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Abstract: Ecosystems play an important role in supporting human welfare, including regulat-9

ing the transmission of infectious diseases. Many of these services are not fully-appreciated10

due to complex environmental dynamics and lack of baseline data. Multicontinental amphibian11

decline due to the fungal pathogen Batrachochytrium dendrobatidis (Bd) provides a stark ex-12

ample. Even though amphibians are known to affect natural food webs—including mosquitoes13

that transmit human diseases—the human health impacts connected to their massive decline14

have received little attention. Here we show a causal link between a wave of Bd-driven collapse15

of amphibians in Central America and increased human malaria incidence. At the canton-16

level in Costa Rica and district-level in Panama, expected malaria incidence increased for eight17

years subsequent to amphibian losses, peaking at an additional 1.0 cases per 1,000 population18

(CPK). The increase is substantial in comparison to annual incidence levels from outbreaks19

in these countries, which peaked at 1.1-1.5 CPK during our period of study from 1976-2016.20

This pattern holds across multiple alternative approaches to the estimation model. This previ-21

ously unidentified impact of biodiversity loss illustrates the often hidden human welfare costs22

of conservation failures. These findings also show the importance of mitigating international23

trade-driven spread of similar emergent pathogens like Batrachochytrium salamandrivorans.24
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Significance Statement: Despite substantial multicontinental collapses in amphibian popula-25

tions from spread of the fungal pathogen Batrachochytrium dendrobatidis (Bd), the implications26

for humans have not been systematically studied. Amphibians are known to affect food webs,27

including mosquitoes that serve as a vector for the spread of disease. However, little is known28

about how their loss erodes ecosystem services, including the regulation of the transmission of29

infectious diseases. Using Central America as a case study, this study shows that Bd-driven30

amphibian loss led to a substantial increase in malaria incidence. The results highlight the often31

underappreciated social costs of biodiversity loss, including the potential stakes of ecosystem32

disruption from failing to stop spread of future novel pathogens.33
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Despite recent catastrophic, disease-driven loss of amphibians at a global scale, no broad im-34

plications for human welfare have been empirically demonstrated. Amphibians are not unique35

in this regard. While broad biodiversity loss impedes ecosystem functioning and the social36

benefits that follow, specific consequences of such change often go unnoticed (1). For am-37

phibians, the spread of Batrachochytrium dendrobatidis (Bd)—an extremely virulent fungal38

pathogen responsible for massive worldwide die-offs (2)—has arguably caused “the greatest39

recorded loss of biodiversity attributable to a disease” (3). Empirical reckoning with implica-40

tions for human welfare is essential for informed mitigation of ongoing impacts and—perhaps41

more importantly—sufficiently motivating investment to avoid repeating such disasters. For42

example, newer related pathogens like Batrachochytrium salamandrivorans similarly threaten43

to invade through the global movement of goods and people, repeating the cycle (4).44

We take advantage of a natural experiment to provide what is to our knowledge the first45

causal evidence of a negative human health impact of widespread amphibian loss, namely46

through increased malaria incidence. The emergent One Health approach emphasizes ties be-47

tween people, animals, plants, and environment, for example human-mammal/bird connections48

in outbreaks of novel influenza and coronaviruses (5). Less attention has been paid to connec-49

tions between amphibians and human health. Over the past few decades in Central America50

biologists have tracked an invasion wave of Bd, which causes chytridiomycosis and has dec-51

imated amphibians. Loss of these species is known to affect ecosystem functions and natural52

food webs, with the potential to increase insect abundance, including mosquitoes capable of53

transmitting human diseases (6–10). This Bd wave travelled from west to east across Costa54

Rica from the early 1980s to the mid-1990s and then continued across Panama through the55

2000s (11). Following this rolling collapse of amphibian populations, both countries experi-56

enced large increases in malaria cases. Fig. 1 shows annual total malaria cases in Costa Rica57

and Panama for the time span of our analysis. While the ordering and timing of peaks in the58
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two countries are consistent with a lagged impact of amphibian decline, this correlation does59

not establish causality on its own.60

Fig. 1. Annual total malaria cases from 1976-2016 for Costa Rica and Panama.

The global burden of malaria in 2018 includes an estimated 228 million cases and 405,00061

deaths, largely in sub-Saharan Africa and India (12). Multiple overlapping social and environ-62

mental drivers have been proposed to explain instances of elevated malaria incidence. These63

include weather patterns, deforestation, human migration, and anti-malaria program problems64

(13, 14). Deforestation in particular has received increased attention in recent years and is hy-65

pothesized to operate through changes to the physical environment, malarial mosquito biology,66

and human exposure (15). While most have found that deforestation is associated with increased67

malaria incidence (16), this result does not hold across all regions and study designs (17). How-68

ever, linkages between malarial dynamics and ecosystem disruption by invasive species has not69

been previously studied, aside from well-known linkages to invasive mosquito vectors.70

