20469 
PDGFRA 0.20016 
HLA-G 0.18822 
TGFBRAP1 0.18282 
PVT1 0.16990 
PDGFRB 0.16723 
LINC00473 0.16219 
CXCL3 0.16065 
TIGIT 0.15326 
LIF 0.14962 
CXCL12 0.12772 
CD274 0.12391 
TIAF1 0.11831 
LAG3 0.10954 
DNM3OS 0.02112 
NIFK-AS1 -0.00826 
IL4 -0.04139 
GNAS-AS1 -0.05070 
HOTAIR -0.06027 
PDCD1LG2 -0.08477 
GAS5 -0.14413 
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Sup. Table 3e. Cytotoxicity gene score49,50.  
Gene Coefficient 
NKG7 0.39045 
PRF1 0.35018 
TNF 0.34146 
GZMH 0.32965 
TBX21 0.31663 
GZMK 0.31526 
GZMM 0.29080 
ID2 0.26046 
IFNG 0.25047 
GNLY 0.22788 
GZMB 0.18149 

 
 
Sup. Table 3f. Tumor aggressiveness51,52.  

Gene Coefficient 
IL2RB 0.30377 
BATF 0.29598 
IL21R 0.28415 
CCND2 0.26500 
RGS16 0.25940 
MYO7A 0.25910 
SLA 0.25436 
ANP32E 0.23795 
MTHFD2 0.21538 
IL10 0.21012 
TRIB2 0.20521 
RARRES3 0.19264 
GNLY 0.19238 
DUSP5 0.18767 
C1GALT1 0.15656 
BCL2 0.15272 
EHD1 0.13197 
HSPD1 0.13011 
DAD1 0.12384 
MMP12 0.08265 
IL26 0.07073 
IL22 0.06240 
P4HB -0.05212 
TCN1 -0.07340 
SFTPD -0.12905 
TGFBR3 -0.18280 
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Supplementary Table 4. CIBERSORTx marker genes.  

Sup. Table 4a. Markers of CIBERSORTx cell-types. 
Cell-types Marker genes CIBERSORTx cell-types 
B cells & plasma cells MS4A1, LTB, CD79A, CD79B B and plasma cells 
T cells CD3E, CD3D, CD274 CD4 T, CD8 T, Tregs, tumor cells 
Macrophages & dendritic 
cells  AIF1 Macrophages, dendritic cells 
Keratinocytes KRT1, KRT14 Epithelium 
Vasculature CD43, PECAM1, CLDN5 Vasculature 
Fibroblasts COL1A1, SFRP2 Stroma 
Pericytes RGS5, ACTA2 

 
 
Sup. Table 4b. T cell and tumor cell markers for CIBERSORTx. 

T cell markers (reactive CD4+, CD8+, Tregs)   Tumor markers 

CD4 FOXP3 IL2 STAT6   ACTG1 CDK1 KIAA0101 PRDX1 
CD7 GATA3 IL2RA TBX21   ANP32B CDK6 MCTS1 PSMB2 
CD8A GZMA IL4 TGFB1   ATP5C1 CENPE MKI67 RAN 
CD8B GZMB ITGAE TIGIT   BCL2 CENPM MYC RANBP1 
CD27 HAVCR2 LAG3 TNF   BCL2L12 DUT NPM1 SET 
CD44 ICOS PDCD1 TRAC   BIRC3 FOS NUSAP1 SMC4 
CD69 IFNG PRF1 TRBC1   BIRC5 HMGN1 PCNA STMN1 
CD160 IKZF2 RORC TRBC2   CCNA2 HMMR PIM2 TOP2A 
CTLA4 IL10 RUNX3 TRDC   CCND1 HN1 PLK1 TOX 
EOMES IL17A STAT3 TRGC1   CDC20 IGF2 PPA1 TSC22 
FASLG IL1B STAT4 TRGC2   CDCA8 IL2RA PPIA   
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