Methods71

We use a multiple regression model to estimate the causal impact of Bd-driven amphibian72

decline on malaria incidence at the canton level in Costa Rica and distrito level in Panama,73
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hereafter referred to as “county level”. We exploit variation in outcomes for units (counties)74

that experienced “treatment” (amphibian decline) at different times, which is a difference-in-75

difference, event-study design (18). This approach takes advantage of the staggered treatment76

of counties, leveraging differences in malaria outcomes over time between administrative units77

that have and have not been treated with Bd.78

To estimate the linear regression model, we constructed a panel dataset spanning 41 years79

(1976-2016) at the county level in Costa Rica and Panama, as detailed in the SI Appendix.80

The outcome variable is malaria incidence (number of cases per 1,000 population). The central81

driver of interest is the Bd-driven date of decline (DoD) of amphibians in each county (when82

the edge of the county is first reached). We used field observations of the DoD at several sites83

across the two countries to estimate the DoD for each county using a spatial spread model on a84

grid overlaying the region (see SI Appendix). Fig. 2 shows the estimated DoD for each county85

included in our preferred specification. We excluded a small fraction of counties (indicated in86

Fig. 2) where precise DoD values were not available (see SI Appendix). The pattern shows a87

west-to-east wave spreading from the northwestern border of Costa Rica around 1980 to the88

Panama Canal region by 2010.89

For the regression model we use an event-study framework to characterize the impact of90

Bd-driven amphibian decline on per capita incidence of malaria, while controlling for other91

potential drivers. This approach is standard in the econometric literature in cases where multiple92

units, such as states or counties, receive the same “treatment” at different times (19–21). We93

specified the model as94

Mct =
k=11

+∑
k=−6−

γk · τck + θ′Xct + λc + λt + εct, (1)

where Mct is malaria cases per thousand inhabitants in county c and year t. The Bd-driven date95
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Fig. 2. Date of Bd-driven amphibian decline (DoD) in Costa Rica and Panama. Observed DoD points are
directly labeled with years. Color shading indicates county-level earliest DoD, estimated using a spatial
spread process model. Hashing indicates counties excluded in the preferred specification.

of decline for county c is given by DoDc, where the unit is year. Also, at time t the number of96

years relative to this event is given by Kct = t−DoDc. For example, if county c is “treated” by97

the arrival of Bd-driven amphibian decline at the start of 1990, then at t = 1992, the year relative98

to the event isKc,1992 = 1992−1990 = 2; county c has completed two years of treatment and is99

entering its third. Our main regressor of interest is τck, which is a dummy variable equal to one100

if county c is k years away from the initial treatment event: τck = 1{Kct = k}. We focus on101

the five relative years before the event and 10 years following: k ∈ {−5,−4, ...9, 10}. We also102

included a single dummy for all relative years before this, denoted by k = −6− and another for103

all relative years after, k = 11+. Allowing the coefficient γk to vary for each relative year (Kct)104

in this way facilitates flexible and dynamic treatment effects. Because we imposed γ−1 = 0 to105

serve as the baseline, the remaining coefficients γk are interpreted as effects relative to the year106

k = −1, the year just before the DoD.107

A vector of time-varying, county-level control variables is given by Xct. These include108
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three annual weather measures—total precipitation and temperature extremes (minimum and109

maximum)—following previous analysis of malaria dynamics in Panama (13). We also consider110

annual land cover variables (share of tree cover, non-tree cover and bare ground) to account for111

the role of deforestation.112

The regression model in Equation 1 also includes county fixed-effects (individual county113

dummies λc) to control for differences between spatial units that are constant over time (e.g.114

elevation) as well as year fixed effects (individual year dummies λt) to control for any shocks115

that affect malaria prevalence in all counties in a given year. Rounding out the model, εct is a116

county-level error term.117

The regression coefficients of interest, {γk}k=10
k=−5, measure the relationship between the num-118

ber of malaria cases per thousand inhabitants and the timing of the decline of amphibian pop-119

ulations in each county, conditional on the covariates. These estimates can be interpreted as120

causal as long as there are no omitted time-varying, county-level variables that both (1) impact121

malaria prevalence, and (2) are correlated with the wave of Bd-driven amphibian decline from122

west to east in our time frame. We argue that it is extremely unlikely that there exists such a123

variable that would satisfy both conditions, especially the second.i This assumption would be124

violated for instance if each county received medical funding in a way that was systematically125

correlated with the decline of amphibian populations in these counties. However, such omitted126

systematic correlation is very unlikely.127

Results128

Effect of Amphibian Decline on Malaria129

In Fig. 3 we plot the coefficients for the year relative to amphibian decline along with 90%130

confidence intervals for the preferred regression model. A crucial validity test of our event131

study framework is to confirm the absence of a pre-trend, i.e. a directional trend in the effect132
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on malaria cases of the year relative to amphibian decline before treatment at year 0. Simply133

put, we would not expect to see systematic movement in malaria incidence in years before134

amphibian decline begins. We confirmed lack of such a pre-trend: none of the coefficients for135

k < 0 are significantly different from zero.136

Overall, we estimated a significant increase in malaria cases due to the onset of amphibian137

decline, an effect that starts gradually, plateaus after 3 years, and starts to attenuate after 8 years.138

The first year of amphibian decline (k = 0) reflects partial treatment for most counties since Bd-139

saturation of a county takes a median of 1.1 years and spread may arrive anytime in a calendar140

year. Starting in year k = 1, amphibian decline is associated with a statistically significant141

increase in malaria cases. We estimate that this average effect reaches a relative plateau by year142

k = 3 and stays relatively constant for six years. For one year in this range (k = 6) the effect is143

not significantly different from zero. This is not due to a decline in the coefficient but rather to144

an increase in the standard error due to an increase in residuals, i.e., additional noise. Starting145

in year k = 9 the average effect begins to attenuate and is no longer significantly different from146

zero.147

For perspective on the relative magnitude of this Bd-driven effect, peak cases per 1,000148

population reached approximately 1.1 for Panama (2002-2007) and 1.5 for Costa Rica (1991-149

2001). For the six years our estimated effect of amphibian decline is at its highest, the annual150

expected increase in malaria ranges from 0.76-1.0 additional cases per 1,000 population. This151

represents a substantial share of cases overall.152

Robustness Checks153

In Table 1 we present the full set of regression estimates for the preferred specification (dis-154

cussed above) in column 1, alongside estimates for three alternative specifications (columns155

2-4) to check robustness (discussed further below). In the table, regression coefficients are pre-156
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Fig. 3. Estimated effect on malaria cases per 1,000 population (vertical axis) of year k (horizontal axis)
relative to Bd-driven date of amphibian decline (DoD). Shading represents 90% confidence intervals.

sented with standard errors in parentheses, which are clustered at the county level. We clustered157

due to the sampling design (we are inferring something about the larger population based on158

data sampled at the county level) and our quasi-experimental design (“treatment” occurs at the159

county level). Overall, we found that our key qualitative results discussed above hold across an160

array of robustness checks.161

In the table, our independent variables (rows) start with two ground cover measures and162

three weather measures. Next are the key coefficients of interest, γ̂k, representing the estimated163

effect of relative years before a county’s DoD (k < 0) and after (k ≥ 0). These coefficients164

for our preferred specification for k = −5,−4, ..., 10 are plotted in Fig. 2 and discussed above.165

We excluded k = −1 so that the rest of these coefficients are interpreted as effects relative to166

this year just before a county’s DoD. For our first alternative specification in column (2) we167

augmented the data set with regions of Panama excluded in our preferred specification due to168

data limitations as described in the SI Appendix.ii In column (3) we considered an alternative169

10
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rule for converting the raster of DoD levels at the pixel-level to the county-level: instead of the170

using the minimum date reflecting initial arrival to the county border, we considered the average171

DoD for the county. In column (4) we conducted weighted least squares regression where the172

weights were given by county-level population. This heightened emphasis on observations173

from high-population counties is motivated by the conjecture that malaria incidence measures174

from such counties are less subject to measurement error given the larger number of “samples”175

available.176

For our key coefficients of interest, under our preferred specification none of the pre-DoD177

coefficients (γ̂k for k ∈ J−5,−2K) are significantly different from zero, i.e. we fail to find a sig-178

nificant pre-trend in malaria in the five years leading up to the DoD. In event study frameworks179

like the one used here, such a lack of a pre-trend is one critical check for model validity. In180

subsequent relative years after Bd-driven amphibian decline, the coefficients are positive, sig-181

nificantly so for 1 ≤ k ≤ 8, with the exception of one year (k = 6). Lack of significance in this182

year appears to stem from an uptick in noise—the coefficient is within the range of surrounding183

years while the standard error is elevated.184

We found that the same general pattern holds across all specifications: we fail to find a pre-185

trend before the DoD and then find a block of significant positive effects on malaria subsequent186

to the DoD. This pattern shifts earlier in relative years under specification (3) as we would187

expect. In this specification k = 0 does not indicate the beginning of treatment but rather a188

time when approximately half of the county has already been treated. In this case the omitted189

year k = −1 (for which the effect is assumed to be zero) includes partially treated counties,190

skewing the baseline and leading to a likely spurious significant negative coefficient for γ̂−2.191

This justifies focus on our preferred specification in which all treatment begins at k = 0, aiding192

consistent interpretation of the coefficients.193

In results presented in the SI Appendix, we also examined the sensitivity of estimates to an194
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Table 1. Estimates for the regression model specified in Equation for the preferred specification (column
1) and alternatives for robustness checks. Standard errors (clustered at the county level) are presented in
parentheses.

Dependent variable: malaria cases per 1,000 population
Preferred

specification
All

observations
Average date

of decline
Weighted
regression

(1) (2) (3) (4)

Tree cover −2.556∗∗ (1.171) −2.891∗∗ (1.174) −2.551∗∗ (1.166) −2.005∗∗ (0.869)
Bare ground −1.823 (1.379) −2.330∗ (1.394) −1.737 (1.312) −1.222∗ (0.706)
Precipitation 0.002 (0.002) 0.002 (0.002) 0.003 (0.002) 0.001 (0.001)
Min. Temp. 0.295 (0.186) 0.071 (0.248) 0.318∗ (0.190) 0.315 (0.212)
Max. Temp. 0.222 (0.181) 0.363 (0.235) 0.240 (0.187) 0.057 (0.111)
γ̂−6− −0.448∗∗∗ (0.159) −0.431∗∗ (0.176) −0.546∗∗∗ (0.196) −0.323∗∗∗ (0.106)
γ̂−5 −0.091 (0.169) −0.043 (0.202) −0.190 (0.185) −0.095 (0.104)
γ̂−4 −0.130 (0.160) −0.150 (0.179) −0.218 (0.152) −0.076 (0.095)
γ̂−3 −0.154 (0.139) −0.286∗ (0.168) −0.214 (0.135) −0.107 (0.086)
γ̂−2 −0.100 (0.083) −0.172 (0.119) −0.199∗∗ (0.086) −0.036 (0.062)
γ̂0 0.113 (0.085) 0.109 (0.083) 0.209∗∗ (0.097) 0.053 (0.049)
γ̂1 0.221∗ (0.130) 0.141 (0.140) 0.444∗∗ (0.213) 0.109 (0.074)
γ̂2 0.396∗∗ (0.171) 0.277 (0.173) 0.716∗∗∗ (0.272) 0.340∗∗ (0.134)
γ̂3 0.812∗∗∗ (0.274) 0.750∗∗∗ (0.264) 0.708∗∗ (0.289) 0.762∗∗ (0.318)
γ̂4 0.858∗∗∗ (0.305) 0.866∗∗∗ (0.293) 0.652∗ (0.359) 0.842∗∗ (0.383)
γ̂5 0.764∗∗ (0.327) 0.870∗∗∗ (0.320) 1.023 (0.682) 0.663∗∗ (0.267)
γ̂6 0.917 (0.578) 0.937∗ (0.563) 0.880∗ (0.510) 0.635 (0.386)
γ̂7 0.995∗∗ (0.450) 1.086∗∗ (0.447) 0.553 (0.425) 0.832∗∗ (0.361)
γ̂8 0.898∗ (0.467) 1.052∗∗ (0.465) 0.257 (0.324) 0.664∗∗ (0.331)
γ̂9 0.521 (0.336) 0.962∗∗ (0.447) 0.158 (0.316) 0.413∗ (0.245)
γ̂10 0.304 (0.285) 0.649∗ (0.349) 0.087 (0.299) 0.253 (0.224)
γ̂11+ 0.645 (0.401) 0.676∗ (0.398) 0.455 (0.418) 0.532∗ (0.300)

Year FE Yes Yes Yes Yes
County FE Yes Yes Yes Yes
Observations 5,576 5,904 5,576 5,576
Adjusted R2 0.301 0.311 0.302 0.310

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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alternative method used for estimating the gridded DoD values, specifically a thin-plate spline195

(TPS) method for direct interpolation of the DoD data over space. Although this method ignores196

the implications for spread of Central America’s irregular coastline, the results are also broadly197

consistent with our preferred specification.198

Additional Drivers of Malaria199

We also found that decreasing tree cover is associated with a statistically significant increase in200

malaria cases under all specifications (see first row of Table 1) in keeping with the majority of201

findings of previous studies. A one standard deviation decrease in tree cover (0.05) is associated202

with an increase of 0.13 in the number of cases of malaria per 1,000 inhabitants. This is about203

one-eighth the magnitude of the estimated amphibian decline impact at its peak. Bare ground204

also has a negative effect on cases, though this effect is not consistently significant. Non-tree205

vegetation, the third land cover type, was excluded from the regression because all three types206

sum to one for each county; the excluded type is perfectly multicollinear with the sum of the207

two included measures.208

For weather variables, increasing precipitation and higher temperatures were associated with209

additional cases, though typically not significantly so (except for minimum temperature in one210

specification (3)).211

Discussion212

Overall we provide novel causal evidence that pathogen-driven amphibian decline can play a213

significant role in increasing incidence of vector-borne disease. Our results also contribute to214

a nascent but growing literature identifying indirect and previously unknown impacts of inva-215

sive species on human health (22–24). If scientists and decision makers fail to reckon with216

the ramifications of such past events, they also risk failing to fully motivate protection against217
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new calamities, like international spread of an emergent and closely related pathogen Batra-218

chochytrium salamandrivorans through incompletely regulated live species trade (4).219

While results were robust to several alternative specifications, we were unable to examine220

whether outcomes for malaria held for other diseases. Showing that our results held for other221

vector-borne diseases (e.g. dengue and leishmaniasis) would have provided additional support222

for the mechanism we propose. Showing that our results failed to hold for non-vector-borne223

illnesses like influenza would have provided additional support for the argument that the effect224

we identify is specific to vector-borne diseases and not a general disease effect. We attempted225

to obtain these disease data sets from the national ministries of health in both countries but they226

were not available for our period of study at the county-level needed.227

From the data we were able to obtain from the Panamanian Ministry of Health, we found that228

the national-level time series for both dengue and leishmaniasis (vector-borne diseases) were229

consistent with the spike observed in malaria cases for 2002-2007 shown in Fig. 1. Relative to230

a baseline from the preceding ten years, average annual leishmaniasis cases were 22% higher231

for 2002-2007. For dengue the increase relative to the previous eight years (all available) was232

36%. When we extended the window of potential impact to 2002-2011, average annual cases233

increased relative to baselines by 23% and 61%, respectively.234

A puzzle for future study is why the estimated effect (of Bd-driven amphibian loss) at-235

tenuates, here after approximately 8 years. One plausible explanation is an increased malaria236

prevention program response to an observed uptick in malaria cases, e.g. increased investment237

in control measures like insecticide application. In the SI Appendix we discuss indicators of na-238

tional malaria prevention actions (total funding and number of houses sprayed for mosquitoes)239

for our period of study for both countries (25). Total funding dynamics in both countries show240

increased (though sometimes uneven) investment in malaria prevention following national out-241

breaks, which would plausibly serve to suppress cases over time. While the evidence is sug-242
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gestive we were not able to include these time series in our regression model since they are not243

available at the county level and such investment is endogenous with malaria cases (the outcome244

variable of interest).245

Footnotes246

247

iFormally, this identifying assumption is E[εct|τc,−6− , ..., τc,11+ ,Xct, λc, λt] = 0.248

iiExcluded regions included eastern Panama and the re-aggregated district “Bocas del Toro”.249
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Supplementary Information328

Data Overview329

Below we describe data sources and methods for constructing our panel data set spanning each330

year from 1976-2016 at the canton-level in Costa Rica and distrito-level in Panama, hereafter331

referred to as “county-level”. This core data set includes variables presented in Table S1 as well332

as the Bd-driven date of amphibian decline (DoD) over space as presented in Fig. 2. Because333

Panama experienced multiple distrito boundary changes during our study period, we aggregated334

certain distritos for spatial consistency. We omitted a small set of distritos and regions that335

present aggregation problems or are islands. These steps are described in detail further below.336

After these adjustments, our main data set includes 136 counties (81 in Costa Rica and 55 in337

Panama).338

Table S1. Summary statistics for annual (1976-2016), county-level variables used in the baseline regres-
sion model.

Statistic Obs. Mean St. Dev. Min Max

Population 5,576 37,196 44,133 2,052 344,349
Malaria cases 5,576 14.2 89.8 0 2,836
Malaria cases per 1,000 pop. 5,576 0.447 2.85 0.00 76.04
Tree cover area (proportion) 5,576 0.396 0.166 0.000 0.828
Non-tree vegetation area (proportion) 5,576 0.567 0.153 0.163 0.910
Bare ground area (proportion) 5,576 0.036 0.029 0.000 0.306
Total precipitation (mm) 5,576 218 45.7 113 419
Maximum annual temperature (◦C) 5,576 14.2 5.1 0.28 22.9
Minimum annual temperature (◦C) 5,576 31.9 2.9 23.2 37.1

Malaria Cases and Population339

Annual malaria cases were digitized from administrative records obtained from the Ministries340

of Health in Costa Rica and Panama. While data do not distinguish between Plasmodium vivax341
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and Plasmodium falciparum the vast majority of cases in this region and period are due to the342

former.i We compiled county-level population data from administrative records provided by the343

National Institute of Statistics and Census in Costa Rica and in Panama.ii For Panama, distrito-344

level population data was available at decadal intervals from 1970-2010. We used cubic hermite345

splines to interpolate annual measures. For Costa Rica, canton-level population was available346

for all years from 1976-2016, except 1978-1981. Given the small, four-year span to fill in, we347

used linear interpolation between available data in 1977 and 1982.348

Land Cover349

For measures of annual land cover for 1982-2016 we use used a dataset with global coverage350

at a spatial resolution of 0.05◦ × 0.05◦ produced by Song et al. (1). The measures include the351

share covered by tree canopy (taller than 5 meters), short vegetation (shorter than 5 meters), and352

bare ground. These dataset were derived from the Advanced Very High Resolution Radiometer353

(AVHRR) version 4 Long Term Data Record and represent the annual land cover status at peak354

growing season for each pixel (1). From this annual raster data set, we aggregated the measures355

to the county level.356

Satellite data from the first six years in our study period (1976-1981) is much more limited357

over time, over space, and in sensor. Thus, we did not use remote sensing products for these358

years. Instead we obtained national measures of the annual change in tree canopy (described359

below) and assumed that any reported rate of change at the national level is the same across360

counties within each country. Because such downscaling can generate time series that are much361

smoother than years actually observed, we added noise to the downscaled values. To do so,362

we computed for each county the standard deviation of tree cover between 1981 and 2001. We363

then generated random draws from centered normal distributions with the previously estimated364

standard deviations, and we added these draws to the interpolated values of tree cover between365
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1976 and 1981. We also assumed that for the remaining land use that is not tree canopy, the366

relative split between short vegetation and bare ground is the same in each county as in 1982.367

National measures of the annual change in tree canopy cover from 1976-1981 were estab-368

lished as follows. For Costa Rica, we used the national annual forest cover percentage for369

1963-1994 as estimated by the Food and Agriculture Organization (FAO) of the United Nations370

(2). From 1976-1981, FAO forest cover estimates in Costa Rica drop by a constant rate of 1.49371

percentage points per year. FAO estimates for this period are not available for Panama. We used372

estimates from the academic literature reporting that, from 1976-1980, Panama lost an average373

of 31,000 hectares annually (3), which is equivalent to 0.42 percentage points per year. We374

assumed this rate also holds for one additional year (through 1981).375

To provide a sense of the magnitude of the impact of deforestation on malaria incidence,376

we first identified a plausible change in the tree cover variable. We followed the approach of377

(4) and residualized the tree cover variable with respect to both county and year fixed effects.378

The residuals have a standard deviation of 0.05 during our entire panel. The standard deviation379

is very similar (0.04) if we instead restrict the panel to the period of malaria outbreaks in each380

country. We then obtained the impact of tree cover on malaria by multiplying this plausible381

shift (0.05) by the regression coefficient, as reported in the main text.382

Weather Variables383

Estimates of three monthly weather variables—total precipitation and average daily minimum384

and maximum temperature—at a high level of spatial resolution (0.04◦, approximately 4.4 km)385

for 1976-2016 were obtained from Hijmans (5).iii From this monthly, gridded data set we386

constructed annual statistics for each county. For precipitation, we computed the average (over387

grid cells) of the monthly county-level total, which we then aggregated to the yearly total. For388

minimum (maximum) temperature, we obtained the monthly minimum (maximum) level across389
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grid cells in each county and then selected the minimum (maximum) level over all months in390

each year.391

Declines in Amphibian Populations392

The central explanatory variable of interest in our regression model is the Bd-driven date of393

decline of amphibian populations (DoD) in each county. To estimate these dates, we first col-394

lected all available observed DoD values reported in the ecological literature (6–10). Each of395

these observations specifies the date at which Bd-driven decline first occurred at given set of396

geographic coordinates. These observations—directly labeled with years in Fig. 2—indicate a397

consistent wave of Bd spread eastward from western Costa Rica through Panama.398

We leveraged these spatiotemporal DoD data points to estimate dates for each county. To do399

so, we estimated a pixel-to-pixel Bd spread model that minimizes the sum of squared residuals400

(SSR) between the observed and fitted DoD values. The parameters selected to optimize the401

fit are the rates of spread at each of the DoD data points. For any given set of these rates, we402

extrapolated rates of spread across all pixels using ordinary Kriging. We then used these pixel-403

specific spread rates to simulate Bd spread from western Costa Rica through Panama. While a404

pixel-to-pixel spread model is computationally costly to repeatedly evaluate (e.g. for alternative405

parameter vectors in an estimation routine), it facilitates more realistic spread along irregular406

coastlines and the nonlinear isthmus of Costa Rica and Panama. This modeled spread results in407

a fitted DoD for every pixel, including those for which we have observed DoDs to calculate the408

residuals for minimization.409

Because evaluation of the residuals resulting from a given set of parameter estimates is not410

a direct function calculation, we used an iterative algorithm for optimization. We started with411

a guess for the parameter vector of spread rates, which is informed by the observed physical412

and temporal distances between data points.iv Then, in each iteration of the algorithm, one of413
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the parameters was randomly selected to be perturbed, both up and down, by a fixed adjustment414

factor (e.g. 5%). Then, from the three candidate models (unperturbed, selected parameter ad-415

justed up, selected parameter adjusted down) the one with the lowest SSR is retained and used416

as the basis for the next iteration. When improvements in the SSR cease, the adjustment factor is417

halved (e.g. from 5% to 2.5%) to further refine the solution. We performed 200 iterations of the418

algorithm since after 175 iterations, no further improvements in SSR were typically achieved.419

To guard against this stochastic algorithm identifying a local and not a global optimum, the420

best-performing model is selected from the set resulting from running the algorithm 100 times.421

Overall, the final spread model fits the observed data well—the absolute residuals (difference422

between observed and fitted DoD values) have an average of 0.15 years and a maximum of 0.23423

years.424

The result of the final solution is a raster map of DoD values. We converted these gridded425

values to a value for each county by taking the earliest DoD within each county, presented as426

the shaded values in Fig. 2. We also considered the average DoD value in each county as an427

alternative specification in our regression results.428

As another robustness check, we considered a wholly different method for estimating county429

DoD values: directly fitting a thin plate spline (TPS) function for the DoD continuously over430

space. A TPS is two-dimensional extension of a cubic spline. Formally, the TPS f(x;ω) is a431

function of the underlying variables x—in our case longitude and latitude coordinates—and a432

parameter vector ω selected to miminize a combination of the SSR and a penalty for increasing433

curvature, quantified by the integral of squared second order derivatives:434

min
ω

{
n∑
i

(yi − f(xi;ω))
2 + λ

∫ [
∂2f(xi;ω)

(∂xi1)2
+
∂2f(xi;ω)

∂xi1∂xi2
+
∂2f(xi;ω)

∂xi2)2

]
dxi

}
,

where xi1 and xi2 are the longitude and latitude coordinates at point i, and yi is the observed435
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DoD at that point. λ is a parameter that penalizes the curvature. If λ = 0, any “amount” of436

curvature is allowed and the spline will perfectly match the data. If λ → ∞, no curvature is437

allowed and the optimization problem boils down to ordinary least squares.438

In practice, λ can be fixed at a given value or selected through a cross-validation method.439

We selected λ using generalized cross validation and then further assessed the robustness of our440

results to values of λ ranging from its minimum to a point where the resulting output no longer441

changed. The result of the interpolation provides a smooth surface of DoD values, as shown442

in Fig. S1, which are then converted to county-level values in the same way as for the spread443

model described above.444

The TPS approach is appealing in its simplicity as a one-step fitting procedure that directly445

extrapolates observed DoD values over space. However, the pattern in Fig. S1 illustrates a key446

drawback of this method: it ignores realities of irregular landscape shapes, in essence allowing447

for spread unimpeded across ocean, equivalently to land.448

Fig. S1. Bd-driven date of amphibian decline (DoD) in Costa Rica and Panama estimated with a thin
plate spline with the curvature penalty selected using generalized cross validation (λ = 12.5). Observed
DoD points are directly labeled with years. Color shading indicates estimated DoD values.
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Spatial Units449

Our “county-level” spatial unit of analysis corresponds to cantons in Costa Rica and distritos450

in Panama. There have been several distrito boundary changes in Panama over the past few451

decades.v To maintain consistent spatial units over time, we aggregated the data of distritos452

that experienced a split in the middle of our study period (1976-2016). This approach follows453

related previous analysis (11) and facilitates keeping the smallest spatial units for which we can454

unambiguously attribute population and malaria counts during the entire period.vi
455

We omitted from our preferred regression model estimation two distritos and one region that456

either present aggregation problems or are islands. We excluded island distritos (Balboa and457

Taboga) since we were concerned with land-based spread of Bd and were unable to rigorously458

predict if and when it arrived to offshore locations. On mainland Panama, we omit the relatively459

small Canal Zone due to aggregation problems. This used to be a U.S. special area which460

included a strip of land on both sides of the Panama Canal. This area fully returned to the461

Republic of Panama on December 31st, 1999, and was distributed among the Colón district,462

the Panamá district, the Chorrera district and the Arraiján district. We omit the Canal Zone463

since keeping it and ensuring consistent boundaries would require aggregation of four otherwise464

distinct districts.465

Finally we omit two regions of Panama for which we are unable to rigorously predict the ar-466

rival of Bd. First, the re-aggregated district “Bocas del Toro” in northwestern Panama—folding467

in Bocas del Toro and Kusapı́n, which were split off in 1997—has a particularly problematic ge-468

ography. It is extremely wide, spatially discontiguous and features an irregular coastline, such469

that the estimated delay between Bd-arrival at one tip and saturation to the other is a substantial470

outlier at 8.0 years. For counties in our preferred specification, this estimated time to saturation471

has a median of 1.1 years (standard deviation 1.3 years). Over 90% of counties are saturated in472

less than 3 years. Because saturation of the aggregated Bocas del Toro county takes more than473
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7 times the median duration, we exclude it from the preferred specification.474

The second region we omit from our preferred specification encompasses eastern Panama475

(hashed region in Fig. 2) since it is relatively far away from the last DoD observation, and DoD476

predictions in this zone may be particularly imprecise.vii In our discussion of robustness checks477

(further below), we found that key results are not sensitive to inclusion of Bocas del Toro and478

eastern Panama.479

DoD Model Robustness Check480

As an additional robustness check, we examined the sensitivity of our results to the method481

used for estimating the DoD at the pixel level. For the results presented below we used the thin-482

plate spline (TPS) method for directly estimating DoD from the data (as described above). We483

considered eight different implementations of TPS, which vary in the curvature penalty param-484

eter λ (i.e. the inverse “flexibility” of the spline). We assessed a range from maximally flexible485

(λ = 0) through increasingly inflexible splines until results no longer vary. The resulting upper486

bound on this penalty parameter coincided with the level also selected using generalized cross487

validation (λ = 12.5). Across this set, there is very little variation in the key regression coeffi-488

cient estimates, as shown in Fig. S2. The results are also broadly consistent with our preferred489

specification, with significant increases in malaria by year three after the DoD. One exception is490

that the lack of a pre-trend before the DoD (shown in the preferred specification) is not as clear491

here—some coefficients for relative years k < −2 are significantly different from zero. How-492

ever, results from this TPS approach are not expected to be precise given that the interpolation493

method ignores realities of the irregular coastlines in Costa Rica and Panama (as discussed in494

the TPS description above) that are accounted for in our preferred approach.495
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Fig. S2. Estimated effect on malaria cases per 1,000 population (vertical axis) of the k-th year relative to
the DoD or Bd-driven date of amphibian decline (horizontal axis) where DoD is estimated using a thin-
plate spline (TPS). Lines depict results under a range of TPS interpolations, which vary in the penalty
parameter, λ. Shading represents 90% confidence intervals.

National Malaria Prevention Actions496

In main text Fig. 1 we show that during our period of study malaria cases spiked in Costa497

Rica 1991-2001 with a peak in 1992 and later spiked in Panama 2002-2007 with a peak in498

2004. A second small spike occurred in Costa Rica in 2004-2007 with a peak in 2005. One499

possible factor in limiting these outbreaks is investment in malaria prevention programs. In500

Fig. S3 we show overall malaria prevention expenditures and number of households sprayed for501

mosquitoes in Costa Rica and Panama over the time range of our study from the Pan American502

Health Organization (PAHO).503

In Costa Rica, relative to the 1980s, we see a substantial uptick in total funding (govern-504

ment and external) starting 1993 followed by massive increases in 1998 and again in 2008.505

For Costa Rica, these funding pulses are correlated first with the onset of the spike in cases506

and then eventual decline. While spraying houses for mosquitoes increases somewhat in the507
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Fig. S3. Annual total malaria prevention expenditures and houses sprayed for mosquitoes from 1976-
2017 for Costa Rica (A) and Panama (B).

late 1990s, spraying ultimately decreases to fairly low levels. In Panama a similar dynamic508

is present though less consistent—a modest increase in malaria financing follows the pulse of509

cases in the early 2000s. However from 2008-2011 financing falls to the lowest levels since510

1990 before accelerating to all time highs in 2012-2014. Spraying in particular is a plausible511

factor in reducing cases given a spike in spraying 2005-2010.512

Footnotes513

514

iSee Interactive Malaria Statistics by the Pan American Health Organization and World Health Organiza-515

tion, specifically ‘Cases by species type’, available at https://www.paho.org/data/index.php/en/516

mnu-topics/indicadores-malaria-en.html.517
iiSee records available at https://www.inec.cr/ and https://www.contraloria.gob.pa/INEC,518

respectively.519
iiiTo construct these variables, Hijmans (5) obtained these monthly climate variables at a 0.5◦ spatial resolution520

from the Climate Research Unit data website (12, 13) and downscaled to the finer spatial resolution using the delta521

method (14).522
ivAn initial estimate of the rate of spread (meters/week) at each of the DoD data points is calculated as follows.523

At a given point i, we combined information on how fast spread reaches (A) i from the previous point i − 1 and524

(B) i + 1 from i. Considering points i and i − 1, let ti represent the DoD time difference and let di represent525

the physical distance. The observed rate of spread from from i − 1 to i, or “approach rate” is given by di/ti.526

We specified the rate of spread at point i as a weighted combination of the approach rate and departure rate,527

ri =
di

ti

(
ti

ti+ti+1

)
+ di+1

ti+1

(
ti+1

ti+ti+1

)
. This form places greater weight on the approach rate if the spread process528

spends more time at this rate, relative to the departure rate (and vice versa). For the earliest and latest DoD529
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observations, rate of spread is only available to one side of the point, which receives full weight (1). We used the530

rate of spread at the first point in Costa Rica to infer the date of arrival at the northwestern border of Costa Rica.531
vMost notably, the Comarca Ngäbe Buglé was created in 1997 and led to the creation of eight new districts,532

carved out of previously existing districts. For instance, the district San Félix was split into San Félix and Mironó.533
viWe aggregated distritos in the following way: Mironó was merged with San Félix, Nole Duima was merged534

with Remedios, Kusapı́n was merged with Bocas del Toro, Cémaco was merged with Pinogana, Sambú was merged535

with Chepigana, Müna is merged with Tolé, Besikó was merged with San Lorenzo, Kankintú was merged with536

Chiriquı́ Grande, Ñürüm and Cañazas were merged with Las Palmas, Mariato was merged with Montijo.537
viiThis includes the provinces of Panamá and Darién and the Comarca Guna Yala.538
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